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We have recently developed a series of accurately calibrated nuclear
energy density functionals, fitted to essentially all atomic masses with a
model root mean square deviation now reduced to 0.5 MeV for our func-
tional BSk27*. At the same time, these functionals were adjusted to realis-
tic equations of state of neutron matter and were constrained to reproduce
various properties of nuclear matter. Using BSk27∗, we have calculated the
internal constitution and the equation of state of the crust of non-accreting
neutron stars.
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1. Introduction

The nuclear energy density functional (EDF) theory aims at providing a
universal description of various nuclear systems, from atomic nuclei [1] to ex-
treme astrophysical environments like neutron stars and supernova cores [2].
A recent overview of the complete formalism can be found in Ref. [3]. The
main limitation of the EDF theory stems from the functional itself, whose
exact form is unknown. For this reason, various phenomenological func-
tionals have been proposed. These functionals have been traditionally ob-
tained from density-dependent effective nucleon–nucleon interactions in the
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framework of the self-consistent mean-field methods, namely the Hartree–
Fock (HF) or Hartree–Fock–Bogoliubov (HFB) approximations depending
on whether nuclear pairing is taken into account or not. The ensuing EDFs
are generally non-local, but can reduce to a semi-local form for zero-range
effective interactions of the Skyrme type [1, 2]. These interactions have been
widely employed since they allow for very fast numerical computations. Al-
though such a formulation based on effective interactions imposes stringent
restrictions on the form of the EDF, it guarantees the cancellation of the
internal energy in the limiting case of one nucleon [4]. On the other hand,
the EDFs may still be contaminated by many-body self-interactions errors
(see, e.g., Ref. [3]).

Once a specific form of the effective interaction is postulated, the asso-
ciated parameters need to be adjusted to reproduce a selected set of nuclear
data. The non-uniqueness of the fitting procedure has led to a large number
of different parametrizations. Some of them may yield very different pre-
dictions when applied outside the domain where they were fitted [5]. This
situation is particularly unsatisfactory for nuclear astrophysical applications
which require a knowledge of nuclear masses for nuclei so neutron rich that
there is no hope of measuring them in the foreseeable future; such nuclei are
found in the outer crust of neutron stars [6–8]. Extrapolations far beyond
the neutron drip line are required for the description of the inner crust of
neutron stars where neutron–proton clusters coexist with unbound neutrons
(see, e.g., Ref. [9]). On the other hand, the reliability of phenomenological
EDFs for very neutron-rich systems can be tested by comparing their pre-
dictions for the properties of pure neutron matter with the results obtained
from microscopic calculations based on realistic nucleon–nucleon potentials.
The properties of high-density matter can be also studied via heavy-ion col-
lision experiments. For this reason, we have developed a series of accurately
calibrated semi-local EDFs fitted to essentially all measured atomic mass
data, while imposing additional constraints on the EDF. After briefly re-
viewing our recent progress, applications to the description of the crust of
non-accreting neutron stars will be presented using the latest of our series,
the BSk27∗ EDF.

2. Brussels–Montreal nuclear energy density functionals

The Brussels–Montreal (BSk) series of EDFs were obtained from zero-
range effective interactions. As in conventional superconductors, the effec-
tive interaction governing single-particle properties may not necessarily be
the same as the interaction responsible for nuclear pairing. For the former,
we considered generalized Skyrme effective interactions of the form
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where rrrij = rrri − rrrj , rrr = (rrri + rrrj)/2, pppij = −i~(∇∇∇i −∇∇∇j)/2 is the relative
momentum, σ̂iσ̂iσ̂i and σ̂jσ̂jσ̂j are Pauli spin matrices, Pσ is the two-body spin-
exchange operator, and n(rrr) denotes the average nucleon number density.
As for the pairing interaction, we considered effective interactions of the
form

v(rrri, rrrj) = vπ(nn(rrr), np(rrr))δ(rrrij) , (2)

where nn(rrr) and np(rrr) denote the average neutron and proton number den-
sities respectively. In order to regularize the ultra-violet divergences arising
from the zero range of the interaction, some cutoff has to be imposed, ei-
ther in the quasiparticle or in the single-particle energy spectrum. Because
of Coulomb effects, the proton pairing strength is expected to be different
from the neutron pairing strength. Since we use the equal-filling approxi-
mation [10], we must also allow the pairing strength to be slightly stronger
for nucleons of which there are an odd number. Indeed, this procedure can
be understood microscopically [11] as compensating for the neglect of the
time-odd fields. (Note that the odd nucleon will nevertheless contribute to
the time-even fields.) We take account of these extra degrees of freedom by
multiplying the pairing strength, as determined through Eq. (2), by renor-
malising factors f−n , f+p and f−p (we set f+n ≡ 1).

