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Several physical problems such as the “twin paradox” in curved space-
times have a purely geometrical nature and are reduced to studying prop-
erties of bundles of timelike geodesics. The paper is a general introduction
to systematic investigations of the geodesic structure of physically relevant
spacetimes. These are focussed on the search of locally maximal timelike
geodesics. The method is based on determining conjugate points on chosen
geodesic curves. The method presented here is effective at least in the case
of radial and circular geodesics in static spherically symmetric spacetimes.
Our approach shows that even in Schwarzschild spacetime (as well as in
other static spherically symmetric ones), one can find a new unexpected
geometrical feature: each stable circular orbit contains besides the obvious
set of conjugate points two other sequences of conjugate points. The obvi-
ous limitations of the approach arise from one’s inability to solve involved
ordinary differential equations and the recent progress in the field allows
one to increase the range of metrics and types of geodesic curves tractable
by this method.
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1. Introduction

This paper serves as a generic introduction to and a formulation of a
systematic research programme for studying the geodesic structure of static
spherically symmetric (SSS) spacetimes and then of a wider class of physi-
cally relevant ones. After studying a few spacetimes, we have realized that
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some results are universal and need not be separately derived for each space-
time of the class (this observation is not quite obvious since spacetimes with
similar isometry groups may considerably differ in their geodesic structure).
The programme of investigating the geodesic structure of various spacetimes
has originally been motivated by the famous “twin paradox” considered in
curved spacetimes [1–5]. It turns out that contrary to the conjecture stated
in [5], no general rule concerning of which twin is younger exists and one
must study each case separately. The problem is of purely geometrical na-
ture and consists in computing the lengths of various timelike curves having
common points; in the Lorentzian geometry only the problem of determining
the longest curve is meaningful and directly leads to searching the geodesic
structure of the spacetime and this is why it is worth pursuing.

The problem of maximally long timelike curves consists of two separate
problems: local and global. In the local problem, one considers a bunch of
infinitesimally close timelike curves emanating from the initial point p and
intersecting at the endpoint q. A geodesic γ of the bunch is the longest curve
in it if the segment pq of γ does not contain a point conjugate to p. In the
global problem, one searches for the longest curve in the whole space of all
timelike curves with common endpoints. If a geodesic γ is locally the longest,
it needs not be globally the longest one and γ is globally maximal on a
segment pq if the segment does not contain a future cut point of p. One learns
from a monograph on global Lorentzian geometry [6] that all propositions
concerning the maximal length curves are “existence theorems” providing no
analytic tools to establish if the given (geodesic) curve is globally maximal
or to find out the maximal geodesic emanating from the given point. This
is a direct consequence of the nonlocal nature of the problem, which cannot
be solved by employing a local tool such as a differential equation. Only
in spacetimes with special high symmetries, one can directly apply a global
theorem to recognize the cut points (or their absence). For this reason, we
mainly deal with a more tractable problem of finding out locally maximal
curves with the aid of Jacobi vector fields and conjugate points on timelike
geodesics. In some cases, one may indicate which segments of special timelike
geodesics are globally maximal.

We emphasize that in the search for locally maximal worldliness, one
must solve the geodesic deviation equation (GDE) and to this end, one must
know an explicit parametric representation of the given geodesic. Complete
sets of analytic solutions to the geodesic equation are known in very few
spacetimes, e.g. for Schwarzschild metric [7, 8] and recently for Schwarzschild–
(anti)-de Sitter spacetimes [9, 10] (and references therein). At least in the
case of Schwarzschild metric, all timelike geodesics may be expressed in terms
of known transcendental functions. In a general SSS spacetime, the radial
and circular geodesics are exceptional in that their parametric description
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is in terms of simple elementary functions. Besides these two special cases
(and few other exceptions), the GDE is intractable and thus it is reasonable
to first learn about the geodesic structure of SSS spacetimes by investigating
these two kinds of geodesics. In this work, we study exclusively radial and
circular timelike geodesics.

