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Recently, a method based on relativistic nuclear energy density func-
tional (EDF) has been employed to study relations between collective ex-
citations in finite nuclei with the nuclear matter symmetry energy, and the
phase transition density nt and pressure Pt at the inner edge separating the
liquid core and the solid crust of a neutron star. By using the thermody-
namic method, relativistic EDF and experimental data on the properties of
charge-exchange dipole transitions, isovector giant dipole and quadrupole
resonances and pygmy dipole transitions, the neutron star liquid-to-solid
phase transition density and pressure are constrained. The analysis shows
that accurate measurements are necessary to further constrain the symme-
try energy parameters and the structure of neutron star crust.
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1. Introduction

The composition of the crust of a neutron star presents an interesting
challenge both for nuclear structure physics as well as for astrophysics. Since
the crust represents an interface between observable surface phenomena and
the invisible core of the star, its structure can be related to various inter-
esting effects, such as glitches in the rotational period of pulsars, thermal
relaxation after matter accretion, quasi periodic oscillations and anisotropic
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surface cooling [1]. The solid crust of thickness ≈ 1 km, composed of nonuni-
form neutron-rich matter is located above a liquid core [2]. The inner crust
comprises the region from the density at which neutrons drip out from nu-
clei, to the inner edge separating the solid crust from the homogeneous liquid
core. Due to rather limited knowledge of the equation of state of neutron-rich
nuclear matter, the transition density at the inner edge is rather uncertain
quantity. Among the key properties of neutron stars are the phase transition
density nt and pressure Pt at the inner edge separating the liquid core and
the solid crust. The quantities such as nt and Pt, that determine the core-to-
crust phase transition, play an important role in connecting the properties
of the interior of neutron star with observable phenomena.

As pointed out in a number of previous studies, the core-crust transition
density and pressure are highly sensitive to the poorly constrained density
dependence of the nuclear matter symmetry energy [3–6]. It is important to
note that the symmetry energy that governs the composition of the neutron
star crust also determines the thickness of the neutron-skin rnp = rn − rp in
finite nuclei. In Ref. [3], an inverse correlation was found between the liquid-
to-solid phase transition density for neutron-rich matter and the neutron-
skin thickness of 208Pb. Additional correlations between rnp and neutron star
properties have also been investigated [7], including neutron star radii [8], the
threshold density at the onset of the direct Urca process [9], and the crustal
moment of inertia [7, 10]. More recent study based on nuclear energy den-
sity functionals and covariance analysis provides an insight into correlations
between rnp and a variety of neutron star properties [11]. As pointed out in
Ref. [3], an accurate measurement of the neutron radius of 208Pb by means
of parity-violating electron scattering may have important implications for
the structure of the crust of neutron stars. However, recent parity violating
electron scattering experiment on 208Pb resulted in rather large experimen-
tal uncertainty of the neutron skin thickness (rnp = 0.33+0.16

−0.18 fm) [12]. On
the other hand, recent experiment based on coherent pion photoproduction
resulted with rnp = 0.15 ± 0.03(stat)+0.01

−0.03(syst) [13], similar to the value
deduced from antiprotonic atoms, rnp = 0.16± 0.02(stat)± 0.04(syst) [14].

The focus of the current study is to investigate additional experimental
constraints for neutron star properties that could be gained from the studies
of finite nuclei. Recently, we have introduced an alternative method to de-
termine neutron star core-to-crust transition density and pressure by using
collective excitations in finite nuclei that provide constraints on the symme-
try energy and correlate with rnp [15]. Over the past years, experimental
studies of giant resonances, pygmy dipole transitions and other modes of
excitation in nuclei, yielded a wealth of data that constrain the nuclear
symmetry energy and neutron skin thickness [16]. Since there is a direct re-
lation between the liquid-to-solid transition density and the neutron radius
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of 208Pb [3], an analysis of the collective response of finite nuclei could also
provide useful information about the crust of neutron stars. We show that
by employing the framework that includes the thermodynamic method and
relativistic nuclear energy density functional, one can analyze the properties
of collective modes of excitation in finite nuclei, and establish constraints on
the symmetry energy parameters and neutron star properties.