The parameters of these effective interactions were determined primarily
by fitting all measured atomic masses from the Atomic Mass Evaluations
(AME) [12, 13] with Z,N ≥ 8. At the same time, an optimal fit to charge
radii was ensured. In an attempt to account for dynamical correlations, we
have subtracted from the HFB energy an estimate for the spurious collective
energy. As described in Ref. [14], the form we adopted in our HFB-16 model
and all subsequent models is

Ecoll = Ecrank
rot

{
b tanh(c|β2|) + d|β2| exp

{
−l
(
|β2| − β02

)2}}
, (3)

in which Ecrank
rot denotes the cranking-model value of the rotational correction

and β2 the quadrupole deformation. To the HFB energy, we also add a
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phenomenological Wigner correction,
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which contributes significantly only for light nuclei (A < A0) or nuclei with
N close to Z (see, e.g., Ref. [14] for a discussion of the physical interpretation
of these terms). The spurious centre-of-mass energy is removed following an
essentially exact procedure [15]. Moreover, a correction for the finite size
of the proton is made to both the charge radius and the energy [14]. Fi-
nally, we drop Coulomb exchange, thus simulating neglected effects such
as Coulomb correlations, charge-symmetry breaking, and vacuum polariza-
tion [16]. A detailed description of the fitting procedure can be found in
Ref. [17].

Our ultimate aim is to construct a universal nuclear EDF that could be
reliably applied to study not only the properties of atomic nuclei but also
the interior of neutron stars and supernova cores. To this end, we have been
imposing on our mass models an increasing number of relevant constraints.
The progress made so far over the past years can be summarized as follows
(see Ref. [14] for a review of our older models):

— BSk16 [14] was fitted to the 1S0 pairing gaps in pure neutron mat-
ter, as obtained from BCS calculations using realistic nucleon–nucleon
potentials; BSk17 [18] was fitted to diagrammatic calculations of the
1S0 pairing gaps including medium polarization effects, both in pure
neutron matter and in symmetric nuclear matter (see also Ref. [19]).
In this way, we showed that the pairing strength can be uniquely de-
termined from the 1S0 pairing gap function ∆q(nn, np) in asymmet-
ric homogeneous nuclear matter, and can be accurately expressed as
(q = n, p for neutrons and protons respectively) [20]
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ε
(q)
F = ~2(3π2nq)2/3/(2M∗q ) (M∗q is the nucleon effective mass) and εΛ
is a single-particle energy cutoff above the Fermi level. An optimum
fit to atomic masses was achieved for εΛ = 16 MeV.

— t4 and t5 terms were introduced in BSk18 [21] to prevent the ferro-
magnetic collapse of neutron stars.
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— Making use of the flexibility allowed by the t4 and t5 terms, BSk19,
BSk20, and BSk21 [22] were fitted to three different realistic neutron-
matter equations of state (EoS) with different degrees of stiffness, re-
flecting the current lack of knowledge of the high-density behaviour of
dense matter. In addition, the terms quadratic in the spin-current ten-
sor and their time-odd counterpart from the EDF were dropped. This
prescription not only avoids the occurrence of spurious long wavelength
spin and spin–isospin instabilities, but also substantially improves the
values of the Landau parameters [23]. Although finite-size instabilities
may still arise, the instability window is dramatically reduced [24].

— Whereas all previous models described above were fitted to a symmetry
energy coefficient J = 30 MeV, other values ranging from 29 to 32 MeV
were considered in the series from BSk22 to BSk26 [17]. The best fit
to atomic masses was achieved for J = 29–30 MeV. Such values are
also supported by measurements of neutron-skin thicknesses of various
neutron-rich nuclei [17]. The values for the slope of the symmetry en-
ergy obtained with these EDFs lie in the range of L = 37.5–68.5 MeV,
in close agreement with various empirical constraints [25, 26].

— BSk27∗ [27] is based on standard Skyrme and pairing interactions that
could be more easily implemented in existing HF(B) codes. It yields
the optimal fit of the 2353 measured masses of nuclei withN and Z ≥ 8
appearing in the 2012 AME [13], with a model standard deviation as
low as σmod = 0.500 MeV.