The paper is organized as follows. In Section 2, the GDE is recast in the
form of three scalar equations which are more suitable for our purposes and
the general procedure is outlined. These equations are explicitly derived for
the radial geodesics in Section 3. Section 4 contains the main result found
by the procedure presented in Section 2: the GDEs on circular geodesics (if
these exist) are the same for all SSS spacetimes and the solutions found ear-
lier for Schwarzschild metric universally apply. Actually, a preliminary ver-
sion of the present work had first appeared as arXiv:1402.3976v1 [gr-qc]
and preceded two published papers [11, 12] which contained detailed results
for a few simplest spacetimes found by applying the general method devel-
oped here. Therefore, to avoid repetitions, the presentation of the method
here is not fully complete and we refer the reader to those two papers for a
discussion of some of its aspects. Brief conclusions are given in Section 5.

2. Locally maximal timelike curves: Jacobi fields
and conjugate points

A timelike geodesic connecting points p and q is locally maximal if there
are no conjugate points to p on its segment pq and these are determined by
zeros of any Jacobi vector field on it. A Jacobi field on a timelike geodesic γ
with a unit tangent vector field uα(s) is any vector field Zµ(s) being a
solution of the GDE on γ,

D2

ds2
Zµ = Rµαβγ u

α uβ Zγ , (1)

which is orthogonal to γ, Zµ uµ = 0. Due to the presence of the second
absolute derivative D2/ds2, the GDE is very complicated and one simplifies
it by replacing this derivative by the ordinary one. To this end, one expands
Zµ in a basis consisting of three spacelike orthonormal vector fields eaµ(s),
a = 1, 2, 3 on γ, which are orthogonal to γ and are parallelly transported
along the geodesic, i.e.

ea
µ ebµ = −δab , ea

µ uµ = 0 ,
D

ds
ea
µ = 0 . (2)

(Since we are dealing with timelike curves, it is convenient to apply the
metric signature + −−−.) Then Zµ =

∑
a Zaea

µ and the covariant vector
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equation (1) is reduced to three scalar ODEs for the Jacobi scalars1 Za(s),

d2

ds2
Za = −eaµRµαβγ uα uβ

3∑
b=1

Zb eb
γ , (3)

a general Jacobi field depends on 6 integration constants. Any Killing vector
field Kµ generates a first integral of Eq. (1) of the form [13]

Kµ
D

ds
Zµ − Zµ D

ds
Kµ = const . (4)

This formula may be recast in terms of the scalars Za. To this end, one
introduces a tetrad eA

µ, A = 0, 1, 2, 3, along γ consisting of the vectors
ea
µ(s) supplemented by e0µ ≡ uµ. The tetrad is orthonormal, eAµ eBµ =

ηAB = diag(1,−1,−1,−1). Expanding Zµ and Kµ =
∑3

A=0KA eA
µ in the

tetrad and inserting them into (4), one gets

3∑
a=1

(
Za

dKa

ds
− dZa

ds
Ka

)
= const , (5)

where Ka = −Kµ eaµ. In many cases, the constants (5) generated by in-
dependent Killing vectors turn out to be dependent. Besides the simplest
spacetimes, the integrals (5) are essential in solving (3).

There are two approaches to finding the Jacobi vector fields. Bażański [14]
gave a generic algorithm for solving the GDE in cases where one knows a
complete integral of the Hamilton–Jacobi equation for timelike geodesics.
When applied to Schwarzschild spacetime [15], it has turned out that this
beautiful formalism is of restricted practical use: it does not apply to circular
geodesics. When the formalism is applied where it works, it requires to first
find the general solution of the GDE and then carefully take appropriate
limits in it to the particular type of the geodesic, what makes the procedure
rather cumbersome. Furthermore, at least in the Schwarzschild metric, the
formalism works in the case of radial geodesics only for curves escaping to
the spatial infinity, what excludes finite geodesics, such as those considered
in the twin paradox [16]. This is why our approach is closer to that of Fuchs,
who found a generic solution to the GDE in SSS spacetimes for some types
of timelike geodesics [17]. His formula expresses the Jacobi field in terms
of four integrals of expressions made up of Killing vectors and constants of
motion they generate. It is our experience that employing this formula is not
simpler than solving the GDE for radial geodesics from the very beginning.

