GAMMA-RAY SPECTROSCOPY IN THE VICINITY OF ¹⁰⁸Zr*

F. Browne^{a,b}, A.M. Bruce^a, T. Sumikama^c, I. Nishizuka^c
S. Nishimura^b, P. Doornenbal^b, G. Lorusso^b, Z. Patel^{b,d}
S. Rice^{b,d}, L. Sinclair^{b,e}, P.-A. Söderström^b, H. Watanabe^{b,f}
J. Wu^{b,g}, Z.Y. Xu^h, H. Baba^b, N. Chiga^c, R. Carroll^d, R. Daidoⁱ
F. Didierjean^m, Y. Fangⁱ, G. Gey^{j,k,b}, E. Ideguchiⁱ, N. Inabe^b
T. Isobe^b, D. Kameda^b, I. Kojouharov^l, N. Kurz^l, T. Kubo^b
S. Lalkovskiⁿ, Z. Li^g, R. Lozeva^m, N. Naoki^b, H. Nishibataⁱ
A. Odaharaⁱ, Zs. Podolyák^d, P.H. Regan^{d,o}, O.J. Roberts^a
H. Sakurai^b, H. Schaffner^l, G.S. Simpson^j, H. Suzuki^b
H. Takeda^b, M. Tanakaⁱ, J. Taprogge^{p,q,b}, V. Werner^{r,s}
O. Wieland^t, A. Yagiⁱ

^aSchool of Computing, Engineering and Mathematics, University of Brighton Brighton BN2 4GJ, UK; ^bRIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; ^cDept. of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan; ^dDept. of Physics, University of Surrey, Guildford GU2 7XH, UK; ^eDept. of Physics, University of York, Heslington, York YO10 5DD, UK; Dept. of Physics, Beihang University, Beijing 100191, China; ^gDept. of Physics, Peking University, Beijing 100871, China; ^hDept. of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Dept. of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan; JLPSC, UJF/INPG, CNRS/IN2P3, 38026 Grenoble Cedex, France; kILL, 38042 Grenoble Cedex, France; ¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; "IPHC, CNRS/IN2P3 and University of Strasbourg, Strasbourg, France; ⁿDept. of Physics, University of Sofia, 1164 Sofia, Bulgaria; ^oNational Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK; ^PDepartamento de Física Teórica, Universidad Autónoma de Madrid, 28049 Madrid, Spain; ^qInstituto de Estructura de la Materia, CSIC, 28006 Madrid, Spain; ^rA.W. Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA; sInstitut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany; ^tINFN Sezione di Milano, 20133 Milano, Italy

(Received February 2, 2015)

The half-lives of 2_1^+ states were measured for $^{102,104}\mathrm{Zr}$ and $^{106,108}\mathrm{Mo}$ to test a new implementation of a LaBr₃(Ce) array at the RIBF, RIKEN, Japan. The nuclei of interest were produced through the fission of a

^{*} Presented at the Zakopane Conference on Nuclear Physics "Extremes of the Nuclear Landscape", Zakopane, Poland, August 31–September 7, 2014.

345 MeV/nucleon 238 U beam and selected by the BigRIPS separator. Fission fragments were implanted into the WAS3ABi active stopper, surrounding which, 18 LaBr₃(Ce) detectors provided fast γ -ray detection. Timing between the LaBr₃(Ce) array and plastic scintillators allowed for the measurement of half-lives of low-lying states. The preliminary results, which agree with literature values, are presented along with experimental details.

DOI:10.5506/APhysPolB.46.721

PACS numbers: 21.10.Re, 21.10.Tg, 23.20.Js, 27.60.+j

1. Introduction

The $A \sim 100$, $Z \sim 40$ region of the nuclear chart has long been known for its sudden onset of static quadrupole deformation at $N \sim 60$ [1]. This was first ascribed to the neutron–proton interactions of the spatially-overlapping spin–orbit partner orbits, $\pi g_{7/2}$ and $\nu g_{9/2}$ [2]. However, more recent calculations [3] and g-factor [4] measurements have underlined the importance of core polarisation and the influence of the low- $\Omega \nu h_{11/2}$ orbitals.

The complexity of the factors which drive deformation in the neutron-rich zirconium region require stringent testing. The reproduction of energy levels can provide some evidence that the wave-function employed in calculations is correct, however, observables, such as the reduced transition probabilities serve as a more robust test.

In these proceedings, we present the measurement of the known half-lives of the 2_1^+ states in $^{102,104}\mathrm{Zr}$ and $^{106,108}\mathrm{Mo}$ through $\beta-\gamma$ spectroscopy. From these, the $B(\mathrm{E2}; 2_1^+ \to 0_{\mathrm{g.s.}}^+)$ values are computed.

2. Experimental set-up

A decay spectroscopy experiment was carried out at the RI Beam Factory (RIBF). The in-flight fission of a $^{238}\mathrm{U}^{86+}$ primary beam of average intensity 6.24×10^{10} particles/s accelerated to an energy of 345 MeV/nucleon produced a secondary beam of neutron-rich nuclides. Fission fragments were selected by the BigRIPS spectrometer using the $B\rho-\Delta E-B\rho$ method [5] and identified using TOF- $B\rho-\Delta E$ measurements [6].