In all cases, the incompressibility Kv of symmetric nuclear matter at sat-
uration was required to fall in the empirical range 240±10 MeV [28]. More-
over, the isoscalar effective mass in symmetric nuclear matter at saturation
was fixed to the realistic value M∗s = 0.8 (see Ref. [29] for a summary of the
experimental and theoretical evidence). Although our EDFs were adjusted
to realistic EoS of pure neutron matter only, the EoS of symmetric nuclear
matter obtained from our EDFs are compatible with the constraints inferred
from the analysis of heavy-ion collision experiments [30, 31]. Moreover, the
isovector effective massM∗v is found to be smaller thanM∗s at the saturation
density, implying thereby thatM∗n > M∗p in neutron-rich matter. This result
is consistent with measurements of isovector giant resonances [32], and mi-
croscopic calculations [33, 34]. The predictions of our EDFs for high-density
nuclear matter can be further tested using neutron-star observations [35].
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3. Application to neutron stars

Born in the aftermath of gravitational core-collapse supernova explo-
sions, neutron stars are the densest stars known in the universe and are
even more compact than the heaviest atomic nuclei [36]. With average mass
densities ranging from a few grams per cubic centimetres at their surface to
about 1015 g cm−3 at their centre, neutron stars are expected to exhibit very
different phases of matter, thus making them unique laboratories to study
the properties of dense matter. According to our current understanding,
a neutron star contains several distinct regions, which can be classified as
follows with increasing depth [36].

— A very thin atmospheric plasma layer of light elements (mainly hy-
drogen and helium though heavier elements like carbon may also be
present) possibly surrounds a Coulomb liquid of electrons and ions.

— Below these liquid surface layers, the matter consists of a crystal lattice
of fully ionized atoms thus forming a solid crust. With increasing
density, nuclei become progressively more neutron rich until neutrons
start to drip out of nuclei as the average baryon number density reaches
n̄ ∼ 2.5×10−4 fm−3 (see Table I). The inner layers of the crust are thus
permeated by a neutron ocean, which is superfluid at low temperatures
T < Tc.

— The crust extends up to about half saturation density above which
it dissolves into an homogeneous liquid mixture of nucleons and lep-
tons (see Table II). The innermost part of the core may contain other
particles such as hyperons or even deconfined quarks.

TABLE I

Proton number Z, mass number A, density n̄drip, and pressure Pdrip at the neutron-
drip transition for two different atomic mass models.

Z A n̄drip [fm−3] Pdrip [MeV fm−3]

HFB-21 38 124 2.57× 10−4 4.89× 10−4

HFB-27∗ 38 122 2.51× 10−4 4.84× 10−4

TABLE II

Density n̄cc, electron fraction Ye and pressure Pcc at the crust–core transition for
two different nuclear energy density functionals.

n̄cc [fm−3] Ye Pcc [MeV fm−3]

BSk21 0.0809 0.0335 0.269
BSk27∗ 0.0919 0.0383 0.439



Brussels–Montreal Nuclear Energy Density Functionals, from Atomic . . . 355

Observations from ground- and space-based instruments have led to the
discovery of remarkable astrophysical phenomena that are thought to be
intimately related to the physics of neutron-star crusts like pulsar sudden
spin-ups (so-called “glitches”), the thermal relaxation of quasipersistent soft
X-ray transients, X-ray bursts, and quasiperiodic oscillations in soft-gamma
ray repeaters (see, e.g., Ref. [9]). The crust composition is also essential to
evaluate the possible contribution of neutron stars to the galactic enrichment
in the so-called r-process nuclei [37]. During the supernova explosion and
the subsequent evolution, it is reasonable to assume that all kinds of nuclear
and electroweak processes are allowed so that the compressed matter in the
stellar remnant eventually reaches its ground state as the newly born neu-
tron star cools down. This so-called cold catalysed matter hypothesis implies
that all neutron stars can be described by the same EoS. This assumption
is certainly not valid in the crust of accreting neutron stars, but we shall
not study this case here. As in the seminal paper from Baym, Pethick and
Sutherland [38] the outer crust is supposed to be made of only one type of
nuclide arranged in a body-centred cubic lattice and coexisting with a degen-
erate electron gas. The only microscopic inputs are nuclear masses, for which
we have used the experimental data from the 2012 AME [13] complemented
with our latest nuclear mass model HFB-27∗ [27] for the masses that have
not yet been measured. The resulting composition, obtained using the same
method as in Ref. [6], is shown in Table III. The sequence of equilibrium
nuclides differs from that previously obtained with HFB-21 [6]. In partic-
ular, the presence of the odd nuclei 79Cu and 121Y predicted by HFB-21,
is no longer supported by HFB-27∗. Likewise HFB-27∗ predicts neither the
presence of 80Ni nor 124Sr in the outer crust. On the other hand, HFB-27∗
does predict the appearance of 126Ru and 124Zr, contrary to HFB-21. The
two atomic mass models also differ in their predictions of the neutron drip
transition, as shown in Table I. The root-mean-square deviation to the 2012
AME data is σ = 0.51 MeV for HFB-27∗ [27], as compared to σ = 0.57 MeV
for HFB-21 [17]; although HFB-21 was fitted to the 2003 AME data, it yields
an even better fit to the 2012 AME. The discrepancies between these two
models for the composition of neutron-star crust arise from the uncertain-
ties in the masses of neutron-rich nuclei. For instance, the values for the
mass of 124Sr as calculated with HFB-21 and HFB-27∗ are found to differ by
about 2.4 MeV. A study of the model and parameter uncertainties affecting
the HFB mass predictions can be found in Ref. [5]. For the inner crust,
we have employed the semiclassical Thomas–Fermi approach extended up
to the fourth order using the BSk27∗ EDF underlying the HFB-27∗ nuclear
mass model applied in the outer crust. Proton shell effects were included
using the Strutinsky integral theorem (see Ref. [39] for details). Neutron
shell effects are known to be much smaller and were therefore neglected [40].
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TABLE III