1 The vector index of a Jacobi vector field will always be written as a superscript and
the number of the Jacobi scalar — as a subscript.
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It should be stressed that also the Fuchs’ formula does not apply to the
circular geodesics and these must be dealt with separately. We therefore
solve the GDE independently for each type of geodesic curves.

To summarize, the procedure is as follows:

— Choose an interesting spacetime with some isometries.

— Choose a geometrically interesting timelike geodesic γ having a simple
parametric description xα = xα(τ).

— Choose the triad ea
µ(s) on γ. The triad is not uniquely determined

by Eqs. (2) and should be properly selected as to render equations (3)
as simple as possible.

— Solve the GDE (3) applying the first integrals and find a generic solu-
tion Za(τ).

— Consider all possible special solutions with Za(0) = 0 and seek for
their zeros, Za(τ0) = 0 for τ0 > 0.

Then the geodesic γ is uniquely locally maximal on the segment 0 ≤ τ < τ0
and is non-uniquely locally maximal on 0 ≤ τ ≤ τ0. For τ1 > τ0, there is
a timelike curve from γ(0) to γ(τ1) which is longer than γ. It is clear that
the crucial point is to solve equations (3). Besides the simplest cases, it is
possible due to the recent progress in techniques of dealing with ODEs.

In the remainder of the paper, we shall apply this general procedure to
radial and circular geodesics in SSS spacetimes.

3. Jacobi fields on timelike radial geodesics
in static spherically symmetric spacetimes

Before dealing with the Jacobi vectors, we make a comment on globally
maximal radial geodesics in SSS spacetimes.

3.1. Globally maximal radial geodesics

The comoving, i.e. Gaussian normal geodesic (GNG) coordinates allow
one to easily establish that some segments of radial geodesics are globally
maximal. The geodesics which are radial in the standard spherical coordi-
nates remain radial in the GNG coordinates, where they coincide with the
lines of the proper time. To avoid confusion with the Gullstrand–Painlevé
coordinates, which are also made up with the aid of freely falling parti-
cles, we stress that in the GNG system the radial geodesics have all spatial
coordinates constant, then the metric is

ds2 = dτ2 + gij

(
τ, xk

)
dxi dxj . (6)
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Denote by D the GNG chart domain. Let a segment of the future directed
radial geodesic γ lying in D be parameterized by the time τ in the interval
(τ1, τ2), then its length is s(γ) = τ2 − τ1. Assume that the domain D is
so large that any future directed timelike curve σ joining points γ(τ1) and
γ(τ2) lies in D. Then, it is obvious that σ is shorter than γ. This fact
becomes interesting if D is a sufficiently large part of the whole manifold.
In SSS spacetimes, one may effectively construct the transformation from
the standard spherical coordinates (wherein the metric is usually given) to
the GNG ones directly applying the method developed for the Schwarzschild
metric [18] (Lemaître coordinates). Then, one may determine the size of D.
It turns out that for the Reissner–Nordström black hole with M2 > Q2

the domain is the same as that of the standard spherical coordinates, i.e.
the spacetime outside the outer event horizon, r+ < r < ∞ with r+ =

M +
√
M2 −Q2. The radial geodesics are globally maximal for all r > r+.

The Kottler (Schwarzschild–de Sitter) black hole for Λ>0 and 9M2Λ<1
is static between the black hole event horizon r = rm and the cosmological
de Sitter horizon (the Killing horizon) r = rM . The metric component g00
has the maximum for r = re = (3M/Λ)1/3 implying that actually there
exist two distinct and non-overlapping GNG charts for r in (rm, re) and in
(re, rM ).

