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In this paper, we study a new strategy to find the influential nodes in
the complex networks. This strategy is based on Structural Centrality (SC)
of the node in the network. In this strategy, by using graph spectral analy-
sis of the network, we find the hierarchy of the influential nodes in the form
of central nodes in the network. The structural centrality of each node is
ranked in the topology of complex networks which are modeled as the scale
free networks. We have explored the structural centrality based targeted
attack and compared our result with the degree based targeted attack. The
robustness of the real world complex network has been measured efficiently
against the degree, structural centrality based targeted attack and com-
pared with the random attack and compared it. In the social networks, the
mechanism to suppress the harmful rumors is of great importance. A rumor
spreading model has been defined using the susceptible-infected-refractory
(SIR) model to characterize the rumor propagation in the social networks.
Inoculation strategy based on the structural centrality has been applied on
the rumor spreading model for the heterogeneous networks. It is compared
with the random and degree based targeted inoculations. The nodes with
higher structural centrality are chosen for the inoculation in the proposed
strategy. The structural centrality based targeted inoculation strategy is
found to be more efficient in comparison to the random and degree based
targeted inoculation strategies. One of the bottlenecks of this approach
is the high complexity in computing the structural centrality of the nodes
in the complex networks with very large number of nodes. Further, ap-
pearance of giant component has been studied in the network with random
attacks, and degree and structural centrality based attacks. The proposed
hypothesis has been verified using simulation results for e-mail network
data and also for the generated scale free networks.
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1. Introduction

In today’s world, Internet has become the most powerful medium to
circulate the information. We use online social network sites to express
our attitude, emotions and to communicate with friends, almost on daily
basis. Twitter and Facebook have become the most important mechanisms
for information broadcasting. A large number of users share information on
them. Consequently, lot of research has been carried out to provide valuable
insights in the information diffusion in social networks. It has been found
that the topologies of many real world networks have three main properties:
small world, scale free and high clustering.

If any information is circulated without officially publicized confirmation,
it is called a rumor. In other words, rumors are unreliable information. The
rumor spread phenomenon is similar to epidemic spread, in which all the
informed nodes spread rumor by informing their neighboring nodes [1, 2].
Recent research in complex network theory has given a new direction to the
epidemic spreading model [3, 4]. The susceptible-infected-refractory (SIR)
model for dynamic process of epidemic spread is used to model the rumor
spread in this paper. A susceptible node can be infected by an infected
neighbor with some spreading rate and introduces a new refractory state
in which nodes cannot be infected. The SIR model for rumor spreading,
was first introduced by Daley and Kendal [5] and its variants by Maki-
Thompson [6]. In Daley—Kendal (DK) model, homogeneous population is
subdivided into three groups viz., ignorants (I), spreaders (S) and stifler (R).
The rumor is propagated throughout the population by pairwise contacts
between spreaders and other individuals in the population. Any spreader
involved in a pairwise meeting attempts to infect other individuals with the
rumor. In Maki-Thompson (MK) model when a spreader contacts another
spreader, only initiating spreader becomes a stifler. DK and MK models
have an important shortcoming that these models do not take into account
the topology of the underlying social interconnection networks along which
the rumors spread. To consider the topology of network, the rumor spread-
ing models on small world network and scale free (SF) networks |7, 8] have
been defined. Some studies have been reported on how to stop the rumor
spread [9-15] in small world and SF networks. These studies are more im-
portant since false and fatal rumors have negative impacts on the society
especially during disasters.

In this paper, a strategy based on structural centrality is applied to find
the most central nodes in the network. Using this method, the hierarchy
of nodes can be made, according to their structural centrality, to find the
most influential nodes. The robustness of real world complex networks has
been studied using the attack based on structural centrality. The inocula-
tion of the nodes using this method has been used in the rumor spreading
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models in this paper. The results are compared with degree and structural
centrality based targeted and random inoculations [16]. The structural cen-
trality based inoculation will not be useful for a complex network with very
large number of nodes because the complexity will be high in finding the
structural centrality of the nodes. In real world networks, the scale free
properties have been found e.g., e-mail networks, Internet networks, tele-
phone call graphs, etc. [4]. Thus, in this work, for all the simulations of the
complex networks, the scale free property has been considered with power
law degree distribution.