In Sec. 2 a theory framework is briefly introduced. Constraints from the
model calculations and experimental data on the symmetry energy parame-
ters are given in Sec. 3, while Sec. 4 contains the results on the neutron star
liquid-to-solid transition density and pressure. The concluding remarks are
given in Sec. 5.

2. Symmetry energy and neutron star properties

The equation of state of nuclear matter can be approximated as the sum
of the energy per nucleon of symmetric matter and an asymmetry term [17]

E(n, δ) = ESNM(n, 0) + Esym(n)δ
2 , (1)

where δ = (nn − np)/n is the asymmetry, and nn,np, and n denote the neu-
tron, proton, and nucleon densities, respectively. The density dependence of
the symmetry energy Esym(n) can be expressed in terms of coefficients of a
Taylor expansion around nuclear matter saturation density n0

Esym(n) = Esym(n0) + L

(
n− n0
3n0

)
+ . . . , (2)

where Esym(n0) ≡ J is the symmetry energy at saturation, and L denotes the
slope parameter. It has been shown that the parameters J , L correlate not
only with the neutron-skin thickness of nuclei [18, 19], but also with neutron
star properties [11, 20]. The slope parameter is of a particular importance
because it governs the pressure of the symmetry energy in pure neutron
matter at n0. It is the same pressure that pushes the neutrons against the
surface tension in finite nuclei, determines the neutron-skin thickness and
also supports a neutron star against gravity. Therefore, it is essential to
provide accurate estimates of the symmetry energy parameters. Possible
constraints on J and L from collective modes of excitation in finite nuclei
are discussed in Sec. 3.

The present analysis is also focused on the properties of neutron stars,
in particular, the liquid-to-solid transition density nt and pressure Pt for
neutron-rich matter. The usual approach to determine nt is to find the den-
sity at which the uniform liquid becomes unstable against small-amplitude
density fluctuations, indicating the formation of nuclear clusters. In this way,
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a lower bound to the true transition density nt is obtained [21]. The pro-
cedures used to determine nt include the dynamic method [5, 21, 22], the
thermodynamic method [4, 23–25], and the random-phase approximation
(RPA) [3]. In the following, the thermodynamic method will be employed,
resulting with the constraint that determines the transition density given by
the inequality [4]

C(n) = n2
d2ESNM

dn2
+ 2n

dESNM

dn
+ (1− 2x)2

×

[
n2
d2Esym

dn2
+ 2n

dEsym

dn
− 2

1

Esym

(
n
dEsym

dn

)2
]
> 0 , (3)

where n, ESNM, x and Esym, denote the baryon density, the energy per
particle of symmetric nuclear matter, the proton fraction, and the symme-
try energy, respectively. The transition density nt is determined by solving
the equation C(nt) = 0, and the corresponding transition pressure reads
Pt(nt, xt) = Pb(nt, xt) + Pe(nt, xt), where Pb, Pe are the baryon and elec-
tron contributions, respectively. xt denotes the proton fraction that cor-
responds to nt, and is computed using the condition of β-equilibrium [4].
For the analysis of relationships between the transition density and pressure
(nt, Pt) and observables that characterize collective excitations in finite nu-
clei, we consistently employ a relativistic nuclear energy density functional
(RNEDF) to compute the energy per particle of symmetric nuclear matter
and the symmetry energy, and in the random phase approximation (RPA)
calculation of strength functions in finite nuclei. In this work, the univer-
sal RNEDF with density-dependent meson–nucleon couplings (DD-ME) [26]
is used, and excitations in spherical nuclei are analyzed in the relativistic
quasiparticle random phase approximation (RQRPA) [27].

3. Constraining the symmetry energy parameters
from collective excitations in nuclei

As the first step in the present analysis, we explore how various ex-
citation modes in nuclei, that limit possible values of rnp, constrain the
density dependence of the symmetry energy. Similar studies have recently
been performed for different modes of excitation using the framework of en-
ergy density functionals (e.g. Refs. [29–31]). For the purpose of the present
analysis, a consistent DD-ME set of RNEDFs that span a range of values
J = 30–38 MeV and L = 30–110.8 MeV [32] is employed in a calculation
of collective excitations. This set of RNEDFs was adjusted to accurately
reproduce nuclear-matter properties, binding energies and charge radii of a
standard set of spherical nuclei, but with constrained values for the symme-
try energy J and slope parameter L [32]. These functionals were recently
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used to constrain the density dependence of the nuclear symmetry energy
and the neutron-skin thickness from the observed pygmy dipole strength
(130,132Sn) [33], and the anti-analog giant dipole resonance (208Pb) [34].