3.2. Equations for Jacobi fields

The method of GNG coordinates effectively applies only to radial geo-
desics and as the case of the Kottler black hole shows, in many SSS space-
times, the domain D is smaller than that of the standard spherical ones. We
are, therefore, interested here in locally maximal curves and in this section,
we derive the geodesic deviation equation for radial geodesics. We assume
the standard form of the SSS metric,

ds2 = eν(r)dt2 − eλ(r)dr2 − F 2(r)
(
dθ2 + sin2 θ dφ2

)
, (7)

functions ν and λ are real for r ∈ (rm, rM ), we assume rm ≥ 0. We assume
F (r) = r for a generic SSS metric and postpone discussing the case F (r) =
const = a to the next section (the special case of the Bertotti–Robinson
spacetime has been studied separately [11]). The timelike Killing vector is
Kα = κδα0 and κ = const is a normalization factor (chosen either at r = 0
or at spatial infinity). The conserved energy of a particle of mass m on a
radial geodesic is E and k ≡ E/(mc2) > 0 is dimensionless.

Let us choose one radial geodesic and denote it by C. The starting point
of C is r = r0, rm < r0 < rM , and the initial velocity is ṙ(r0) ≡ u. The form
of C depends on the behaviour of eν . We assume that eν is monotonic from
rm to rM (the case of the Kottler spacetime is more involved and requires a
separate study).
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(i) eν is decreasing for r > r0 (e.g. dS metric). The gravitation is repul-
sive: for u ≥ 0, the curve C flies upwards to the domain boundary
r = rM and will never return; for u < 0, the curve goes down, in
general, it reaches a minimal height r = ρ at which ṙ(ρ) = 0, then C
turns back and escapes to r = rM .

(ii) eν increases for r > r0 (CAdS and R–N), the gravity is attractive. For
u ≤ 0, the curve C falls down towards the lower boundary r = rm; we
do not follow it in the time-dependent inner region. For u > 0, it goes
upwards, reaches the maximal height r = R, where ṙ(R) = 0, then C
turns back and falls down to rm and farther.

In both the cases, we study the more general situation: C consists of two
segments, the incoming and the outgoing one. It is convenient to parame-
terize C with a suitably chosen variable η, xα = xα(η) via r = f(η). The
vector tangent to the geodesic C is then

uα =
dxα

ds
=
(
ṫ, ṙ, 0, 0

)
=

[
k

κ
e−ν , εe−λ/2

(
k2

κ2
e−ν − 1

)1/2

, 0, 0

]
, (8)

where ε = +1 for the outgoing segment and ε = −1 for the incoming one.
The spacelike triad orthogonal to C and satisfying (2) is chosen in the pos-
sibly simplest form

eα1 =

[
εe−ν/2

(
k2

κ2
e−ν − 1

)1/2

,
k

κ
e−(ν+λ)/2, 0, 0

]
,

eα2 =

[
0, 0,

1

r
, 0

]
, eα3 =

[
0, 0, 0,

1

r

]
(9)

with ε = ±1 as above. The Riemann tensor has six non-vanishing compo-
nents Rµνµν . The GDEs (3) for the Jacobi scalars are separated,

d2

ds2
Z1 =

1

4

(
ν ′λ′ − 2ν ′′ − ν ′2

)
e−λ Z1 , (10)

d2

ds2
Z2 = −

[
k2

2κ2
1

r
e−(ν+λ)(ν ′ + λ′)− λ′

2r
e−λ
]
Z2 , (11)

and the equation for Z3 is identical with that for Z2. Here ν ′ = dν/dr etc.
Since on the LHS of these equations one has derivatives w.r.t. the proper
time, it is here that the use of the suitably chosen variable η is necessary.
In terms of η one finds more involved equations

d2Z1

dη2
− df

dη

[(
df

dη

)−2 d2f
dη2

+
λ′

2
+

k2

2κ2
ν ′
(
k2

κ2
− eν

)−1]
dZ1

dη



780 L.M. Sokołowski, Z.A. Golda

=
1

4

(
ν ′λ′ − 2ν ′′ − ν ′2

)(k2
κ2
e−ν − 1

)−1(
df

dη

)2

Z1 , (12)

d2Z2

dη2
− df

dη

[(
df

dη

)−2 d2f
dη2

+
λ′

2
+

k2

2κ2
ν ′
(
k2

κ2
− eν

)−1]
dZ2

dη

= −eλ
(
k2

κ2
e−ν − 1

)−1(
df

dη

)2 1

2r

[
k2

κ2
e−(ν+λ)(ν ′ + λ′)− λ′e−λ

]
Z2 , (13)