In order to study the stability of network, some proper stability met-
ric need to be defined. To measure the network’s failure tolerance, Albert
et al. [17] studied that removing a fraction of node may causes a change
in diameter, largest component size and average component size. Due to
the absence of deleted fraction of nodes, there is an increase in distance
between the remaining nodes and hence in the diameter of network due to
reduced system interconnectedness [18]. When the node is removed from the
network, it gets detached from the large component. We can use giant com-
ponent GC (largest connected component) size as the stability metric [19].
This metric is based on the topological properties of the network. We can
calculate the stability metric by visualizing the network break-down point
using percolation threshold [20]. If we remove more fractions of nodes than
the percolation threshold from the network, it results in large number of
disconnected components and the giant component disappears. Below that
threshold, there exists a giant component which spans the macroscopic part
of network. Molloy et al. [21] theoretically showed the existence of giant

component by the ratio k = %, where (k) and (k2) are the first and sec-

ond moments of degree distribution respectively. With the help of k, we can
find out the presence of giant component; if the value of k > 2, it indicates
the presence of giant component in the network. Paul et al. [22] obtained the
percolation threshold from the simulations by removing a fraction of nodes
and then visualizing the value of k. When the ratio is k < 2, a fraction of
nodes is removed and recorded. In this paper, the percolation threshold has
been calculated by random, degree based and structural centrality based at-
tacks. The size of giant component has been calculated after every fraction
of attack and the phase transition of giant component have been studied.
It helps to know the exact fraction of nodes needed to be attacked to break
the network into small components with no giant component.
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2. Centrality

The node through which most of the nodes are connected is the most
active node in the network. Centrality in the network is basically defined
as the measure criteria of the node’s importance w.r.t. to other nodes. The
central node is the most important point of stability w.r.t. to other nodes
and it is likely to be the main stem for the network connectivity. There
are different types of measure by which we can categorize the centrality.
Here, we discuss a few which are of importance. These measures have been
discussed in the networks to explain the idea.

2.1. Degree centrality

The simplest and perhaps the most common notion is that the node
centrality is a function of degree of the node. The degree of a node INV; can
simply be understood by the number of other nodes N;(i # j) which are
neighbors of this node. The nodes having higher degree are more strongly
connected with the other nodes and they have more options to share the
resources or to communicate with the neighbor nodes. Because of the higher
degree, a node can act as an important communication link between two
different nodes.

In social network, from the communication point of view, the person with
the highest number of neighbors is in direct contact with many others. This
person can be seen as the major source through which information spreads.
On the other hand, a person with the less number of neighbors makes the
person aloof from the communication process. Using this basis, Niemen has
introduced the general measure of calculating the degree centrality [23]| as

n

Ca(Ni) =Y e(Ni, Ny) (1)

i=1

where e(N;, Ni) = 1 if the node is connected by an edge between i and k,
otherwise 0. Now, from the value of Cy for the node Ny, we can predict that
if the value is large then this node is more likely to be degree central. As
the value decreases, the centrality of the node in the network decreases and
if the value equals zero than the node is isolated from the network.

2.2. Betweenness centrality

The second view point of centrality is betweenness centrality. Between-
ness implies the node which is common in most of the paths connecting all
possible pairs of nodes. This centrality was first introduced by Freeman [23].
He defined that if any node which is present in between the path connecting
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two nodes it has the potential to control the connectivity. Thus, node hav-
ing this property for the maximum possible paths is defined as betweenness
central.

In a complex network, there is a situation when some nodes are present
on the connecting path and sometimes not if more than one path are there
between two nodes, and one of the paths is chosen randomly. In that case,
some sort of partial betweenness is defined in terms of probabilities. The
node which is more common in the paths is more central than the other nodes
present in the network. Let us assume that total number of communication
paths between two nodes N; and Nj is represented by ¢;;, and the probability
of using one out of these is

1

= @)

ij
The centrality of node Ng, which lies on the connecting paths between nodes
N; and Nj, is defined as the probability that Vi falls on the randomly
selected path between these two nodes. If ¢;;(Nj) is the number of paths
between the nodes ¢ and j that contains N, then b;;(Ny) = i X t;;(Nk) -

The b;;(Ny) is the probability that node k occurs on the connecting path
between node ¢ and j. To determine the overall centrality of a node N, we
have to take sum of probabilities for all the pairs of nodes which contain
node k on the path between these with the constraints that ¢ £ j # k

N N
Co(Nk) = > ) bijin) - (3)

i<j

Cy(Ng) is the measure of partial centrality for the node Ny. If Nj is the
only node through which all possible path p;; passes, then the value is 1,
otherwise the value is less than 1.

