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We present Quantum Monte Carlo calculations of the equation of state
of neutron matter. The equation of state is directly related to the symme-
try energy and determines the mass and radius of neutron stars, providing
then a connection between terrestrial experiments and astronomical obser-
vations. We also show preliminary results of the equation of state of nuclear
matter.
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1. Introduction

The study of homogeneous dense nuclear and neutron matter from a
microscopic point of view is important for several reasons. Although these
systems cannot be directly realized in terrestrial experiments (i.e. it is not
possible to measure the equation of state, response functions, and other prop-
erties), they are intimately related to other systems of interests. The satu-
ration point of isospin symmetric nuclear matter can be extrapolated from
properties of heavy nuclei, i.e. the saturation density is about 0.16 fm−3,
and its energy per nucleon is about −16 MeV. The equation of state should
be in principle calculated using the same nuclear Hamiltonian used to study
properties of nuclei, and a still open question is whether the same nuclear
interactions can simultaneously describe properties of nuclei and the satu-
ration of nuclear matter.

∗ Presented at the Zakopane Conference on Nuclear Physics “Extremes of the Nuclear
Landscape”, Zakopane, Poland, August 31–September 7, 2014.

(359)



360 S. Gandolfi

On the other hand, the equation of state of pure neutron matter is a
very good approximation to model neutron stars around nuclear densities, in
particular to calculate the maximum mass and radius. The symmetry energy
can be simply defined as the difference between the nuclear matter and
neutron matter energy, and gives the energy cost of the isospin-asymmetry
in the homogeneous nucleonic matter. We will define Esym the symmetry
energy at nuclear saturation density ρ0 = 0.16 fm−3. In the last few years,
the study of Esym and its slope L has received considerable attention (see
for example, Ref. [1] for a recent experimental/theoretical review). The
role of the symmetry energy and its slope is essential to understand the
mechanism of stability of very neutron-rich nuclei, and is also related to
many phenomena occurring in neutron stars. Because of β-decay processes,
a small fraction of protons, about 10%, is present inside neutron stars, but
their role in the structure is very small (although they are instead very
important for cooling and other processes). The inner crust of neutron stars,
where the density is a fraction of nuclear densities, is mostly composed of
neutrons surrounding a matter made of extremely-neutron rich nuclei that,
depending on the density, may exhibit very different phases and properties.
The extremely rich phase diagram of crustal matter is strongly related to
the role of Esym. For example, it governs the phase-transition between the
crust and the core [2, 3] and the nature of r-mode instabilities [4, 5].

The nuclear interaction between neutrons is simpler, as the tensor force,
that is dominant in T = 0, is very weak in T = 1 (T is the isospin of
the nucleon–nucleon pair). Unfortunately, there is no direct experiment to
measure properties of either homogeneous or inhomogeneous neutron matter.
Some properties can be extracted by extrapolating to very large isospin-
asymmetry, but such extrapolations are always model dependent. For all
the above reasons, the calculation of the equation of state of pure neutron
matter is particularly challenging.

In the last few decades, properties of nuclear systems have been success-
fully described by nucleon–nucleon potentials like Argonne and three-body
Urbana/Illinois interactions, that reproduce two-body scattering data and
properties of light nuclei with very high precision [6–8]. Using very accurate
many-body techniques, it has been shown that those nuclear Hamiltonians
can reproduce several properties of light nuclei extremely well, including
binding energies of ground- and excited-states, radii, matrix elements, scat-
tering states, and other observables [9–12]. Another approach to model the
nucleon–nucleon interaction is provided within the framework of chiral ef-
fective field theory (EFT). In this approach, the diagrams describing the
interaction (through the exchange of pions) are systematically organized by
expanding over momenta (referred to some momentum scale). Both the
Argonne and the chiral interactions requires non-perturbative many-body
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techniques to calculate the ground state properties. In this paper, we will
present results obtained using a correlated wave function combined with
Quantum Monte Carlo (QMC) methods, that have provided highly accu-
rate solutions of the ground state of many-body nuclear systems [13].