and the equation for Z3 is identical with (13); in the equations, one sets r =
f(η). The first integrals (5) for these equations are generated by Kα

t = κδα0
and the three standard spacelike rotational Killing fields. There are three
independent first integrals, which are also separated. Kα

t gives rise to

1

2
eνν ′

df

dη
Z1 +

(
k2

κ2
− eν

)
dZ1

dη
= C1ε

∣∣∣∣ dfdη
∣∣∣∣ e(ν+λ)/2 , (14)

whereas the rotational Killing fields generate two identical expressions,

f(η)
dZa
dη
− df

dη
Za = Ca

∣∣∣∣ dfdη
∣∣∣∣ eλ/2(k2κ2 e−ν − 1

)−1/2
, (15)

here a = 2, 3 and C1, C2 and C3 are arbitrary constants. These equations
together with their first integrals may be solved only if the functions ν(r),
λ(r) and f(η) are explicitly given. Currently, these equations are under
study in a number of spacetimes. Previously, their solutions were found for
the Schwarzschild [16] and R–N metric [12].

4. Jacobi fields on circular geodesics
in static spherically symmetric spacetimes

First, we check the very existence of the circular geodesic for some r = r0,
rm < r0 < rM , since in Minkowski and de Sitter spacetime such a curve does
not exist. If it exists, we denote it by B and write ν0 = ν(r0), ν ′0 = dν(r0)/dr
etc. First, we consider the metric (7) with F (r) = a (e.g. the Bertotti–
Robinson spacetime). In this case, the radial component of the geodesic
equation implies that r = r0 is a geodesic if and only if ν ′0 = 0. If ν ′(r) 6= 0
in the whole range as is in the B–R case, then circular geodesics do not exist.
Functions ν(r) admitting isolated points at which ν ′ = 0 do not correspond
to physically interesting spacetimes and we shall not discuss them here. In
what follows, we assume F (r) = r.

A particle on a circular geodesic B has energy k and angular momentum
J = mcL given by

k2 =
2κ2 eν0

2− r0ν ′0
, L2 =

r30 ν
′
0

2− r0ν ′0
, (16)
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these quantities do not depend on λ(r). One infers from (16) that the
necessary and sufficient conditions for circular geodesics to exist are r0ν ′0 < 2

and ν ′0 > 0, what implies that g00 = eν(r) is an increasing function around
r = r0; these conditions were found in a different way in [19]. In ultrastatic
spherically symmetric spacetimes, where ν(r) ≡ 0, circular geodesics do
not exist since they reduce to the case of a particle remaining at rest in the
space [12]. We, therefore, assume the generic case ν ′(r) 6= 0 (besides isolated
points). A circular orbit is stable if an effective potential reaches minimum
on it and this amounts to

ν ′′0 − ν ′02 +
3ν ′0
r0

> 0 . (17)

4.1. Equations for the Jacobi scalars

We choose the basis triad on B in the form

eα1 = [−T sin qs,X cos qs, 0,−Y sin qs] ,

eα2 =

[
0, 0,

1

r0
, 0

]
, eα3 = −1

q

d

ds
eα1 , (18)

where the constants are

T =

(
r0ν
′
0e
−ν0

2− r0ν ′0

)1/2

, X = e−λ0/2 , Y =
1

r0

(
2

2− r0ν ′0

)1/2

and q =

(
ν ′0
2r0

e−λ0
)1/2

, (19)

and the vector tangent to the geodesic B is

uα =

[
k

κ
e−ν0 , 0, 0,

L

r20

]
. (20)

These four vectors depend only on the constants determined by the metric
functions ν and λ. In the spherical coordinates, the Jacobi scalars Za have
dimension of length. After a longer computation, the geodesic deviation
equations are derived

d2

ds2
Z1 = q2

[(
b cos2 qs− 1

)
Z1 + bZ3 sin qs cos qs

]
, (21)

d2

ds2
Z2 = − 2q2

2− r0ν ′0
eλ0 Z2 , (22)

d2

ds2
Z3 = q2

[
bZ1 sin qs cos qs+

(
b sin2 qs− 1

)
Z3

]
, (23)
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where
b =

2

2− r0ν ′0

(
1− r0ν ′0 − r0

ν ′′0
ν ′0

)
. (24)