3. Complex network topology using graph spectra

The complex network topology can be understood by the graph structure
G = (V,E) |23, 24]. Here V is the set of vertices or nodes and E is the set of
edges or links. In the graph structure form, a network can be represented by
the symmetric adjacency matrix. A = [a;;] of [N x N| size in which a;; =1
if edge is present, and a;; = aj;. A diagonal matrix, D = [d;]nxn, where
di = ; @ij 1s the degree of the ith node. A Laplacian matrix L of a graph
is given by L = D — A.

Spectral graph theory using eigenvalues and eigenvectors can be applied
in the graphs to find out the structural centrality of the networks. If a
matrix is square, symmetric and positive semidefinite [25] then eigenvectors
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and eigenvalues will exist for the matrix. Thus, eigenvectors and eigenvalues
exist for A, since the adjacency matrix A of a graph is square, symmetric
and positive semidefinite. The Laplacian matrix L is [25]:

— Symmetric, thus N real eigenvalues, and real eigenvectors form or-
thonormal basis.

— Positive semidefinite, thus eigenvalues are non-negative.

— Doubly centred , thus the centroid of the position vectors for the set
of nodes lies at the origin of this n-dimensional space.

The Laplacian matrix L of the network is also square, symmetric and
positive semidefinite, therefore, it has all eigenvalues, i.e. A\; > 0, Vi. These
eigenvalues (\;) ordered as \y > Ay > -+ > A\, = 0%, with corresponding
eigenvectors Z; such that ||Z||> = £TZ = 1. The eigenvalues of L are positive

with minimum eigenvalue is equal to 0. Hence, there is a trivial eigenvector

[1,1,1,...,1] with eigenvalue zero. In the undirected network, sum of row
and column of Laplacian matrix, L, is zero. The set of eigenvectors of L,
Z =|A,...% ..., %), will be orthonormal i.e., ZI'Z = I. If A is a diagonal

matrix, i.e. A = [\;], of eigenvalues, then L follows the eigen decomposition
as L = ZAZ". The Laplacian matrix L is [25]:

— Symmetric — N real eigenvalues, and real eigenvectors form orthonor-
mal basis.

— Positive semidefinite — non-negative eigenvalues.

— Doubly centred — the centroid of the position vectors for the set of
nodes lies at the origin of this n-dimensional space.

4. Structural centrality

The Moore-Penrose pseudo inverse matrix L™ that follows all the prop-
erties (square, symmetric, doublycentered, positive semidefinite) of L, can
be defined, from the Laplace matrix. The eigen decomposition of LT will
be Z'A='Z. Z is an orthonormal matrix made of the eigenvectors of L.
If A has an eigenvalue value, \; = 0 then corresponding eigenvalue A~! in
A% will also be 0. As LT has the doubly centered (all rows and columns
sum will be zero) property, therefore, centroid of the nodes (having position
vectors) lies on the origin of the space |25]. The graph matrix maps into the
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new Euclidean space. We can represent each node by a unit vector ¥ as

=0-— 1-——-0"
=0-— 1-——-0"
J

Now, we can calculate the distance between node ¢ and j in terms of
number of hops required to reach j from ¢ (m(j]i)) and vice versa. Average
commute hop distance measure is

n(i, j) = m(jli) + m(ilj) . (4)
n(z,7) will follow the following distance measures for any nodes 4, j and k
1. n(i,j) >0,
2. n(i,7)=0ifi =7,
3. n(i,j) = n(4,7), and
4. n(i,7) < n(i, k) +n(k,j).

n
Therefore, using LT matrix and graph volume, Vo(= Y. dgk), n(i,7)

can be expressed as [25]
(i, ) = Ve (15 +1 - 215) ®)

The node vector v; can be mapped into the new Euclidean space by using
the following transformations

o = 2y, (6)
g = A7 Pgm (7)

where g; is the transformation node vector. Then Eq. (5) can be decom-
posed as

. . AnT (= -
n(i,j) =Va (G —v') G —v') - (8)
LT contains the inner product of transformed vector i/":
T 1 -1/2 - T -1/2 - >T
Uiy =N 0 N Y =g AT 7

> T
_ =T —1 > STr+= g+
=V, ZNTZ Uj=0; LU =15
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—/
The vectors y; are centred

n n n
T T
Jr=nPY g = ATRZT Y = AT
i=1 i=1
T - =T =T
wsing A'=Z LYZ and ATY2Z =AV2Z LY

n
S gi= (A2 L) 5=0 since L'F=0.