The secondary beam was implanted into the WAS3ABi silicon array [7], which detected ion implantations and their subsequent β -decays. Precise timing of β -electron emission was achieved using plastic scintillators of 2 mm thickness and area 65×45 mm² installed upstream and downstream of WAS3ABi. An array of 18 LaBr₃(Ce) [8] detectors, as well as the EURICA [9]

array, surrounded WAS3ABi for the purpose of measuring isomeric and β -delayed γ -rays. The photopeak efficiency of the LaBr₃(Ce) array at ~ 150 keV was measured to be 4%.

3. Experimental results

Implanted fission fragments were correlated with their β -decays by requiring that the β -decay had to occur in the same pixel as an implanted ion within approximately five times the β -decay half-life of the implanted nuclide. The β -electron was required to be detected in one of the β -plastics. As an example, the γ -ray energy spectrum of ¹⁰⁶Mo is shown in the right panel of Fig. 1, the inset shows the background-subtracted time-difference, ΔT , spectrum of the $2_1^+ \to 0_{g,s.}^+$ transition (ΔT is the time between a signal in the β -plastics and a γ -ray detection in the LaBr₃(Ce) array).

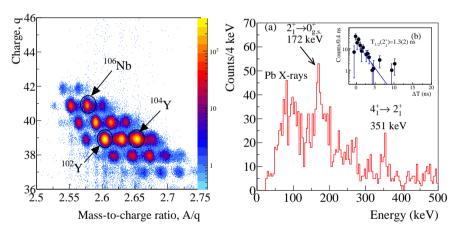


Fig. 1. Left: Particle identification plot with labels indicating the nuclides of interest. Right (a): Energy spectrum measured in the LaBr₃(Ce) array within 1 s of a β -decay correlated to an implantation of ¹⁰⁶Nb. (b): Background-subtracted ΔT projection of the $2_1^+ \rightarrow 0_{\rm g.s.}^+$ transition, the curve (blue) is an exponential fit.

To extract the half-life of the 2_1^+ states for $^{104,106}\mathrm{Zr}$ and $^{106,108}\mathrm{Mo}$, an exponential fit was carried out on the delayed shoulder of the ΔT spectrum between 2 and 15 ns. The results, presented in the left of Fig. 2 agree with adopted values [10, 11, 13, 14], with the exception of $^{102}\mathrm{Zr}$. This deviation is tentatively attributed to the influence of the half-life of a $K^\pi=4^-$ state [12]. For the four nuclei under discussion, no delayed component was observed for the feeding $4_1^+ \to 2_1^+$ transitions. The right panel of Fig. 2 shows the $B(\mathrm{E2}; 2_1^+ \to 0_{\mathrm{g.s.}}^+)$ values obtained.

The presented method shall be extended to more neutron-rich isotopes in the region, to extend the knowledge of transition probabilities.

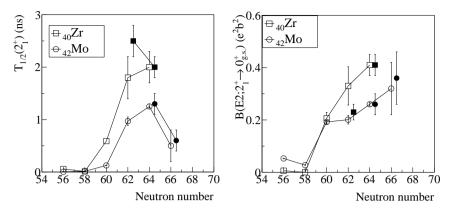


Fig. 2. Left: Half-lives of the 2_1^+ states as a function of neutron-number for Mo and Zr. Right: The corresponding $B(E2; 2_1^+ \to 0_{g.s.}^+)$ transition probabilities. In both, the solid symbols are values determined in this work, open symbols from Ref. [10, 11, 13, 14].

We acknowledge the accelerator team for delivering the 238 U beam. This work was supported in part by the UK STFC, the UK NMO and D.O.E. grant No. DE-FG02-91ER-40609.

REFERENCES

- [1] E. Cheifetz et al., Phys. Rev. Lett. 25, 38 (1970).
- [2] P. Federman, S. Pittel, Phys. Rev. C20, 820 (1979).
- [3] S. Verman, P.A. Dar, R. Devi, *Phys. Rev.* C77, 024308 (2008).
- [4] A.G. Smith et al., Phys. Lett. **B591**, 55 (2004).
- [5] T. Kubo et al., Prog. Theor. Exp. Phys. 2012, 03C003 (2012).
- [6] N. Fukuda et al., Nucl. Instrum. Methods Phys. Res. B317, 323 (2013).
- [7] S. Nishimura, *Prog. Theor. Exp. Phys.* **2012**, 03C006 (2012).
- [8] Z. Patel et al., RIKEN Accel. Rep. 47, 2014, in print.
- [9] P.-A. Södeström et al., Nucl. Instrum. Methods Phys. Res. B317, 649 (2013).
- [10] R.C. Jared, et al., LBL-2366, 38 (1974), unpublished.
- [11] H. Pentill et al., Phys. Rev. C54, 2760 (1996).
- [12] H. Hua et al., Phys. Rev. C69, 014317 (2004).
- [13] J.K. Hwang et al., Phys. Rev. C73, 044316 (2006).
- [14] S. Raman et al., At. Data Nucl. Data Tables 78, 1 (2001).