2. The nuclear Hamiltonian and quantum Monte Carlo

In our model, neutrons are non-relativistic point-like particles interacting
via two- and three-body potentials:

H =
A∑
i=1

p2i
2m

+
∑
i<j

vij +
∑

i<j<k

vijk . (1)

The two body-potential that we use is the Argonne AV8′ [14], that is a
simplified form of the Argonne AV18 [6]. Although simpler to use in QMC
calculations, AV8′ provides almost the same accuracy as AV18 in fitting
nucleon–nucleon (NN) scattering data. The three-body force is not as
well constrained as the NN interaction, but its inclusion in realistic nu-
clear Hamiltonians is important to correctly describe the binding energy of
light nuclei.

The Urbana IX (UIX) three-body force has been originally proposed in
combination with the Argonne AV18 and AV8′ [15]. Although it slightly
underbinds the energy of light nuclei, it has been extensively used to study
the equation of state of nuclear and neutron matter [16–18]. The Illinois
forces have been introduced to improve the description of both ground- and
excited-states of light nuclei, showing an excellent accuracy [7, 9, 19], but it
produces an unphysical overbinding in pure neutron systems [20, 21].

Another class of nucleon–nucleon potentials are derived within chiral
effective field theory. In this approach, the relevant diagrams entering in
the nucleon–nucleon interaction are systematically organized in powers of
Q/Λ, where Q is of the order of typical momenta of nucleons, and Λ is
a momentum cutoff where the chiral EFT expansion is expected to break
down. The long-range terms entering into the chiral EFT potentials are fully
determined by π-nucleon scattering data, while the parameters associated
with the contact terms are obtained by fitting low-energy scattering data,
typically up to lab energies of about 100–200 MeV. For more details, see
Refs. [22, 23]. Generally, these interactions have strong non-local terms,
and, as a consequence, they cannot be easily included in QMC calculations.
Recently, it has been shown that these potentials can be designed to be
local, and combined with QMC simulations [24, 25]. However, the need
to include a cutoff of the nucleon’s momentum limits the applicability of
chiral forces to study dense neutron matter. The cutoff of these potentials
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can be controlled in a many-body calculation [24, 25]. In addition, chiral
EFT naturally predicts, at each chiral order, the presence of many-body
forces. For example, at next-to-next-to-leading-order (N2LO), three-body
interactions start to appear, and at the next order (N3LO) even four-body
forces are predicted.

The main advantage of Argonne interactions is that they fit nucleon–
nucleon scattering data up to higher energies, and thus are better suited to
study dense matter. However, nuclear interactions derived within the chiral
EFT can be systematically improved (by increasing the chiral order). In
addition, by changing the cutoff used to regulate the short-range parts, it
is possible to study the systematic uncertainties and understand how those
evolve from few- to many-body systems.

We solve the many-body ground-state with a projection in imaginary-
time, i.e.

Ψ(τ) = exp[−Hτ ]Ψv , (2)

where Ψv is a variational ansatz, and H is the Hamiltonian of the system.
In the limit of τ →∞, Ψ approaches the ground-state of H. The evolution
in imaginary-time is performed by sampling configurations of the system
using Monte Carlo techniques, and expectation values are evaluated over
the sampled configurations. The main difference between the well know
Green’s Function Monte Carlo (GFMC) and the Auxiliary Field Diffusion
Monte Carlo (AFDMC) used here is in the way that spin/isospin states are
treated. In GFMC, all the spin/isospin states are explicitly included in the
variational wave function. The results obtained are very accurate but limited
to the 12C [9, 19, 26] or 16 neutrons [27]. The AFDMC method samples the
spin/isospin states using the Hubbard–Stratonovich transformation rather
than summing them explicitly [28]. The calculation can be then extended up
to many neutrons, making the simulation of homogeneous matter and heavy
nuclear systems possible. The AFDMC has proven to be very accurate
when compared to GFMC calculation of energies of neutrons confined in an
external potential and for light nuclei [27, 29].