If Y’ denotes data matrix containing Y’ = (G, T T, U Uss o, U] then we
have Lt = Y'(Y")T with I;; = gj’;ng’; Thus, taking into account the above
fact and having Z as orthonormal basis, one can conclude that matrix Y’
represents an embedding of network in a new n-dimensional Euclidean space.
Hence, in the new Euclidean space, the node vector y; and y; are separated
by average commute euclidean distance measure (72(z, 7)).

Therefore, the Euclidean distance measure for the node ¢ from the origin
can be found as the diagonal entry of the L™

Definition If L. is the Laplacian of the graph on n vertices consisting of
just the edge e and @ € R™ then

GTLE =Y B Ll = Y (0 — ) (10)
eclE (i,5)EE

e )

(22

7
Y;

2_

Definition Structural centrality is able to make the hierarchy from the most
influential nodes to least influential nodes.

The structural centrality of the node ¢ for the graph G is

SC (i) = zl+ (11)

From Eq. (11), for the lower value of I the structural centrality (SC) will
be high and vice versa. Therefore, the value of l;g determines the influential
nodes.

If a node i is closer to the origin in the n-dimensional space, then it will
have lower value of l;'g, 1.e., more centrally located in the network. Therefore,
the value of l;; in the pseudo inverse matrix L™ can be defined as

n—1 .9

=32k, 12
i ;Ak (12)



Impact of Structural Centrality Based Attacks in Complex Networks 313

It has been observed from Eq. (12) that structural centrality of a node is
defined by the eigenvectors and eigenvalues of the Laplace matrix, L of the
graph.

It has been defined that LZ, the squared distance of each node i to the
origin in the L™ geometric embedding, provides a strong measure of the
structural centrality of a node ¢ in the network. In fact, the larger is L;g
(i.e. farther away it is from the origin of the embedding), the less structurally
central is the node ¢ in the network. In other words, node ¢ with larger L;g
lies closer to the periphery of the network, whereas the node ¢ with smaller
L;g lies closer to the center of the network. Therefore, for node i, 1/ L;g
is referred as the structural centrality measure as in Eq. (11) (thus the
larger is 1/ L;g, the more structurally central is node i), whereas LZ will
be referred to as the random eccentricity metric. Intuitively, the structural
centrality metric, 1/L;, implies that if the network is attacked (inoculated)
and divided in two parts, nodes ¢ with larger structural centrality metrics
are more likely to lie in the larger part of the remaining network after the
attack.

The concept of structural centrality can be understood with the help of
an example given in Fig. 1. There are seven nodes in the graph and the
hierarchy of their degrees is given in the center of the nodes. Hence, node 5
is most influential in the case of targeted inoculation based on nodal degree
as shown in Fig. 1(a). After defining the adjacency matrix A and degree
matrix D of the given graph, we can calculate the Laplace matrix L = D—A

as
-1 0 0 0

0

2 -1 0 0 0
-1 3 -1 -1 0
0 -1 2 -1 0
-1 -1 4 -1
0 0 -1 2

0 0 -1 -1

~
Il
OO O OO = -

o O O

Fig. 1. The node ranks in graph with (a) degree centralities (b) structural central-
ities mentioned inside the nodes.
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Laplace matrix, L, holds the desirable properties to calculate the structural
centrality. It is:

1. Symmetric: a;; = aj;, in the given Laplacian, L.
2. Square: The size of given Laplacian matrix, L, is 7 X 7.

3. Doubly centered: Summation of all rows and columns in the given
Laplacian matrix, L, are 0.

4. Positive semidefinite: Let @ be any vector, i.e., W = [_0'8507} th

—0.5257|’
= |—0.8507 —0.5257], for edge between node 1 and 2, Lo =

n
]
@ T Ly = 0.3820. (13)

