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We study the trapping problem associated with a random walk pro-
cess that takes place in deterministic multiplex networks. To this end, we
consider the Average Trapping Time (ATT) and explore the properties of
this system by adjusting the coupling strength λ. We get the analytical
expression of ATT with the help of the properties of block matrix, and
apply it to two types of deterministic multiplex networks. We find that the
ATT in our examples presents a minimum with the change of λ and that
the emergence of the minimum under some special initial conditions has
a potential relationship with the structural difference of the two graphs in
the multiplex network. Our results provide a potential way to control the
trapping time in multiplex networks.
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1. Introduction

Trapping problem is an old subject [1] and has been studied and cited
frequently. The applications of trapping have covered many fields, for ex-
ample, the light harvesting problems [2], the chemical kinetics problems [3]
and the habitat selection in the ecosystem [4]. In recent several decades,
there has been an unprecedented increase of the available network data in
the natural world [5–8], such as the social networks [9], the biological net-
works [10], the Internet [11] and so forth. The trapping problem is also
widely studied by scientists associated with various dynamical patterns [12]
taking place in the networks [13, 14]. Generally, in the study of the trapping
problem in networks, the trap (one or more) is located at a pre-given node,
and a random walk process is performed on the network until the walker is
trapped.
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One of the most important variables in the trapping problem is the Mean
First Passage Time (MFPT) [15] which characterizes the mean time a parti-
cle takes to first reach the target site (trap) by random walks in the network
from the initial site. MFPT is a significant indicator of how fast the informa-
tion propagates, and has strong relationship with the volume of the network
and the distance between the source and target. When considering the prop-
erties of the target regardless of the initial site, the Average Trapping Time
(ATT) was proposed by averaging MFTP over all the possible initial nodes
in the network. Recent works have shown that the ATT is related to the
fractal dimension of the network [16, 17], the location of the trap(s), as well
as the structural difference of the network, for example, ATT presents di-
verse behaviors in one-dimensional system [18], regular lattices [19], Small
World networks [20], Scale Free networks [21], modular networks [22] and
so on.

Recently, a new type of network structure, the multiplex network (also
called the interdependent network or the multiplexity) [23, 24], is proposed.
The multiplex network consists of two networks with diverse structures be-
tween them (also can be explained as one network with different types of
edges), and can be used to model the interdependent systems such as the
air route network and the railway network (they share some hub nodes), the
social network and the online social network (they have duplicated actors).
In view of the special structures of the multiplex networks, many phenomena
including the percolation [25] and epidemics [26] are much different from the
cases in the isolated networks. However, there are few works mentioning the
trapping problem in the multiplex networks.

In this paper, we consider the trapping problem in deterministic multi-
plex networks. We view the coupling strength as the transition probability
for the particle to shift between the two networks in the system. The trap(s)
is located at one (both) of the networks in the system, and a symmetric ran-
dom walk process (particle located in a node will hop to its neighbor nodes
with equal probability) is performed on the system. The ATT is calculated
and the analytical expression is derived with the help of a degenerated mas-
ter equation. To further study the properties of the trapping in the multiplex
network, we select two deterministic multiplex networks as examples — di-
rected linear multiplex graphs and the regular multiplex networks, and all
the results show that the ATT has a minimal value with the changing of the
coupling strength under some special initial conditions, which provides a po-
tential way to control the efficiency of the multiplex networks by adjusting
the coupling strength.
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2. Formulation of random walks with trap(s)

We consider the continuous time random walks on a connected and un-
weighted network. Suppose that the network has N nodes so that the adja-
cency matrix A is a N ×N , 0-1 matrix with element Aij = 1, if there is an
edge from node i to node j, otherwise 0 (for undirected case, Aij = Aji = 1,
if there is an edge between node i and node j).