3. The equation of state of neutron matter

There are several reasons to focus on pure neutron matter in addition
to those mentioned before. The three-body interaction is non-zero only in
the T = 3/2 isospin-channel (T is the total isospin of three-nucleons), while
in the presence of protons there are also contributions in T = 1/2. The
latter term is dominant in nuclei, and then the T = 3/2 is thus only weakly
accessible by studying properties of nuclei.
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We present several equations of state obtained using different models of
the three-neutron force in Fig. 1, see the caption for the descriptions of the
various results. The effect of using different models of the three-neutron
force is clear in the two bands, where the high density behavior is shown
up to about 3ρ0. At such high density, the various models giving the same
symmetry energy at saturation produce an uncertainty in the energy per
neutron of about 20 MeV. The parametrizations of the equation of state
obtained from different nuclear Hamiltonians are given in Refs. [18, 30].
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Fig. 1. The equation of state of neutron matter calculated using AFDMC for various
Hamiltonians. In the left panel, the lower (red) curve is obtained by including
the NN alone, and the higher (black) one is obtained by adding the Urbana IX
three-body force. The light grey (green) and dark grey (blue) bands correspond to
equation of states with the same Esym (32 and 33.7 MeV respectively), obtained
with several models of three-neutron forces combined with AV8′. In the inset, we
show the value of L as a function of Esym obtained by fitting the equation of state.
The figure is taken from Ref. [18]. In the right panel, we show the results obtained
with nucleon–nucleon chiral EFT Hamiltonians at LO, NLO and N2LO. The bands
correspond to the results obtained by changing the cutoff R0 from 1 to 1.2 fm as
indicated in the figure. The figure is adapted from Ref. [24].

At density ρ0, symmetric nuclear matter saturates, and we can extract
the value of Esym and L directly from the pure neutron matter equation of
state. The result of fitting the pure neutron matter equation of state is shown
in the inset of Fig. 1. The error bars are obtained by taking the maximum
and minimum value of L for a given Esym, and the curves obtained with
NN and NN+UIX are thus without error bars. From the plot, it is clear
that within the models we consider, the correlation between L and Esym is
linear and quite strong.

The equation of state has been also calculated using nucleon–nucleon
interactions obtained from chiral EFT at leading order (LO), NLO and N2LO
and with different values of the cutoff. The results are shown in the right
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panel of Fig. 1. In this case, it is clear that the chiral expansion is probably
converging, i.e. the results at N2LO are compatible with those at NLO
and LO. However, we should note that the three-body interactions are not
included in the calculation, thus the equation of state at N2LO is incomplete,
and should be considered as preliminary. However, we also note that the
NLO and N2LO results with two-nucleon potential alone are very similar to
those obtained by considering the AV8′ alone. The complete calculation at
N2LO including three-neutron forces is in progress, and will be published in
a separate paper [31].

4. Connection to neutron star masses and radii

When the equation of state of the neutron star matter is specified, the
structure of a neutron star can be calculated by integrating the Tolman–
Oppenheimer–Volkoff (TOV) equations. Although other degrees of freedom,
like hyperons, may form at higher densities, see for example [32], the radius
of neutron stars is almost completely determined by the equation of state
around nuclear densities. Here, we consider the neutron star as composed
solely by neutrons, and then use the results presented in the previous section.

The neutron star mass measurements which provide the strongest con-
straints on the equation of state are those which have the highest mass.
Recent observations [33, 34] have found two neutron stars with masses near
2M�. These two data points provide some of the strongest constraints on the
nature of neutron matter above the nuclear saturation density. We begin by
examining what can be deduced about theM–R relation directly from these
mass measurements, without employing a separate model for high-density
matter.

The mass of a neutron star as a function of its radius is shown in Fig. 2.
The two bands correspond to the result obtained using the two sets of equa-
tions of state giving the same value of Esym indicated in the figure (the colors
correspond to the results of Fig. 1). As in the case of the equation of state,
it is clear that the main source of uncertainty in the radius of a neutron star
with M = 1.4M� is due to the uncertainty of Esym rather than the model
of the three-neutron force. The addition of a small proton fraction would
change the radius R only slightly [16, 35], smaller than other uncertainties in
the equation of state that we have discussed. In the figure, we also indicate
(with the orange lines) the density of the neutron matter inside the star.
Even at large masses, the radius of the neutron star is mainly governed by
the equation of state of neutron matter between 1 and 2 ρ0 [36].