Therefore, L will be positive semidefinite.
By given symmetric, square, doubly centred and positive semidefinite,
Laplacian matrix, L, pseudo inverse matrix L* can be generated as

1.4626 0.6054 —0.1088 —0.3469 —0.4422 —0.5850 —0.5850

0.6054 0.7483 0.0340 —0.2041 —0.2993 —0.4422 —0.4422

—0.1088 0.0340 0.3197 0.0816 —0.0136 —0.1565 —0.1565

LT=| —0.3469 —0.2041 0.0816 0.5102 0.0816 —0.0612 —0.0612
—0.4422 —-0.2993 —0.0136 0.0816 0.3197 0.1769 0.1769
—0.5850 —0.4422 —0.1565 —0.0612 0.1769 0.7007 0.3673
—0.5850 —0.4422 —0.1565 —0.0612 0.1769 0.3673 0.7007

From the above matrix, diagonal value l+ is defined for i*® node. Thus, the
vector for l:g Vi is

lJr [1 462 0.7483 0.3197 0.5102 0.3197 0.7007 0. 7007]

After observing the above values of l“, it has been found that nodes 3
and 5 with minimum lu, have the maximum structural centrality in the
network. Therefore, node 3 can also be most influential like node 5 (i.e.
most influential in degree centrality).

5. Structural centrality inoculations

The diagonal elements l;’; can be sorted from low to high with their cor-
responding node ids. Now, we will be able to get the list of the nodes sorted
according to their structural centralities from high to low from Eq. (11).
Then, we can select fraction g of inoculated nodes from the sorted array.
Consequently, we will be able to inoculate most structurally central nodes
first. It is also considered as structural centrality based targeted attack.
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6. Rumor spreading model

In this work, the modified SIR model for rumor spreading has been
used, proposed by us in [8]. The mean field equations for complex networks
has been used while considering non-linearly varying number of informed
neighbor nodes by a spreader in each time step (not all neighbors of the
node). It means that at a single time step a node may or may not inform
their all neighbors. It depends on a parameter o, 0 < o < 1. This scenario
can also be found in real life, where a person can share information only
to some of his neighbors, not to all neighbors. P(k) o k™7 is the degree
distribution of SF network and ®(k) = k“ is the non-linear rumor spreading
function with 0 < o < 1. P(l]k) is the degree—degree correlation function
that a randomly chosen edge is emanating from a node of degree k leads to
a node of degree [, and P(l|k) = [P(l)/(k), for uncorrelated networks, where
(k) is the average degree of the network. Let I(k,t),S(k,t), R(k,t) be the
fraction of ignorants, spreaders and stifler nodes, respectively belonging to
connectivity class k£ at time ¢. The rate equations for rumor diffusion model
are

dl(d]i’t) = —kAig’t)Zj:jaP(j)S(j,t), (14)
dS(k,t) KMk t) = ) v o ko S(k,t) .
ol 1) Zj:y P(J)S(Jat)—W;[S(Jyt)‘F
R(j,1)]7P(j) — 0S(k,t), (15)

dREz]Z’t) - kgfght) ;[So,t)+R<j,t>]jaP<j>+5S<k7t>7 (16)

where, A, 0 and § are the rumor spreading, stifling and forgetting rates
respectively. After solving Eqs. (14)—(16) for 6 = 1, the rumor threshold

(below this spreading rate rumor will not spread in the network) is A, =

(k)
&)

7. Random inoculations

In random inoculation strategy, randomly selected node from the net-
work are inoculated. This approach inoculates a fraction of nodes randomly,
without any information about the network. Here, variable g (0 < g < 1)
defines the fraction of inoculated nodes. In the presence of random inocula-
tion, rumor spreading rate A is reduced by a factor (1 — g).
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8. Targeted inoculations

Scale free networks permit efficient strategies which depend upon the hi-
erarchy of the degrees of nodes (or structural centrality). The SF networks
are strongly affected by targeted inoculation of nodes [8]. In targeted inocu-
lation, the high degree nodes (high degree centrality) are inoculated as they
are more likely to spread the information. The robustness of SF networks
decreases even with a tiny fraction of inoculated individuals.