A random walk process is performed on the network, at each time a
particle located at node i in the network will hop to its neighbor nodes
randomly. The hop probability from node i to node j at any time is given
by Pij =

Aij

di
, where di =

∑
j Aij is the degree of node i, so the transition

probability matrix of the process is given by

P = D−1A , (1)

where D is a diagonal matrix with Dii = di. This dynamical process can be
represented by a master equation:

d

dt
~ρ (t) = Q~ρ (t) , (2)

where Q = PT− I (I is identity matrix) is the transition rate matrix and ~ρ
is a column vector whose element ρi(t) is the probability the particle locates
at node i at time t.

In what follows, we consider the case that the trap(s) is located in the
network (particle which hops to the trap will be absorbed and never escapes).
In this case, the random walk process described above can be represented
by a degenerated master equation

d

dt
~ρ (t) = Q̃~ρ (t) , (3)

where Q̃, the degenerated transition rate matrix, is a submatrix of Q by
removing the row and column whose index is corresponding to the ID of the
trap node, and the trap is also not included in ~ρ (t).

Solving Eq. (3), we can get the probability distribution of the particle at
each node at time t

~ρ (t) = eQ̃t~ρ (0) , (4)

where ~ρ (0) is the initial distribution of the particle. For convenience, we
denote the sum of the elements in ~ρ (t) as

s(t) = uT ~ρ (t) , (5)

and u is a column vector with the all elements 1, s(t) can be called the
survival probability at time t.
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Now, we introduce a random variable, τ , the trapping time for the par-
ticle beginning at the initial node and absorbed by the trap in the end. It
is easy to see that Pr(τ ≥ t) = s(t), i.e., the particle is still not trapped
until time t (with probability s(t)) meaning that the trapping time τ for the
particle is not less than t. So the Average Trapping Time (ATT), 〈τ〉, is the
integer of the survival probability s(t), i.e.,

〈τ〉 =
∞∫
0

s(t)dt =

∞∫
0

uT ~ρ (t)dt =

∞∫
0

uT eQ̃t~ρ (0)dt = −uT Q̃−1~ρ (0) . (6)

Thus the ATT is related to the elements of the inverse degenerated transition
rate matrix1 Q̃−1 and the initial condition ~ρ (0). In the following section,
we will generalize this result to the multiplex networks.

3. Trapping on multiplex networks

The multiplex networks, considered here, are two networks with the same
size N but different connected patterns, and the nodes in the two networks
are one-to-one correspondence. For details, the nodes of the two networks
(with different topologies) are numbered {1, 2, . . . , N} respectively, and then
the two nodes with the same ID from the two networks are coupled with
strength λ, where λ is a probability for the particle to transmit from one
network to another. In this system, λ is the only control parameter. Figure 1

Fig. 1. (Color online) An illustration of the multiplex networks, the nodes (exclu-
ding the trap in black color in network A) in network A and B are one-to-one
correspondence and coupled with the dashed lines.

1 Note here that the networks considered in our paper must guarantee that all the
nodes (excluding the trap) have at least one path to reach the trap, this is to make
the Q̃ invertible.
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is an illustration of the multiplex networks (the trap is in black and not num-
bered). The supra-adjacency matrix of this coupled system can be written
as (

A λI
λI B

)
, (7)

where A and B are the adjacency matrix (0-1 matrices) of the two networks,
and I is an identity matrix.

The random walk process on this multiplex network can be described as
follows. At each time step, the particle located at node i in network A (B)
will switch to node j in network B (A) with probability λ, or hops to one of
its neighbor node j with probability (1−λ)Aij/di. This process will continue
until the particle is absorbed by the trap. The degenerated transition rate
matrix of this process (as in Eq. (3)) is represented as follows:

Q̃ =

(
(1− λ)Q̃A − λI λI

λI (1− λ)Q̃B − λI

)
, (8)

where Q̃A and Q̃B are the degenerated transition rate matrix of network A
and network B respectively. Note that here we regard the coupling strength
λ as the bidirectional hop probability for the particle to shift between the
two networks.