These equations were first derived for the Schwarzschild [16] and then for
R–N metric [12] with different constants and it seemed then that their iden-
tity were due to the specific form of ν(r) and λ(r) in these metrics. Here, it
is shown that these equations are universal for all SSS spacetimes admitting
circular geodesics, only the numerical coefficients for the given r0 depend on
the metric functions. The range of b depends on the spacetime; we exclude
b = 0 (CAdS space) and assume b > 0, e.g. for R–N metric 3 < b <∞. The
equations for Z1 and Z3 are coupled and their RHSs are similar, but not
exactly symmetric.

Again, the first integrals (5) of the equations are generated by the four
Killing fields of the SSS spacetime. The vectors Kt = ∂/∂t and Kz = ∂/∂φ
generate the same first integral for Eqs. (21) and (23),

−dZ1

ds
sin qs+ Z1q cos qs+

dZ3

ds
cos qs+ Z3q sin qs = C1 , (25)

whereas the other two rotational vectors give rise to two independent first
integrals for Eq. (22),

r0
dZ2

ds
sinφ−

(
r0ν
′
0

2− r0ν ′0

)1/2

Z2 cosφ = C2 ,

r0
dZ2

ds
cosφ+

(
r0ν
′
0

2− r0ν ′0

)1/2

Z2 sinφ = C3 . (26)

The constants allow one to solve Eq. (22) without any integration,

Z2 = C ′ sin
Ls

r20
+ C ′′ cos

Ls

r20
, (27)

C ′ and C ′′ have dimension of length. The universality of the equations
implies universality (modulo the values of the constants) of conjugate points
on B. Solutions giving rise to two of the three sequences of conjugate points
on B were previously found in [16] and in [12] we presented some properties
of nearby timelike geodesics intersecting B at these points.

4.2. Conjugate points generated by the Jacobi scalar Z2

The deviation vector field generated by Z2 is Zµ = Z2(s)e
µ
2 and is di-

rected off the 2-surface θ = π/2. To determine points on B conjugate to
P0(s = 0, t = t0, r = r0, θ = π/2, φ = φ0), one takes the vector field vanish-
ing at P0, Zµ = C′

r0
δµ2 sin Ls

r20
.
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The field has infinite number of zeros at points Qn(sn) with

sn = nπ
r20
L

= nπ

[
r0
ν ′0

(2− r0ν ′0)
]1/2

, n = 1, 2, . . . (28)

The location of these points on the circle r = r0 in the space is found from
the expression for the coordinate φ on B, φ − φ0 = Ls/r20, then the points
are equidistant with ∆φ = π. Thus, for n even, the points Qn coincide in
the space with P0, whereas for n odd, they are points antipodic to P0 on
the circle. This result is geometrically quite obvious: if one rotates in the
space the 2-surface θ = π/2 by a small angle about the axis joining the
spatial projections of P0 and Q1, then the nearby circular timelike geodesics
emanating from P0 will successively intersect at Qn, n = 1, 2, . . ., in the
spacetime. This effect was previously found for Schwarzschild [16].

4.3. Jacobi fields spanned on the basis vectors eµ1 and eµ3 — an infinite
sequence of conjugate points

The coupled equations (21) and (23) have a complete system of basis
solutions consisting of four pairs of solutions (Z1N , Z3N ), N = 1, 2, 3, 4 and
the general solution to them is

Z1 =

4∑
N=1

AN Z1N and Z3 =

4∑
N=1

AN Z3N (29)

with arbitraryAN . Since these equations are the same for all SSS spacetimes,
the solutions found for the Schwarzschild metric [16] apply. This implies
that the value b = 4 of the parameter is universally distinguished. From the
definition (24), the critical value b = 4 corresponds to the equality in (17)
and determines the innermost stable circular orbit (ISCO) and the stability
criterion (17) requires b < 4. For physical reasons, we are interested in
conjugate points on stable orbits and expect that there are no conjugate
points on unstable orbits. The solutions show that this is the case.