Let us assume that the fraction g of nodes with degree k are successfully
inoculated. An upper threshold of degree (structural centrality) is k; , so that
all nodes with degree (structural centrality) k& > k; get inoculated (g = 1),
fraction g, of nodes with the degree (structural centrality) k are successfully
inoculated. The fraction of inoculated nodes is given by

1, k >k,
9k = f7 k:kt> (17)
0, k<k,

where 0 < f < 1.

9. Simulations and results

The results of simulations are shown for the simulated scale free network
as well as for real world network data e.g. the e-mail communication network
at the University Rovira i Virgili [26]. In the e-mail network, there are 1133
nodes and 10902 edges with maximum degree of 71. Here, all attack strate-
gies are performed and compared to the robustness for e-mail network. The
SF networks are generated according to the power law, P(k) = k=7, where
2 <y <3 for N =5000 and v = 2.3 (Fig. 2(a)). E-mail network has also
been verified to be complex (Fig. 2 (b)). The random attack is implemented
by selecting g/ N nodes randomly in the network. The targeted attack can

P(k)

10

k
Fig.2. The degree distributions of (a) generated SF network, (b) e-mail network.
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be done after selection of the fraction of higher degree (structural central-
ity) nodes. The structural centrality inoculation can be done by getting the
diagonal values l;t- of the pseudo inverse matrix L™, for the corresponding
node i. Using l;g, we can sort the values in an array from low to high and
inoculate fraction of the sorted nodes in the array. In structural centrality
(SC) attack, we use the diagonal entries of matrix L™ which is [;. We delete
the node in the hierarchy, in the order of node centrality (increasing order
of algebraic value present at diagonal entries of matrix LT ).

In Fig. 3, the variation of the size of the giant component has been
shown against the targeted based on degree and structural centrality and
random attack. In the Fig. 3, the size of giant component is affected more by
structural centrality than targeted. There is a range over which SC attack
is showing much better results than the degree centrality based targeted
attack. By deleting even a small fraction of more central connecting nodes,
the size of giant component is reduced further. At higher fraction of deletion,
structural centrality proves to be better than degree based targeted attack,
because after deleting a large fraction, there remains a large number of small
degree nodes as we can see in Fig. 9. Therefore, degree based targeted attack
will delete all the nodes with the same probability. On the other hand, in the
case of SC attack, the nodes which are more centrally placed in the network
within the same degree of nodes are deleted. Hence, attack through SC
chooses the nodes more efficiently even when less nodes of the same degree
are present.

1000

@ @
S S
S S

Size of Giant component

IS
=]
S

200

1 1 I I 1
0 0.05 0.1 0.15 0.2

0 1 |
0.3 0.35 0.4 0.45 0.5

0.25
Fraction Deleted

Fig. 3. Giant component against fraction of deleted nodes.



318 A. SINGH, R. KUuMAR, Y.N. SINGH

In Fig. 4, a variation of deleted edges against the fraction of deleted nodes
is shown. It has been discussed above under what range structure centrality
(SC) attack is showing better result. The same result has been observed in
Fig. 4, in the case of edges deletion. At small fraction more edges are deleted,
this is due to the presence of the large connected component getting attacked.
Whereas, when the fraction is bigger, there is not much variation in the
deleted edges. This is because at this stage only less connected components
with smaller size having nodes with less degree are remaining in the network.
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T 35001 -
D

hel

fin}

g oo B
£

[

O 25001 —
s}

o Target
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1500 — 4

1000~ -

500 -

L L L L L L L L L
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
Fraction Deleted

Fig. 4. Deleted edges against fraction of deleted nodes.

In Figs. 5-7, the upper figure presents the variation in size of giant com-
ponent against deleted fraction of nodes using random, structural centrality
and targeted attacks, and lower figure presents the value of k with the same
deleted fraction. This result (Fig. 5-7) shows that at fraction 0.5 the value

