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Three- and higher-body forces enter naturally in effective field theories
for strongly interacting quantum systems. We focus on the effect of three-
body forces in systems close to the unitary limit and discuss applications
in ultracold atoms and halo nuclei.
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1. Preliminary remarks

Three-body forces play an important role in quantum systems. Even if
they are not present at a fundamental level, three- and higher-body forces
appear in effective theories or in practical calculations, where the degrees of
freedom and the Hilbert space have to be restricted.

In this paper, we approach the issue of three-body forces from an effective
field theory (EFT) perspective (see Ref. [1] for a recent review following
this philosophy). The concept of resolution plays a key role in this context.
A particle beam with de Broglie wavelength λ can only probe structures at a
scale R >∼ λ. Similarly, in a general process with typical momentum scale µ
only physics at momenta p <∼ µ (or, equivalently, distances R >∼ 1/µ) is
resolved. Effective theories and the renormalization group provide a method
to exploit this observation for quantitative calculations. The resolution scale
in an effective theory is controlled by the momentum cutoff Λ. Physics at
momentum scales larger than the cutoff is excluded from the effective theory
and encoded in effective couplings, so-called low-energy constants.
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These constants and the relative size of two- and higher-body forces turn
out to be resolution dependent. If one starts with two-body forces only at
high resolution, many-body forces will appear naturally as the resolution
scale is lowered. These induced many-body forces capture the contributions
of successive two-body interactions which are separated by a distance below
the resolution scale.

As discussed above, the interaction strength may be shifted from two- to
many-body forces by changing the momentum cutoff Λ in the regulators used
in explicit calculations. Once the couplings of the effective Lagrangian, the
low-energy constants (LECs), have been adjusted to selected data, predic-
tions for other low-energy observables are independent of the choice for Λ.
Thus, the interaction strengths of two- and many-body interactions vary
with the cutoff and are not unique. The idea is illustrated in Fig. 1, where
iterated two-body interactions at short-distance scales |x − y| ∼ 1/Λ are
not resolved. Note that in practice the 3-body forces generated in this way
cannot be disentangled from the 3-body forces at an initial scale, which will
also have short-ranged (and other) contributions. It is, therefore, model-
dependent to distinguish such “generated” from “genuine” 3-body forces.

x

y

1/Λ

+ ...

Fig. 1. Illustration for the resolution dependence of two- and three-body interac-
tions.

2. Physics near the unitary limit

As discussed in the previous section, the short-distance properties of a
physical system are not resolved in low-energy observables. If no massless
particles are present, all interactions appear short-ranged at sufficiently low
energy and one can use an EFT with contact interactions.

Here, we focus on systems close to the unitary limit of infinite scattering
length. This hypothetical limit is obtained by taking the range of the inter-
action to zero while keeping a two-body bound state fixed at zero energy.
The two-body scattering amplitude is then scale invariant and saturates
the unitarity bound. Ultracold atomic gases can be tuned to the vicinity of
the unitary limit using Feshbach resonances, while neutron matter is close to
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this limit through a fine tuning in nature. This gives rise to novel many-body
phenomena, such as the BEC-BCS crossover in ultracold atoms [2] and the
“perfect” liquid observed in heavy-ion collisions [3].

Here, we use the unitary limit as a starting point for an EFT expan-
sion for strongly-interacting quantum systems with short-range interactions.
This universal EFT is applicable to any system close to the unitary limit,
i.e., any system with short range interactions and large scattering lengths.
Examples include halo states in nuclear physics, ultracold atoms close to a
Feshbach resonance, and hadronic molecules in particle physics. The break-
down scaleMhigh of this theory is set by the lowest energy degree-of-freedom
not explicitly included in the theory. In nuclear and particle physics, this
is typically given by one-pion exchange. In ultracold atoms, Mhigh is de-
termined by the van der Waals interaction, but the details depend on the
system. The typical momentum scale of the theory is Mlow ∼ 1/a ∼ k. For
momenta k of the order of the breakdown scale Mhigh or above, the omitted
short-range physics is resolved and has to be treated explicitly.