In search for conjugate points, the relevant Jacobi fields must satisfy
Z1(0) = 0 = Z3(0) and this restricts the coefficients AN . One separately
studies the cases b > 4, b = 4 and b < 4. For the ISCO, b = 4, the resulting
scalars Z1 and Z3 do not have common roots for s 6= 0 and the same occurs
for the unstable orbits; for b ≥ 4, there are no conjugate points to s = 0. In
the most interesting case of stable orbits, the analysis performed in [16] was
incomplete. The deviation field vanishing at s = 0 depends on arbitrary A1

and A4 whereas A2 = −1
2

√
4− bA4 and A3 = −1

2 A1. By substituting the
explicit forms of Z1N and Z3N [16] and denoting y ≡

√
4− bqs, one gets
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the deviation vector Zµ(s)

Z0 = T
[
−A1(1− cos y) +A4

(
1
2by − 2 sin y

)]
,

Z1 = X
√

4− b
[
1
2A1 sin y −A4(1− cos y)

]
, Z2 = 0 ,

Z3 = Y
[
−A1(1− cos y) +A4

(
1
2by − 2 sin y

)]
=
Y

T
Z0 . (30)

Searching for conjugate points to P0, one considers three cases depending
on values of A1 and A4 and in this subsection we study two of these. First,
for A1 = 0 and A4 6= 0, the components Z0 and Z1 do not have common
roots for s 6= 0. In the second case, A1 6= 0 and A4 = 0, one immediately
sees from (30) that Zµ(s) is zero at the infinite sequence of points Q′n(s′n)
on B, where

s′n =
2nπ

q
√

4− b
, n = 1, 2, . . . (31)

The expression is divergent for b→ 4 indicating that ISCOs do not contain
conjugate points. The location of Q′1 is given by its angular distance from P0

φ′1 − φ0 =
Ls′1
r20

=
2πL

qr20
√

4− b
. (32)

Due to arbitrariness of λ(r) appearing in q, the distance may be arbi-
trary and for each SSS spacetime it must be separately computed. For
the Schwarzschild metric, φ′1 − φ0 = 2π[r0(r0 − 6M)−1]1/2 > 2π. The geo-
metrical interpretation of the sequence {Q′n(s′n)} geodesics is unclear. For
CAdS space b = 0 and the sequence coincides with that of conjugate points
{Qn(sn)}.

Consider a bundle of geodesics γ(ε) which are at ε-distance from the
B ≡ γ(0) and emanate from P0 and their spatial orbits entirely lie in the
surface θ = π/2, then they are connected to B by the vector εZµ(s). It is
interesting to see whether these γ(ε) which infinitely many times intersect
B at Q′n have closed orbits. To this end, we notice that all the orbits are
contained between the minimal and maximal value of the radius, rmin =
r0 − 1

2εA1X
√

4− b and rmax = r0 + 1
2εA1X

√
4− b. The successive maxima

of r are for yn =
√

4− bqs̃n = (2n + 1
2)π and the arc length of both γ(ε)

and B between two successive maxima of r is independent of n

Ds ≡ s̃n+1 − s̃n =
2π

q
√

4− b
= s′1 . (33)

Then also the angular distances between the maxima, Dφ ≡ φ(s̃n+1) −
φ(s̃n) = φ(s′n+1) − φ(s′n) = Ls′1/r

2
0, are equal. The orbit of γ(ε) is closed
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if Dφ = 2πl/m for some integers l and m. Then after m periods of change
from rmax to rmin and back to rmax, the angle φ increases by 2πl and the
orbit returns to the same point in the surface θ = π/2. Hence the orbit is
closed if

ν ′0e
λ0

3ν ′0 − r0ν ′02 + r0ν ′′0
=

l2

m2
; (34)

for every SSS spacetime, it is an algebraic equation for the radius r0 of B.