of Kk = % < 2. If kK < 2, then giant component disappears from the net-

work [20]. Hence, we have concluded that the e-mail network is more robust
against the attack as compared to our simulated network with structural
centrality based attack. The e-mail network looses robustness once 40% of
the nodes have been attacked (Fig. 7), whereas with targeted attack, it hap-
pens at 50% (Fig. 6), and with random attacks, robustness is lost at 90%
(Fig. 5).
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Fig.5. Giant component in comparison with stability measure for e-mail network
against random attack.
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The structures of the e-mail and generated SF network are constructed
for some nodes along with the structural centrality (Fig. 8). In the degree
distribution of e-mail network more number of very high degree nodes are
found as compared with the generated SF network, as shown in Fig. 2.
Figure 8 (a) shows a lot of edges around more number of higher degree
nodes as compared to the generated SF networks shown in Fig. 8 (b). For
high structurally central node, less number of hops are required to reach
the other nodes, even at lesser degree. The most structurally centered node
provides the well connected path between the two dense nodes shown as a
sub-graph.

In Fig. 9 (a) degree centrality has been mentioned for all the nodes in the
decreasing order of degrees and corresponding node’s structural centrality
has also been shown in Fig. 9 (b) for e-mail networks. It is observed that
even with lesser degree, for some nodes, the structural centrality is high, and
can affect the network in the case of rumor spreading in comparison to the
high degree nodes. Therefore, we observe influential nodes in the structural
centrality. Hence, it is required to inoculate these nodes to suppress the
rumor in the network.
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Using the rumor model from Egs. (14)-(16), rumor dynamics is studied
for random inoculation, and targeted inoculation on the basis of nodal degree
and structural centrality. In Fig. 10, evolution of size of rumor is plotted
against time for e-mail network. Final size of rumor is lesser with inoculation
based on the structural centrality then the targeted inoculation based on
degree for 10% inoculation of nodes (Fig. 10 (a)). Similar pattern for rumor
evolution with time has been found for 30% inoculations (Fig. 10). The
rumor is almost suppressed in this case. Thus, the structural centrality based
inoculation suppresses the rumor in the networks more effectively. Random
inoculation is not much effective for both e-mail network and generated
SF network to suppress the rumor. In the case of generated SF networks,
for very small fraction of time, rumor size has been found to be higher
in structural centrality based inoculations initially for 10% as well as 30%
inoculations of nodes, as shown in Fig. 11. But later, rumor size decreases in
the structural centrality based inoculation in comparison with degree based



Impact of Structural Centrality Based Attacks in Complex Networks 323

targeted inoculations. The reason for that is that there are very few nodes
in the network with highest degree, but in overall number of nodes with
high degree are more. Therefore, initially the degree centrality plays an
important role but later the structural centrality becomes more important.
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Fig. 10. Rumor evolution with the time for (a) 10% inoculations, (b) 30% inocula-
tions for the e-mail network.
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Fig.11. Rumor evolution during with the time for (a) 10% inoculations, (b) 30%
inoculations for the generated SF network.
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The numerical simulations have been done to observe the complete dy-
namical process with both the inoculation strategies with spreading (A=0.5),
stifling (o0 =0.2) and spontaneous forgetting (6 = 1) rates. Nodes interact
with each other for rumor passing in each time step. After N nodes up-
date their states according to the proposed rumor model, time step is in-
cremented. To reduce the complexity, &« = 1 is considered. The random
inoculation is implemented by selecting g/N nodes randomly in the network.
The targeted inoculation can be done after selection of the fraction of higher
degree of nodes or structurally central nodes.
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10. Conclusions

The robustness of the real world complex network has been measured
efficiently with the help of the structural centrality base targeted attack
in compare with the degree based targeted attack. The result shows that
robustness of the network is lost only against a much higher fraction of
deleted nodes for random attack. When we have full knowledge about the
network structure, we can use an even better strategy than the targeted
attack based on degree, i.e. based structural centrality. In SF network, the
structural centralities of nodes have been derived in the complex networks
and ranked with the help of l;t- values. A node with the high structural
centrality needs lesser number of hops to reach the other node, even with
small degree. The attacks, based on structural centralities of nodes were
applied on SF networks and we found that the network is less robust as
compared to targeted based on degree and random attacks. We have also
inoculated nodes according to the rank of structural centrality. After this,
we observed less rumor spreading then the degree centrality based targeted
and random inoculations. It is also observed that there are a lot of nodes,
having low degrees but high structural centralities and wvice versa. It can be
concluded that giant component will disappear after removal of fewer nodes
in the structural centrality based targeted attack than for the degree based
targeted and random attacks.
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