The universal EFT exploits the appearance of a large scattering length,
independent of the mechanism generating it. Because the dependence of
observables on the scattering length is explicit, it allows to unravel uni-
versal phenomena driven by the large scattering length such as universal
correlations of observables, the Efimov effect [4], and limit cycle physics [5].
For reviews of applications to the physics of ultracold atoms, nuclear, and
particle physics see, e.g., Refs. [6–8].

Three-body forces play an important role in the universal EFT and we
discuss their contribution in three- and higher-body systems in detail below.
In the simplest case of spinless bosons, the leading order Lagrangian can be
written as

L = ψ†

(
i∂t +

~∇2

2m

)
ψ − g2

(
ψ†ψ

)2
− g3

(
ψ†ψ

)3
+ . . . . (1)

Extensions to more complicated systems are straightforward. The terms
proportional to g2 and g3 correspond to two- and three-body contact inter-
actions. The dots represent higher-order terms suppressed by derivatives
and/or more fields.

The renormalized values of the coupling constants g2 and g3 are matched
to observables in the two- and three-body system. In the two-body system,
one typically takes the S-wave scattering length. The exact relation between
the coupling g2 and the scattering length depends on the renormalization
scheme. Because of this matching procedure, the EFT provides correlations
between different observables based on the hierarchy of scales in the system.
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Given one set of observables, another set can be predicted to a certain ac-
curacy. Depending on the experimental situation, these correlations can be
applied in different ways.

Since the scattering length is large, a ∼ 1/Mlow, the leading contact
interaction g2 has to be resummed to all orders [9, 10]. The two-body scat-
tering amplitude is obtained by summing the bubble diagrams with the g2
interaction shown in Fig. 2. This summation gives the exact solution of
the Lippmann–Schwinger equation for the g2 interaction and reproduces the
leading term of the effective range expansion, T2(k) = (4π/m) [−1/a− ik]−1.
Higher-order derivative interactions, which are not shown explicitly in Eq. (1),
generate higher-order terms in the effective range expansion. Since these
terms are set by Mhigh, their contribution at low energies is suppressed by
powers of Mlow/Mhigh and can be treated in perturbation theory. The first
correction is given by the S-wave effective range, r0 ∼ 1/Mhigh.
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Fig. 2. The bubble diagrams with the contact interaction g2 contributing to the
two-body scattering amplitude.

The universal EFT shows its full strength in the two-body sector when
external currents are considered. In contrast to other approaches, the cou-
pling to currents is straightforward and current conservation is satisfied at
each stage of the calculation. Gauge invariant few-body contact terms are
generated naturally by writing the most general effective Lagrangian.

We now proceed to the three-body system where the term proportional
to g3 in Eq. (1) contributes. From naive dimensional analysis, one would
conclude that the g3 term is of higher order. This is, indeed, the case for
two-component fermions where the Pauli principle forbids three fermions
to be close together in an S-wave. In general, however, naive dimensional
analysis fails for large scattering length a. Again, we focus on the case of
identical bosons which already contains the main features of the problem.
The simplest three-body process to be considered is the scattering of a boson
and a dimer. The integral equation for boson-dimer scattering is shown
schematically in Fig. 3. For total orbital angular momentum L = 0, it takes
the form

T3(k, p; E) =
16

3a
M(k, p; E) +

4

π

Λ∫
0

dq
q2 T3(k, q; E)M(q, p; E)

− 1
a +

√
3q2/4−mE − iε

, (2)
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where the inhomogeneous term reads

M(k, p; E) =
1

2kp
ln

(
k2 + kp+ p2 −mE
k2 − kp+ p2 −mE

)
+
H(Λ)

Λ2
, (3)

and a momentum cutoff Λ has been introduced to regulate the integral
equation. All other three-body observables can be extracted from the am-
plitude T3 taken in appropriate kinematics. In Eq. (2), H determines the
strength of the three-body interaction g3(Λ) = −4mg2(Λ)

2H(Λ)/Λ2. The
magnitude of the incoming (outgoing) relative momenta is k (p) and E =
3k2/(4m) − 1/(ma2). The on-shell point corresponds to k = p and the
scattering phase shift can be obtained via k cot δ = 1/T3(k, k; E) + ik.
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Fig. 3. The integral equation for the boson-dimer scattering amplitude. The single
(double) line indicates the boson (dimer) propagator.