The AV8′ Hamiltonian alone does not support the recent observed neu-
tron star with a mass near 2M� [33]. However, adding a three-body force
to AV8′ can provide sufficient repulsion to be consistent with all of the con-
straints [18]. There is a clear correlation between neutron star radii and the
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symmetry energy which determines the equation of state of neutron matter
between 1 and 2 ρ0. Within this model, from astrophysical observations, it is
possible to constrain the value of Esym and L, see, for example, Ref. [37, 38].
The results in Fig. 2 also show that the most modern neutron matter equa-
tion of state imply a maximum neutron star radius not larger than about
13 km, unless a drastic repulsion sets in just above the saturation density.
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Fig. 2. The mass–radius relation of neutron stars obtained from the equations of
state calculated using QMC. The various colors represent theM–R result obtained
from the corresponding results described in Fig. 1. The two horizontal lines show
the value ofM = 1.4 and 1.97(4)M� [33]. The figure is adapted from Refs. [18, 30].

5. Nuclear matter

The AFDMC method has been recently extended to calculate proper-
ties of medium nuclei and nuclear matter [29] using the nucleon–nucleon
AV6′ and AV7′ interactions. Those interactions are obtained from AV8′
by dropping the two spin–orbit LS operators (AV6′), and the LS-τ (AV7′).
Although they do not accurately describe the scattering data as the AV18
and AV8′, they can be exactly included into the AFDMC method. However,
the AV7′ interaction described nucleon–nucleon phase shifts fairly well up
to laboratory energies of about 250–300 MeV.

In the left panel of Fig. 3, we show the nuclear matter equation of state
calculated using the AV6′ and AV7′ interactions. Clearly, the equation of
state is quite dependent on the nucleon–nucleon interaction, and the satu-
ration point, indicated by the diamond (blue), is not reproduced. However,
we stress that three-body forces are not included in the calculations. It is
quite interesting to compare with the case of pure neutron matter shown in
the right panel of Fig. 3. In the case of neutrons, the AV8′ interaction is
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identical to AV7′. As we can see, the equation of state obtained with AV7′
and AV6′ is quite similar, while for nuclear matter the results are quite dif-
ferent. This is probably due to the nucleon–nucleon phase shifts that are
fitted quite differently for the two interactions. We anticipate that using
chiral potentials the qualitative behavior is quite similar, and the results
will be published in a future paper.
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Fig. 3. Left panel: the equation of state of nuclear matter calculated using the
AV6′ (lower red curve) and AV7′ (higher black curve) NN interactions [29]. The
diamond (blue) shows the saturation point extrapolated from heavy nuclei. In the
right panel, we show the equation of state of pure neutron matter obtained using
the same Hamiltonians (grey/red and light grey/green lines), and with the addition
of the UIX three-neutron force.

The author would like to thank Joel Lynn for critical comments on the
manuscript. This work is supported by the U.S. Department of Energy,
Office of Nuclear Physics, by the NUCLEI SciDAC program and by the
LANL LDRD program. Computational resources have been provided by
Los Alamos Open Supercomputing. This research used also resources of the
National Energy Research Scientific Computing Center (NERSC), which is
supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

REFERENCES

[1] M.B. Tsang et al., Phys. Rev. C86, 015803 (2012).
[2] W.G. Newton, M. Gearheart, B.-A. Li, Astrophys. J. Suppl. 204, 9 (2013).
[3] A.W. Steiner, S. Gandolfi, F.J. Fattoyev, W.G. Newton, Phys. Rev. C91,

015804 (2015).
[4] De-Hua Wen, W.G. Newton, Bao-An Li, Phys. Rev. C85, 025801 (2012).
[5] I. Vidaña, Phys. Rev. C85, 045808 (2012).

http://dx.doi.org/10.1103/PhysRevC.86.015803
http://dx.doi.org/10.1088/0067-0049/204/1/9
http://dx.doi.org/10.1103/PhysRevC.91.015804
http://dx.doi.org/10.1103/PhysRevC.91.015804
http://dx.doi.org/10.1103/PhysRevC.85.025801
http://dx.doi.org/10.1103/PhysRevC.85.045808


Microscopic Calculations of Nuclear and Neutron Matter . . . 367

[6] R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C51, 38 (1995).
[7] S.C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev.

C64, 014001 (2001).
[8] J. Carlson et al., arXiv:1412.3081.
[9] S.C. Pieper, AIP Conf. Proc. 1011, 143 (2008).
[10] S.C. Pieper, R.B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001).
[11] K.M. Nollett et al., Phys. Rev. Lett. 99, 022502 (2007).
[12] R. Schiavilla, R.B. Wiringa, S.C. Pieper, J. Carlson, Phys. Rev. Lett. 98,

132501 (2007).
[13] B.S. Pudliner et al., Phys. Rev. C56, 1720 (1997).
[14] R.B. Wiringa, S.C. Pieper, Phys. Rev. Lett. 89, 182501 (2002).
[15] B.S. Pudliner, V.R. Pandharipande, J. Carlson, R.B. Wiringa, Phys. Rev.