4.4. Jacobi fields spanned on eµ1 and eµ3 — infinite set
of single conjugate points

Finally, we study the third, general, case of search for zeros of the devi-
ation vector, A1 6= 0 and A4 6= 0, this case was overlooked in [16]. Since Zµ
is determined up to a constant factor, we put A1 = 2, then

Z1 = 2Z11 − 1
2

√
4− bA4Z12 − Z13 +A4Z14 (35)

and Z3 is given by the same combination of Z3N . In search for zeros of Z1

and Z3, we apply the solutions given in [16] and replace the two equations
by an equivalent simpler system (as above y =

√
4− bqs),

sin y +A4(cos y − 1) = 0 ,

2A4 sin y − 2 cos y − 1
2A4by + 2 = 0 , (36)

these are equations for A4 and y; we seek for roots y 6= 0. For y = 2nπ, one
gets A4 = 0 and returns to the second case and the sequence {Q′n(s′n)}. One
computes A4 from the first equation, A4 = (1 − cos y)−1 sin y for y 6= 2nπ,
and inserts it into the other of (36). After some manipulations, one gets

cos y +
b

8
y sin y − 1 = 0 . (37)

All positive roots (excluding 2nπ) form an infinite sequence yn(r0) = (2n+
1)π− δn(b(r0)), n = 1, 2, . . ., where δn > 0 are found numerically. The term
δ1(b) is of the order of unity for 0 < b < 4 and decreases for increasing b.
The sequence {δn(b)} is decreasing and for large n its terms behave as

δn →
16(2n+ 1)π

(2n+ 1)2π2b− 16
. (38)

Each root yn(r0) determines a separate deviation vector field

Zµ(n, r0, s) = Z1(n, r0, s) e
µ
1 (s) + Z3(n, r0, s) e

µ
3 (s) (39)
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connecting the circular B(r0) to the nearby geodesic γ(ε, n, r0) which em-
anates from P0(s = 0), lies in θ = π/2 and intersects B once at Q̄n(s̄n),
where

s̄n =
yn(r0)

q(r0)
√

4− b(r0)
. (40)

From (31), one sees that Q̄n lies almost in the centre between Q′n and Q′n+1,
since s̄n = s′n + (π − δn)(q

√
4− b)−1 and s′n+1 = s̄n + (π + δn)(q

√
4− b)−1.

As an example showing the location of Q̄1, we take the Schwarzschild metric:

(i) for r0 = 6, 26087M , one has b = 3, 92, then s̄1 = 497, 249M what
corresponds to the angular distance φ̄1 − φ0 = 14π − 6× 10−4;

(ii) for r0 = 78M , one has b = 3, 04 then s̄1 = 6219, 826M and φ̄1 − φ0 =
2π + 2, 9246;

the larger r0 is, the closer (in terms of the angular distance) to P0 the
conjugate point s̄1 is, but always φ̄1 − φ0 > 2π.

5. Conclusions

The main result of the method developed here is that in a general static
spherically symmetric spacetime admitting circular timelike geodesics, each
stable circular geodesic contains, besides the trivial infinite sequence of con-
jugate points arising directly from the spherical symmetry, two other infinite
sets of conjugate points, whose geometrical interpretation is unclear. At
least in the Schwarzschild case, the first conjugate point of each of the two
sets appears after making more than one full revolution. This unexpected
result shows that the general method for searching for locally maximal time-
like curves is effective at least for SSS spacetimes. Furthermore, our current
outcomes indicate that the method works well also in some cases beyond this
class. Clearly, the practical efficiency of the method crucially depends on
one’s capability of solving the geodesic deviation equations. This restricts its
range to simple metrics and geodesics with simple parametric forms, though
the present progress in solving ODEs has increased this range. We expect
that in more involved cases, the geodesic structure will be sufficiently re-
vealed by numerical solutions. At present, our published and unpublished
results show that the geodesic structure of curved spacetimes is richer than
it might be expected.

L.M.S. is deeply indebted to Kevin Easley and particularly to Steven
Harris for enlightening comments and suggestions. This work was supported
by a grant from the John Templeton Foundation.
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