By performing self-consistent relativistic mean-field calculations for nu-
clear ground states, and the corresponding RQRPA for collective excita-
tions, we have computed the anti-analog giant dipole resonance (AGDR)
and isovector giant quadrupole resonance (IVGQR) excitation energies in
208Pb, the dipole polarizability αD of 208Pb, and the pygmy dipole transi-
tion strength (PDR) in 68Ni. For the set of RNEDFs, linear correlations are
established between the calculated characteristics of collective excitations
and the symmetry energy J and slope parameter L, in agreement with the
results of the covariance analysis in Ref. [15]. By employing these correla-
tions, together with the corresponding experimental results on the excitation
strengths and energies, one can constrain the values of J and L. In Fig. 1, the
resulting constraints of (J , L) values are shown, obtained from a comparison
of the RNEDF (DD-ME) results and data on AGDR [48] and IVGQR [35]
excitation energies (208Pb), the dipole polarizability αD of 208Pb [37], and
the PDR energy weighted strength (68Ni [38], 130,132Sn [33]). For com-
parison, the results of a previous study are also shown, that was based
on the same set of RNEDFs, but used data on the PDR in 130,132Sn [33].
Figure 1 shows that all calculated excitation properties consistently con-
strain possible values of J and L, with differences attributed to variations
of the experimental uncertainties. It is interesting to note that all results
overlap in a narrow region of the (J, L) plane. The weighted average yields
J = 32.5 ± 0.5 MeV and L = 49.9 ± 4.7 MeV. More accurate experimental
results would, of course, further reduce the uncertainties shown in Fig. 1.

28 30 32 34 36 38 40
J [MeV]

0

20

40

60

80
AGDR

IVGQR

PDR

Klimkiewicz et al. 2007

L 
[M

eV
]

αD  (
208Pb)

(68Ni)

(208Pb)

(208Pb)

(PDR 130,132Sn)

Fig. 1. Constraints of the symmetry energy at saturation J and the slope param-
eter L, obtained from a comparison of the RNEDF (DD-ME) results for various
modes of excitation in nuclei with respective experimental data [33, 35, 37, 38, 48].
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In Fig. 2, the weighted average values for the symmetry energy parame-
ters (J, L) of the present analysis are compared with the constraints from a
number of studies based on different methods and experimental data. These
include constraints from heavy ion collisions (HIC) [30, 39–42], Quantum
Monte Carlo (QMC) and neutron star study [43], nuclear binding energies
(FRDM) [44], isobaric analog states (IAS) [45, 46], proton elastic scatter-
ing (208Pb (p, p)) [47], pygmy dipole resonances (PDR) (LAND analysis for
130,132Sn [33] and Carbone et al. analysis for 68Ni and 132Sn [29]). A detailed
overview of various methods and respective references are given in Ref. [30].
In comparison to the previous studies, the present analysis provides rather
stringent constraints on the symmetry energy parameters.
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Fig. 2. (Color online) Constraints of the symmetry energy at saturation J and the
slope parameter L, obtained from the analysis based on the RNEDF (DD-ME)
and collective excitations in nuclei (denoted by EXC.), in comparison to various
methods from previous studies (see the text and Ref. [30] for details).