ForH=0 and Λ→∞, Eq. (2) reduces to the Skorniakov–Ter–Martirosian
equation [11] which has no unique solution. The regularized equation has a
unique solution for any given (finite) value of the cutoff Λ but three-body
observables show a strong dependence on the cutoff Λ. Cutoff independence
of the amplitude is restored by an appropriate “running” of H(Λ) which
turns out to be a limit cycle [12]

H(Λ) ≈ cos [s0 ln (Λ/Λ∗) + arctan s0]

cos [s0 ln (Λ/Λ∗)− arctan s0]
, (4)

where s0 ≈ 1.00624 is a transcendental number and Λ∗ is a dimensionful
three-body parameter generated by dimensional transmutation. Adjusting
Λ∗ to a single three-body observable allows to determine all other low-energy
properties of the three-body system. Note that the choice of the three-body
parameter Λ∗ is not unique and there are other definitions more directly
related to experiment [6].

The physics of this renormalization procedure is illustrated in Fig. 4
where we show the unrenormalized three-body binding energies B3 in the
case of positive scattering length as a function of the cutoff Λ (solid line).
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As the cutoff is increased, B3 increases. At a certain cutoff (indicated by
the dotted line), a new bound state appears at the boson-dimer threshold.
This pattern repeats every time the cutoff increases by the discrete scaling
factor exp(π/s0). Now assume that we adopt the renormalization condition
that the shallowest state should have a constant energy given by the dashed
line. At small values of the cutoff, we need an attractive three-body force to
increase the binding energy of the shallowest state as indicated by the arrow.
As the cutoff is increased further, the required attractive contribution be-
comes smaller and around Λa = 1.1 a repulsive three-body force is required
(downward arrow). Around Λa = 4.25, a new three-body state appears at
threshold and we cannot satisfy the renormalization condition by keeping
the first state at the required energy any more. The number of bound states
has changed and there is a new shallow state in the system. At this point,
the three-body force turns from repulsive to attractive to move the new state
to the required energy. The corresponding running of the three-body force
with the cutoff Λ is shown in the inset. After renormalization, the first state
is still present as a deep state with large binding energy, but for threshold
physics its presence can be ignored. This pattern goes on further and further
as the cutoff is increased. The extension to systems with more three-body
states is straightforward.
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Fig. 4. Unrenormalized three-body energies B3 as a function of the momentum
cutoff Λ (solid lines). The dotted line indicates the cutoff where a new three-body
state appears at the boson-dimer threshold (dash-dotted line). The dashed line
shows a hypothetical renormalized energy. The inset shows the running of the
three-body force g3(Λ) ∼ −H(Λ) with Λ.
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The three-body force in Eq. (4) has exactly the right behavior to im-
plement the strategy from the previous paragraph. Moreover, it breaks
the scale invariance in the unitary limit since the three-body parameter
Λ∗ now provides a scale. However, due to the specific form of Eq. (4), a
discrete scale invariance survives. Scaling transformations with the scaling
factor λ0 = exp(π/s0) leave H(Λ) and, consequently, three-body observ-
ables invariant. This discrete scaling symmetry is the signature of an RG
limit cycle [13]. In the three-body bound-state spectrum, it becomes mani-
fest through the Efimov effect : The appearance of a geometric spectrum of
three-body bound states [4].

The Efimov spectrum is illustrated in the left panel of Fig. 5. We show
the energy variableK = sgn(E)

√
m|E| as a function of the inverse scattering

length 1/a. The hashed areas indicate the three-atom (a < 0) and atom-
dimer thresholds (a > 0) where the Efimov states become unstable. The
spectrum is invariant under the discrete scaling transformations K → λ0K
and 1/a → λ0/a. As a consequence, there is an accumulation of Efimov
three-body states at the origin. The scaling symmetry relates Efimov states
along any ray with fixed angle ξ (cf. Fig. 5). In general, these states corre-
spond to different scattering lengths. A physical system with fixed scatter-
ing length is illustrated by the vertical dashed line. For fixed a, the discrete
scaling symmetry is only manifest in the unitary limit 1/a = 0.
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Fig. 5. Left panel: Illustration of the Efimov spectrum: The energy variable K =

