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GAMMA-RAY SPECTROSCOPY
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The half-lives of 2+1 states were measured for 102,104Zr and 106,108Mo to
test a new implementation of a LaBr3(Ce) array at the RIBF, RIKEN,
Japan. The nuclei of interest were produced through the fission of a
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345 MeV/nucleon 238U beam and selected by the BigRIPS separator. Fis-
sion fragments were implanted into the WAS3ABi active stopper, surround-
ing which, 18 LaBr3(Ce) detectors provided fast γ-ray detection. Timing
between the LaBr3(Ce) array and plastic scintillators allowed for the mea-
surement of half-lives of low-lying states. The preliminary results, which
agree with literature values, are presented along with experimental details.
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PACS numbers: 21.10.Re, 21.10.Tg, 23.20.Js, 27.60.+j

1. Introduction

The A ∼ 100, Z ∼ 40 region of the nuclear chart has long been known for
its sudden onset of static quadrupole deformation at N ∼ 60 [1]. This was
first ascribed to the neutron–proton interactions of the spatially-overlapping
spin–orbit partner orbits, πg7/2 and νg9/2 [2]. However, more recent calcu-
lations [3] and g-factor [4] measurements have underlined the importance of
core polarisation and the influence of the low-Ω νh11/2 orbitals.

The complexity of the factors which drive deformation in the neutron-rich
zirconium region require stringent testing. The reproduction of energy levels
can provide some evidence that the wave-function employed in calculations
is correct, however, observables, such as the reduced transition probabilities
serve as a more robust test.

In these proceedings, we present the measurement of the known half-lives
of the 2+1 states in 102,104Zr and 106,108Mo through β–γ spectroscopy. From
these, the B(E2; 2+1 → 0+g.s.) values are computed.

2. Experimental set-up

A decay spectroscopy experiment was carried out at the RI Beam Factory
(RIBF). The in-flight fission of a 238U86+ primary beam of average intensity
6.24 × 1010 particles/s accelerated to an energy of 345 MeV/nucleon pro-
duced a secondary beam of neutron-rich nuclides. Fission fragments were
selected by the BigRIPS spectrometer using the Bρ–∆E–Bρ method [5] and
identified using TOF–Bρ–∆E measurements [6].

The secondary beam was implanted into the WAS3ABi silicon array [7],
which detected ion implantations and their subsequent β-decays. Precise
timing of β-electron emission was achieved using plastic scintillators of 2 mm
thickness and area 65 × 45 mm2 installed upstream and downstream of
WAS3ABi. An array of 18 LaBr3(Ce) [8] detectors, as well as the EURICA [9]
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array, surrounded WAS3ABi for the purpose of measuring isomeric and
β-delayed γ-rays. The photopeak efficiency of the LaBr3(Ce) array at
∼ 150 keV was measured to be 4%.

3. Experimental results

Implanted fission fragments were correlated with their β-decays by re-
quiring that the β-decay had to occur in the same pixel as an implanted
ion within approximately five times the β-decay half-life of the implanted
nuclide. The β-electron was required to be detected in one of the β-plastics.
As an example, the γ-ray energy spectrum of 106Mo is shown in the right
panel of Fig. 1, the inset shows the background-subtracted time-difference,
∆T , spectrum of the 2+1 → 0+g.s. transition (∆T is the time between a signal
in the β-plastics and a γ-ray detection in the LaBr3(Ce) array).
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Fig. 1. Left: Particle identification plot with labels indicating the nuclides of inter-
est. Right (a): Energy spectrum measured in the LaBr3(Ce) array within 1 s of a
β-decay correlated to an implantation of 106Nb. (b): Background-subtracted ∆T

projection of the 2+1 → 0+g.s.transition, the curve (blue) is an exponential fit.

To extract the half-life of the 2+1 states for 104,106Zr and 106,108Mo, an
exponential fit was carried out on the delayed shoulder of the ∆T spectrum
between 2 and 15 ns. The results, presented in the left of Fig. 2 agree with
adopted values [10, 11, 13, 14], with the exception of 102Zr. This deviation is
tentatively attributed to the influence of the half-life of aKπ = 4− state [12].
For the four nuclei under discussion, no delayed component was observed
for the feeding 4+1 → 2+1 transitions. The right panel of Fig. 2 shows the
B(E2; 2+1 → 0+g.s.) values obtained.

The presented method shall be extended to more neutron-rich isotopes
in the region, to extend the knowledge of transition probabilities.
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Fig. 2. Left: Half-lives of the 2+1 states as a function of neutron-number for Mo
and Zr. Right: The corresponding B(E2; 2+1 → 0+g.s.) transition probabilities. In
both, the solid symbols are values determined in this work, open symbols from
Ref. [10, 11, 13, 14].
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