4. Constraining the neutron star core-to-crust transition density
and pressure from collective excitations in nuclei

In the following, we show the application of the RNEDF framework to
determine the neutron star liquid-to-solid transition density and pressure.
By employing the thermodynamic approach outlined in Sec. 2 (Eq. (3)), sup-
plemented with the nuclear matter properties calculated using the RNEDF,
the values of transition density nt and pressure Pt are obtained. On the
other side, the properties of various modes of excitation, already discussed
in Sec. 3, are calculated in a self-consistent relativistic quasiparticle random
phase approximation based on the same RNEDF (DD-ME). The same set
of DD-ME effective interactions as in Sec. 3 is used in model calculations.
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Figure 3 displays the calculated dipole polarizability αD in 208Pb, as a
function of the crust-to-core transition density nt, obtained using the set of
DD-ME effective interactions spanning the range of values J = 30–38 MeV.
From the calculated relationship between αD and nt and the experimental
value with uncertainties of the dipole polarizability [37], constraint on the
range of values for nt is obtained (see Fig. 3). This analysis is further ex-
tended to other modes of excitation, including AGDR, IVGQR, isovector
spin monopole resonance (IVSMR) and pygmy dipole strength, to deter-
mine the values of both transition density and pressure. The overall re-
sult is displayed in Fig. 4, where the transition pressure Pt is plotted as
a function of the transition density nt. The rectangles denote the values
of Pt and nt, that in a consistent RQRPA calculation reproduce data on
collective excitations within experimental uncertainties: the AGDR [34],
IVGQR [35] and IVSMR [36] excitation energies (208Pb), the dipole polariz-
ability αD (208Pb) [37], and the PDR energy weighted strength (68Ni) [38].
One notices that collective excitations provide rather stringent constraints
on the possible values of Pt and nt, and there is even a small region in the
(Pt, nt) plane in which all constraints overlap. Obviously, more accurate
measurements of charge-exchange modes and pygmy dipole strength would
further reduce the current uncertainties but, nevertheless, the weighted
average from the present analysis yields nt = 0.0955 ± 0.0007 fm−3 and
Pt = 0.59 ± 0.05 MeV fm−3. We note that in calculating these values we
exclude the IVSMR because of considerable experimental errors of the cur-
rently available data.
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Fig. 3. The calculated dipole polarizability αD in 208Pb shown as a function of the
crust-to-core transition density nt. The experimental value with uncertainties for
αD [37] and the corresponding constraint on nt are also shown.
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For comparison, Fig. 4 also includes constraints on (Pt, nt) obtained by
other methods, based on modified Gogny (MDI) interactions [5, 48], Dirac–
Brueckner–Hartree–Fock (DBHF) calculations [49], and RNEDF with point
couplings and constraints from the empirical range for the slope parameter L
and neutron-skin thickness in Sn isotopes and 208Pb [4]. A previous study
based on the A18+ δv+UIX∗ interaction predicted a somewhat lower value
for the transition density, nt = 0.087 fm−3 [50], similar to recent work in
the framework with realistic nucleon–nucleon and three nucleon interactions
based on chiral effective field theory, nt = 0.076–0.088 fm−3 [51]. The
constraints obtained in the present analysis are consistent with the result
based on the nonrelativistic microscopic equation of state of Friedman and
Pandharipande [52]: nt = 0.096 fm−3 [53].

0.085 0.09 0.095 0.1 0.105 0.11
0

0.2

0.4

0.6

0.8

1

1.2

1.4

IVGQR

PDR

IVSMR

MDI (Krastev, Li 2010)

DBHF+Bonn B

RNEDF (2010)

αD ( 208Pb)

AGDR (208Pb)

nt [fm
-3]

P t [M
eV

fm
-3

]

(208Pb)

(68Ni)

(208Pb)

Fig. 4. The liquid-to-solid transition pressure Pt as a function of the transition
density nt calculated using the RNEDF (DD-ME) and experimental data for var-
ious excitation modes in nuclei (see the text for details). Results from previous
studies include MDI [5, 48], DBHF+Bonn B interactions [49], and the RNEDF
(point coupling) [4].

5. Conclusion

Collective excitations of finite nuclei provide important constraints on
the density dependence of the symmetry energy and the properties of a neu-
tron star crust. A set of RNEDFs characterized by systematic variation of
the density dependence of the symmetry energy is used in a self-consistent
calculations of the properties of various modes of excitation in nuclei. The
thermodynamic method and the same set of RNEDFs determine the phase
transition density nt and pressure Pt at the inner edge between the liquid
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core and the solid crust of a neutron star. By comparing the RNEDF values
on collective excitations in nuclei with experimental data, rather stringent
constraints on the possible values for (Pt, nt) are obtained. Future progress
in experimental studies with reduced experimental uncertainties of observ-
ables that characterize collective modes of excitation will further constrain
the structure of the neutron star crust.
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