From the previous section, the average trapping time (ATT) for the
coupled system is 〈τ〉 = −uT Q̃−1~ρ (0), which is associated with the inverse
of the degenerated transition rate matrix Q̃ and the initial condition ~ρ (0).
As for the computational complexity of the inverse matrix, especially when
the size of the network is very large, we use here the properties of the block
matrix, the inverse of Q̃ can be simplified as

Q̃−1 =

(
[λ2I − LBLA]

−1 0
0 [λ2I − LALB]

−1

)(
−LB λI
λI −LA

)
, (9)

where LA = (1− λ)Q̃A − λI and LB = (1− λ)Q̃B − λI.
In order to explore the properties of ATT in multiplex networks, we

perform the random dynamical process in two simple types of deterministic
multiplex networks in which the ATT can be calculated analytically in the
following two sections.

4. Trapping on directed linear multiplex graphs

The system we study here consists of, as shows Fig. 2, the two directed
linear graphs A and B with the opposite direction coupled with a bidirec-
tional strength λ, excluding the trap node, the nodes in the two graphs are
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one-to-one correspondence, and the coupling strength λ makes the particle
transfer between the two graphs. The trap is located at the end of graph A.

Fig. 2. (Color online) An illustration of the directed linear multiplex graph, nodes
with the same ID are coupled with strength λ, the trap is in black and not num-
bered.

The transition pattern of the particle in this system is very simple, i.e.,
to its only one neighbor node in the same graph with probability 1−λ or to
its corresponding node in the other graph with probability λ, and Q̃A and
Q̃B in Eq. (8) are given as

Q̃A =



−1 1 0 · · · 0

0 −1 1
. . .

...

0 0 −1 . . . 0
...

. . . . . . . . . 1
0 · · · 0 0 −1

 , (10)

Q̃B =



−1 0 0 · · · 0

1 −1 . . . . . .
...

0
. . . . . . 0 0

...
. . . 1 −1 0

0 · · · 0 1 0

 . (11)

In this case, the items λ2I−LBLA and λ2I−LALB in Eq. (9) are all simple
tridiagonal matrices and can be solved under some simple initial conditions.

We consider the three initial conditions:

1. ~ρ1(0) = [0, 0, . . . , 0, 1/2, 0, 0, . . . , 0, 1/2]T with the N th and 2N th ele-
ments 1/2 ,

2. ~ρ2(0) = 1
2N [1, 1, . . . , 1]T with all elements 1/2N ,

3. ~ρ3(0) = [0, 0, . . . , 0, 1, 0, 0, . . . , 0]T with the N th element 1.



Trapping on Deterministic Multiplex Networks 795

In condition 2, it is hard for us to get the analytical expression of ATT,
while in condition 1, the ATT of the system is given by

〈τ〉 = 1

2λ
+

(N2 −N)λ+ 2N

1− λ
, (12)

and in condition 3,

〈τ〉 = (N2 −N)λ+ 2N

1− λ
. (13)

In Fig. 3, we plot the ATT as a function of the coupling strength λ with
different number of nodes N in the initial condition 1 (solid lines), 2 (dashed
lines) and 3 (dotted lines) respectively. When λ −→ 1, the particle will shift
between the two networks and will not be trapped, the figure captures this
limiting case. We can see that there is a minimal point in condition 1 and
2 with different N , which indicates an optimal coupling strength for this
trapping process. By comprising the lines for the three initial conditions in
Fig. 3, we can see that the presence of the minimal point is sensitive to the
initial conditions.

Fig. 3. (Color online) The log–log plot of the ATT as a function of λ in the linear
multiplex graph with N = 5, 10, 20, 50 and 100. The solid, dashed and dotted lines
correspond to the initial condition 1, 2 and 3 respectively.
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Furthermore, in condition 2, we can get the minimal point λ∗ by d〈τ〉/dt
= 0 in Eq. (12), and λ∗ is a function of the system size

λ∗ =
1√

2(N2 +N) + 1
. (14)

λ∗ decreases with the increase of the system size N , which means that we
can use very small coupling strength to get the optimal trapping efficiency
when the system size is considerably large.