Sequence of equilibrium nuclides with increasing depth in the outer crust of a non-
accreting neutron star for the HFB-27∗ atomic mass model. The nuclides with
experimentally measured masses are indicated in boldface. Indicated are also the
minimum density n̄min, the maximum density n̄max and the maximum pressure
Pmax at which each nuclide can be found.

n̄min [fm−3] n̄max [fm−3] Pmax [MeV fm−3]
56Fe − 4.90× 10−9 3.33× 10−10

62Ni 5.05× 10−9 1.63× 10−7 4.36× 10−8

64Ni 1.69× 10−7 8.01× 10−7 3.56× 10−7

66Ni 8.26× 10−7 8.66× 10−7 3.79× 10−7

86Kr 8.84× 10−7 1.88× 10−6 1.05× 10−6

84Se 1.94× 10−6 6.87× 10−6 5.66× 10−6

82Ge 7.11× 10−6 1.69× 10−5 1.79× 10−5

80Zn 1.75× 10−5 3.53× 10−5 4.56× 10−5

78Ni 3.68× 10−5 7.10× 10−5 1.10× 10−4

126Ru 7.40× 10−5 7.64× 10−5 1.14× 10−4

124Mo 7.86× 10−5 1.31× 10−4 2.27× 10−4

122Zr 1.35× 10−4 1.63× 10−4 2.91× 10−4

124Zr 1.66× 10−4 1.88× 10−4 3.43× 10−4

120Sr 1.91× 10−4 1.95× 10−4 3.54× 10−4

122Sr 1.99× 10−4 2.51× 10−4 4.84× 10−4

The procedure just described is a computationally very fast approximation
to the full HF equations. The proton number Z = 40 is found to be favoured
in all layers, in agreement with the results obtained with BSk21 [39]. On the
other hand, BSk27∗ yields a stiffer EoS, as shown in Fig. 1; this behaviour
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Fig. 1. Pressure vs. average baryon number density in the crust of a non-accreting
neutron star, as predicted by two different nuclear energy density functionals.
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arises from the correspondingly stiffer neutron-matter EoS at subsaturation
densities [27]. The properties of the crust–core transition, as calculated
by the method described in Ref. [41] (see also Ref. [39]), are indicated in
Table II. The higher values for the crust–core transition density and pressure
obtained with BSk27∗ can be traced back to the much lower value for the
slope of the symmetry energy [42]: L = 28.5 MeV for BSk27∗, as compared
to L = 46.6 MeV for BSk21.

4. Conclusion

We have employed BSk27∗, the latest of the accurately calibrated Brussels–
Montreal EDFs, to determine the structure, the composition and the EoS of
non-accreting neutron-star crusts. The results differ substantially from those
previously obtained using BSk21. To a large extent, these discrepancies arise
from the different degrees of stiffness of the underlying neutron-matter equa-
tions of state. The EDF theory can be also applied to study the properties
of matter at still higher densities, but BSk27∗ is not suitable for this purpose
as its EoS is found to be too soft to support the recently observed neutron
stars with a mass close to two solar masses.

This work was supported by FNRS, Belgium, NSERC, Canada and the
COST action MP1304.
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