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To expand the multi-quasiparticle (qp) configuration space of the pro-
jected shell model, the Pfaffian algorithm is applied to facilitate calculations
of the matrix elements. With inclusion of 6-qp states in the projected basis,
the yrast band of 166Hf at very high spins is studied, where the observed
three anomalies in moment of inertia are well reproduced and explained by
the contributions of the 2-qp, 4-qp, and 6-qp states, respectively.
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Nuclei provide us with a natural laboratory to study the interplay be-
tween collective and single-particle motions. The ground state of nuclei is
a superfluid state with all nucleons coupled pairwise. It has been observed
that nuclear rotation can cause a rapid increase in moment of inertia of
the nuclei at certain rotational frequency. This phenomenon was explained
successfully by pair breaking and alignment of nucleons in orbitals with the
highest angular momentum j [1]. As nuclei rotate faster and faster, subse-
quent pair breakings can occur for the pairs from the next highest j orbitals,
forming 4-quasiparticle (qp) states. When approaching the extremes of an-
gular momentum, complex band crossings are expected to occur. In fact,
recent experimental measurements have indicated the crucial roles played
by 6-qp bands at high spins in 166,168Hf [2, 3].
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It is a challenge to describe this phenomenon in a shell-model framework.
The problem lies in the procedure of computing the overlap matrix elements
between multi-qp states, which are traditionally calculated with the gener-
alized Wick’s theorem [4] that may involve combinatorial complexity when
more than 4-qp states are considered. Quite recently, base on the projected
shell model (PSM) [5], we have applied an efficient algorithm [6] to calculate
the multi-qp matrix elements, which allows us, for the first time, to push the
PSM study of the pair-breaking phenomenon to very high spins [7]. As an
example, the rotationally induced structural changes of 166Hf are studied.

The PSM begins with a deformed Nilsson+BCS qp basis from which the
model space is constructed [5]. For rare-earth nuclei, three major harmonic-
oscillator shells are taken in the calculation with N = 4, 5, 6 (N = 3, 4, 5)
for neutrons (protons). The multi-qp configurations up to 6-qp states for
even–even nuclei are given as [7]{
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where a†ν(a†π) denote neutron (proton) qp creation operators associated with
the qp vacuum |Φ〉. The PSM wave function is a linear combination of
projected states

|ΨσIM 〉 =
∑
Kκ

fσIKκP̂
I
MK |Φκ〉 , (2)

where |Φκ〉 are the qp-states in (1). P̂ IMK is the angular momentum projec-
tion operator [5]. The energies and wave functions are obtained by solving
the eigenvalue equation∑

K′κ′

(
HI
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)
fσIK′
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with the projected matrix elements of the Hamiltonian and the norm

HI
Kκ,K′κ′ = 〈Φκ|ĤP̂ IKK′ |Φκ′〉 , N I

Kκ,K′κ′ = 〈Φκ|P̂ IKK′ |Φκ′〉 . (4)

The central task in numerical calculations is to evaluate rotated matrix
elements in the Hamiltonian and the norm

Hκκ′ = 〈Φκ|Ĥ[Ω]|Φκ′〉 , Nκκ′ = 〈Φκ|[Ω]|Φκ′〉 , (5)
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with the operator [Ω] = R̂(Ω)/〈Φ|R̂(Ω)|Φ〉 [5]. Since Hκκ′ can be decom-
posed into terms expressed by the “linked” contraction andNκκ′ [5], the main
task then concentrates on treating efficiently Nκκ′ , which can be rewritten
as the following explicit form

Nκκ′ = 〈Φ|a1 · · · an[Ω]a†1′ · · · a
†
n′ |Φ〉 . (6)

It was pointed out [6] that in applying the generalized Wick’s theorem, a
matrix element of Eq. (6) involving n and n′ qps, respectively in the left-
hand and right-hand side of [Ω], contains (n + n′ − 1)!! terms. In practice,
the number of terms becomes so large that it is nearly impossible to write
down expressions explicitly for more than 4-qp states.

By using the Fermion coherent state and Grassmann integral, a general
expression for (6) in terms of the Pfaffian can be derived [6]

〈Φ|a1 · · · an[Ω]a†1′ · · · a
†
n′ |Φ〉 = Pf(X) = Pf

(
B C
−CT A

)
, (7)

where X is a skew-symmetric matrix with dimension (n+n′)×(n+n′). The
indices of rows and columns for B run from 1 to n (1, . . . , n) and the ones
for A run from 1′ to n′ (1′, . . . , n′). For matrix C in Eq. (7), the indices of
rows run from 1 to n and those of columns run from 1′ to n′. The Pfaffian
is defined as

Pf(A) ≡ 1

2nn!

∑
σ∈S2n

sgn(σ)
n∏
i=1

aσ(2i−1)σ(2i) (8)

for a skew-symmetric matrix A with dimension 2n × 2n, of which matrix
elements are aij . The symbol σ is a permutation of {1, 2, 3, . . . , 2n}, sgn(σ)
is its sign, and S2n represents a symmetry group. This makes it possible
and efficient to work with the expanded PSM configuration in (1).

For the calculation, we employ the Hamiltonian with separable forces

Ĥ = Ĥ0 − 1
2χQQ

∑
µ

Q̂†2µQ̂2µ −GM P̂ †P̂ −GQ
∑
µ

P̂ †2µP̂2µ , (9)

where Ĥ0 is the spherical single-particle term including the spin–orbit force,
and the rest is the quadrupole+pairing type of interactions, with inclusion
of the quadrupole-pairing term.

Figure 1 shows the so-called back-bending plot for 166Hf, where twice
the moment of inertia, 2Θ, is plotted as a function of square of rotational
frequency ω2. In the calculation, the deformation parameters are fixed as
ε2 = 0.208 and ε4 = 0.013 taken from Ref. [8]. Anomalies in 2Θ can be
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Fig. 1. (Color online) Back-bending plot for 166Hf. The calculated results are
compared with the data taken from Ref. [2]. This figure is taken from Fig. 1 of
Ref. [7].

clearly seen as ω increases, roughly at ω2 ≈ 0.10, 0.15 and 0.25, correspond-
ing to spin I ≈ 12, 24 and 34, respectively. The first anomaly exhibits the
largest effect, causing a sharp increase in 2Θ. This is known as the first
back-bending, corresponding to breaking and alignment of a neutron i13/2
pair. The second anomaly in Fig. 1 corresponds to the small increase in 2Θ
at ω2 ≈ 0.15, which is nicely reproduced by the PSM. At this rotational fre-
quency, an additional h11/2 proton pair is broken and their spins are aligned
along the axis of rotation. The third anomaly belongs to the few known
cases that have ever been observed: 2Θ jumps suddenly again at ω2 ≈ 0.25.
The observation is correctly described by the present calculation, and is un-
derstood as a simultaneous breaking of two neutron i13/2 pairs and one h11/2
proton pair.
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