sgn(E)
√
m|E| is shown as a function of the inverse scattering length 1/a. The

solid lines indicate the Efimov states, while the hashed areas give the scattering
thresholds. The dashed vertical line indicates a system with fixed scattering length.
Right panel: The 3-body loss coefficient K3 in 133Cs for negative values of the
scattering length near the Efimov resonance at a ≈ 850a0. The data points are for
T = 10 nK and are taken from Ref. [17].
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The parameter Λ∗ can be used to set one of the three-body energies. All
other states then follow from the discrete scaling symmetry. This explains
why one parameter is sufficient for renormalization of the whole spectrum.
The discrete scaling symmetry predicts infinitely-deep three-body states.
This is known as the Thomas collapse [14]. Physically relevant, however, are
only states with energies |E| � M2

high/m. All deeper states are ultraviolet
artefacts of the effective theory and should be discarded.

3. Ultracold atoms

The discrete scale invariance also manifests itself in the log-periodic de-
pendence of scattering observables on the scattering length. This scaling
behavior has been confirmed in cold atom experiments [15]. In such experi-
ments, the scattering length can be varied using Feshbach resonances. The
scattering-length dependence of three-body recombination rates provides in-
direct information on the Efimov spectrum. For negative scattering length,
the Efimov states hit the three-atom threshold, E = 0, for certain values
of a (cf. Fig. 5) and lead to enhanced recombination rates. For positive
scattering length, the Efimov states become unstable already at the atom-
dimer threshold, E = −1/(ma2), but interference effects lead to minima and
maxima in the rate at E = 0. Ideally, one would like to see multiple recom-
bination features on each side of the resonance at 1/a = 0. For equal mass
particles, this is not a simple task because of the large scaling factor. When
effective range effects are included perturbatively, the discrete scale invari-
ance is softly broken but the effects of the breaking on the recombination
rate can be calculated [16].

As an example, we show the three-body loss coefficient K3 in a gas of
ultracold 133Li atoms measured by the Grimm group [17] as a function of
scattering length in the right panel of Fig. 5. This was the first experiment
to provide evidence for Efimov states in ultracold gases. The line shape
of the loss resonance is well described by the prediction from the universal
EFT [6]. The current challenges in the field of ultracold atoms include the
detection of excited Efimov trimers. Here, mixtures of atoms with different
masses are interesting since they can have a smaller scaling factor. A recent
highlight includes the observation of ground and excited state trimers in a
Li–Cs mixture [18, 19].

4. Halo nuclei

Two-neutron halo nuclei provide another arena for observing physics of
the unitary limit and the Efimov effect. Since the strength of the inter-
action between the neutrons and the core is fixed, however, the scattering
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length dependence of observables cannot be used to identify Efimov physics.
Instead, one can look for excited states which (approximately) satisfy the
universal scaling relation for bound states. Several nuclear systems have
been discussed as possible candidates for Efimov states. The current status
according to a recent EFT analysis of a number of established halo nuclei
[20] which did not indicate any excited states is summarized in Fig. 6.
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Fig. 6. Boundary curves for the existence of an excited Efimov state as function
of the neutron–core energy Enc and neutron–neutron energy Enn in units of the
three-body ground state energy Egs. The shift of 20C from using the values of the
newer AME2003 atomic mass evaluation [21] is indicated by the arrow.

The most promising system known so far is the 22C halo nucleus which
was found to display an extremely large matter radius [22] and is known
to have a significant S-wave component in the n–20C system [23]. Acharya
et al. [24], however, also excluded an excited Efimov state in 22C.