Lett. 74, 4396 (1995).
[16] A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C58, 1804

(1998).
[17] S. Gandolfi et al., Phys. Rev. C79, 054005 (2009).
[18] S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C85, 032801 (2012).
[19] A. Lovato et al., Phys. Rev. Lett. 111, 092501 (2013).
[20] A. Sarsa, S. Fantoni, K.E. Schmidt, F. Pederiva, Phys. Rev. C68, 024308

(2003).
[21] P. Maris et al., Phys. Rev. C87, 054318 (2013).
[22] E. Epelbaum, H.W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773

(2009).
[23] A. Gezerlis et al., Phys. Rev. C90, 054323 (2014).
[24] A. Gezerlis et al., Phys. Rev. Lett. 111, 032501 (2013).
[25] J.E. Lynn et al., Phys. Rev. Lett. 113, 192501 (2014).
[26] A. Lovato et al., Phys. Rev. Lett. 112, 182502 (2014).
[27] S. Gandolfi, J. Carlson, S.C. Pieper, Phys. Rev. Lett. 106, 012501 (2011).
[28] K.E. Schmidt, S. Fantoni, Phys. Lett. B446, 99 (1999).
[29] S. Gandolfi, A. Lovato, J. Carlson, K.E. Schmidt, Phys. Rev. C90,

061306(R) (2014).
[30] S. Gandolfi et al., Eur. Phys. J. A50, 10 (2014).
[31] I. Tews, S. Gandolfi, A. Gezerlis, A. Schwenk, in preparation.
[32] D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva, Phys. Rev. Lett. 114,

092301 (2015).
[33] P.B. Demorest et al., Nature 467, 1081 (2010).
[34] J. Antoniadis et al., Science 340, 448 (2013).
[35] S. Gandolfi et al., Mon. Not. R. Astron. Soc. 404, L35 (2010).
[36] J.M. Lattimer M. Prakash, Astrophys. J. 550, 426 (2001).
[37] A.W. Steiner, S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012).
[38] A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010).

http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1103/PhysRevLett.99.022502
http://dx.doi.org/10.1103/PhysRevLett.98.132501
http://dx.doi.org/10.1103/PhysRevLett.98.132501
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevLett.89.182501
http://dx.doi.org/10.1103/PhysRevLett.74.4396
http://dx.doi.org/10.1103/PhysRevLett.74.4396
http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1103/PhysRevC.79.054005
http://dx.doi.org/10.1103/PhysRevC.85.032801
http://dx.doi.org/10.1103/PhysRevLett.111.092501
http://dx.doi.org/10.1103/PhysRevC.68.024308
http://dx.doi.org/10.1103/PhysRevC.68.024308
http://dx.doi.org/10.1103/PhysRevC.87.054318
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/PhysRevC.90.054323
http://dx.doi.org/10.1103/PhysRevLett.111.032501
http://dx.doi.org/ 10.1103/PhysRevLett.113.192501
http://dx.doi.org/10.1103/PhysRevLett.112.182502
http://dx.doi.org/10.1103/PhysRevLett.106.012501
http://dx.doi.org/10.1016/S0370-2693(98)01522-6
http://dx.doi.org/10.1103/PhysRevC.90.061306
http://dx.doi.org/10.1103/PhysRevC.90.061306
http://dx.doi.org/10.1140/epja/i2014-14010-5
http://dx.doi.org/10.1103/PhysRevLett.114.092301
http://dx.doi.org/10.1103/PhysRevLett.114.092301
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1111/j.1745-3933.2010.00829.x
http://dx.doi.org/10.1086/319702
http://dx.doi.org/10.1103/PhysRevLett.108.081102
http://dx.doi.org/10.1088/0004-637X/722/1/33

	1 Introduction
	2 The nuclear Hamiltonian and quantum Monte Carlo
	3 The equation of state of neutron matter
	4 Connection to neutron star masses and radii
	5 Nuclear matter