Whether heavier two-neutron halos exist is still an open question. There
has been much interest, both experimental and theoretical, in determining
precise values for masses, understanding shell evolution and the location of
the dripline in the neutron-rich calcium isotopes [25–28]. Coupled-cluster
calculations of neutron-rich calcium isotopes that included coupling to the
scattering continuum and schematic three-nucleon forces, suggested that
there is an inversion of the gds shell-model orbitals in 53,55,61Ca. In partic-
ular, it was suggested that a large S-wave scattering length might occur in
61Ca with interesting implications for 62Ca.
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Hagen et al. [29] used the coupled-cluster method combined with mod-
ern chiral effective theory interactions and follow the method outlined in
Ref. [30] to compute the elastic scattering of neutrons on 60Ca. They ana-
lyzed the resulting phase-shift data to obtain quantitative estimates for the
scattering length and the effective range and showed that a large scattering
length can be expected in this system. The results obtained from ab inito
calculations were then used as input for the so-called halo effective field the-
ory (EFT) that describes the halo system in terms of its effective degrees
of freedom (core and valence nucleons) [31, 32]. They used halo EFT to
analyze the implications of the coupled cluster results for the 60Ca–n–n sys-
tem. Specifically, they focused on the signals of Efimov physics that are a
consequence of the large scattering length in the 60Ca–n and n–n systems.

For 62Ca, the discrete scaling factor governing the energy spectrum is
approximately 162 = 256. The exact scaling symmetry applies for deep
states and in the unitary limit of infinite scattering length. For two lev-
els near threshold, however, the ratio of their energies can be significantly
smaller if one of the states is very close to the threshold. In the 62Ca case,
the whole energy region between Sn ≈ 5–8 keV and the breakdown scale
Sdeep ≈ 500 keV is available for Efimov states in 62Ca. It is thus conceivable
that 62Ca would display an excited Efimov state and unlikely that it would
not display any Efimov states.

The results of Hagen et al. [29] imply that 62Ca is possibly the largest
and heaviest halo nucleus in the chart of nuclei. They showed that, as a
result, a large number of observables would display characteristic features
that could be used to test our hypothesis. Measurements of these observables
will clearly pose a significant challenge for experiment. For example, 58Ca
is the heaviest calcium isotope that has been observed experimentally [33].
However, future RIB facilities might provide access to calcium isotopes as
heavy as 68Ca and thereby facilitate a test of this hypothesis.

5. Conclusion

In this contribution, we have highlighted the importance of three-body
forces in the universal EFT which is based on an expansion around the
unitary limit. Here, three-body forces contribute already at leading order
because of the Efimov effect. We discussed several application in nuclear
physics and ultracold atoms in detail.

In the chiral EFT, which is valid for typical momenta up to the or-
der a few times the pion mass, three-body forces are suppressed compared
to two-body interactions and enter only at next-to-next-to-leading order.
Nevertheless, for applications of chiral EFT interactions to nuclear struc-
ture, three-body forces have been shown to play a central role for light and
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medium-mass nuclei as well as nuclear matter. We did not have the space to
cover these important developments in this paper, but an excellent overview
of the status and challenges of three-body forces in nuclear structure and
beyond can be found in Ref. [1].

This work was supported by the DFG through funds provided to the
Sino-German CRC 110, by the BMBF under contract 05P12PDFTE, and
by the Helmholtz Association under contract HA216/EMMI.

REFERENCES

[1] H.-W. Hammer, A. Nogga, A. Schwenk, Rev. Mod. Phys. 85, 197 (2013).
[2] S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).
[3] T. Schäfer, D. Teaney, Rep. Prog. Phys. 72, 126001 (2009).
[4] V. Efimov, Phys. Lett. B33, 563 (1970).
[5] E. Braaten, H.-W. Hammer, Phys. Rev. Lett. 91, 102002 (2003).
[6] E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006).
[7] E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773

(2009).
[8] H.-W. Hammer, L. Platter, Annu. Rev. Nucl. Part. Sci. 60, 207 (2010).
[9] D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B534, 329 (1998).
[10] U. van Kolck, Nucl. Phys. A645, 273 (1999).
[11] G.V. Skorniakov, K.A. Ter-Martirosian, Sov. Phys. JETP 4, 648 (1957).
[12] P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463

(1999).
[13] K.G. Wilson, Phys. Rev. D3, 1818 (1971).
[14] L.H. Thomas, Phys. Rev. 47, 903 (1935).
[15] F. Ferlaino, R. Grimm, Physics 3, 9 (2010).
[16] C. Ji, D.R. Phillips, L. Platter, Ann. Phys. 327, 1803 (2012).
[17] T. Kraemer et al., Nature 440, 315 (2006).
[18] R. Pires et al., Phys. Rev. Lett. 112, 250404 (2014).
[19] S.K. Tung et al., Phys. Rev. Lett. 113, 240402 (2014).
[20] D.L. Canham, H.-W. Hammer, Eur. Phys. J. A37, 367 (2008).
[21] G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A729, 337 (2003).
[22] K. Tanaka et al., Phys. Rev. Lett. 104, 062701 (2010).
[23] W. Horiuchi, Y. Suzuki, Phys. Rev. C74, 034311 (2006).
[24] B. Acharya, C. Ji, D.R. Phillips, Phys. Lett. B723, 196 (2013).
[25] A. Lapierre et al., Phys. Rev. C85, 024317 (2012); A.T. Gallant et al., Phys.

Rev. Lett. 109, 032506 (2012).

http://dx.doi.org/10.1103/RevModPhys.85.197
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1088/0034-4885/72/12/126001
http://dx.doi.org/10.1016/0370-2693(70)90349-7
http://dx.doi.org/10.1103/PhysRevLett.91.102002
http://dx.doi.org/10.1016/j.physrep.2006.03.001
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1146/annurev.nucl.012809.104439
http://dx.doi.org/10.1016/S0550-3213(98)00440-4
http://dx.doi.org/10.1016/S0375-9474(98)00612-5
http://dx.doi.org/10.1103/PhysRevLett.82.463
http://dx.doi.org/10.1103/PhysRevLett.82.463
http://dx.doi.org/10.1103/PhysRevD.3.1818
http://dx.doi.org/10.1103/PhysRev.47.903
http://dx.doi.org/10.1016/j.aop.2012.02.001
http://dx.doi.org/10.1038/nature04626
http://dx.doi.org/10.1103/PhysRevLett.112.250404
http://dx.doi.org/10.1103/PhysRevLett.113.240402
http://dx.doi.org/10.1140/epja/i2008-10632-4
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1103/PhysRevLett.104.062701
http://dx.doi.org/10.1103/PhysRevC.74.034311
http://dx.doi.org/10.1016/j.physletb.2013.04.055
http://dx.doi.org/10.1103/PhysRevC.85.024317
http://dx.doi.org/10.1103/PhysRevLett.109.032506
http://dx.doi.org/10.1103/PhysRevLett.109.032506


390 H.-W. Hammer

[26] J.D. Holt, A. Schwenk, J. Phys. G 39, 085111 (2012).
[27] G. Hagen et al., Phys. Rev. Lett. 109, 032502 (2012).
[28] W. Nazarewicz et al., Phys. Rev. C53, 740 (1996); J. Erler et al., Nature

486, 509 (2012).
[29] G. Hagen, P. Hagen, H.-W. Hammer, L. Platter, Phys. Rev. Lett. 111,

132501 (2013).
[30] G. Hagen, N. Michel, Phys. Rev. C86, 021602(R) (2012).
[31] C.A. Bertulani, H.-W. Hammer, U. van Kolck, Nucl. Phys. A712, 37 (2002).
[32] P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Lett. B569, 159 (2003).
[33] O.B. Tarasov et al., Phys. Rev. Lett. 102, 142501 (2009).

http://dx.doi.org/10.1088/0954-3899/39/8/085111
http://dx.doi.org/10.1103/PhysRevLett.109.032502
http://dx.doi.org/10.1103/PhysRevC.53.740
http://dx.doi.org/10.1038/nature11188
http://dx.doi.org/10.1038/nature11188
http://dx.doi.org/10.1103/PhysRevLett.111.132501
http://dx.doi.org/10.1103/PhysRevLett.111.132501
http://dx.doi.org/10.1103/PhysRevC.86.021602
http://dx.doi.org/10.1016/S0375-9474(02)01270-8
http://dx.doi.org/10.1016/j.physletb.2003.07.049
http://dx.doi.org/10.1103/PhysRevLett.102.142501

	1 Preliminary remarks
	2 Physics near the unitary limit
	3 Ultracold atoms
	4 Halo nuclei
	5 Conclusion