5. Trapping on regular multiplex networks

We consider here one type of simple regular deterministic network, the
enhanced wheel graph, to perform our random walk process. The enhanced
wheel graph (see Fig. 4 for illustration) can be controlled by two parameters
(N, k), and we use this type of graph in both layers of our model, taking
(N, k1) and (N, k2) to denote the parameters of the graphs in the two lay-
ers A and B respectively. The two trapping nodes are the central nodes
connecting all the other N nodes in A and B respectively, so there are two
trapping nodes in this system.

Fig. 4. (Color online) Illustration of the enhanced wheel graph. At first, all the
nodes with label 1, 2, . . . , N are listed by a circle and connected to node 0, and
then all the nodes except for node 0 add 2k edges between its 2k nearest neighbors.

This multiplex network is simple and partially symmetric. Each node
in the same layer (excluding the trapping node) is equivalent, and any two
nodes in different layers are dissimilar because of the distinction of the pa-
rameters k1 and k2. In addition, the degenerated transition rate matrices,
Q̃A and Q̃B in Eq. (8), are all circulant matrices. The items [λ2I−LBLA]

−1

and [λ2I −LALB]
−1 in Eq. (9) are also circulant matrices, we can easily get

the results of uT Q̃−1 in Eq. (6).
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We suppose that the particle initially locates at each node with prob-
ability proportional to the node’s degree, i.e., the initial condition vector
~ρ (0) = 1

N(d1+d2)
[d1, d1, . . . , d1, d2, d2, . . . , d2]

T , here di = 2ki + 1 is the de-
gree of the nodes in layer A (d1) and B (d2) respectively. The ATT of the
system under this initial condition is given by

〈τ〉 =
(
−2 d12 d2 + d1

2 − 2 d1 d2
2 + d2

2
)
λ−

(
d1

2 + d2
2
)

(d1 + d2 + 2)
[
(d1 + d2 − 1) λ2 − (d1 + d2 − 2) λ− 1

] . (15)

We can see that 〈τ〉 is independent of the size N . In Fig. 5, we plot the ana-
lytical result from Eq. (15). All the lines present a minimum as the change
of λ, and the minimal point λ∗ diverse with different pairs of (k1, k2).

To get the expression of the minimal point (the value of λ indicating the
lowest point), we calculate the differential of Eq. (15) by λ and get λ∗ as
follows:

λ∗ =
− (d1+d2−1)

(
d1

2+d2
2
)
−
√
2
(
d1

2−d22
)√

d1
2d2+d1d2

2−d1d2
(d1+d2−1)

(
2d1

2d2−d12+2d1d2
2−d22

) ,

(k2 ≥ k1) . (16)

Here, we only present the case of k2 ≥ k1 because of the symmetric of the
two layers and di = 2ki + 1.

Fig. 5. (Color online) The plot of the result from Eq. (15). The enhanced wheel
graph in layer B is fixed with k2 = 1, while the different plots correspond to the
different k1 in layer A. All the graphs in layer A and B have node N = 20 000.
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In Fig. 6, we plot the value λ∗ for different pair of (k1, k2) in the two
layers. From the figure it can be seen that the closer of the structures of the
two graphs, the smaller the λ∗, and also the more different of the two graph
structures, the higher of the minimal point. We can also see a region where
the minimum disappears, and this region is becoming broad as the values of
(k1, k2) becoming large.

Fig. 6. (Color online) The color representation of the minimal point λ∗ which
changes with the different pairs of (k1, k2) in the two layers. The white color
indicates the region where λ∗ is absent.

6. Summary

We study the trapping problem in the random walk processes upon a
novel system — the multiplex networks with coupling strength λ. The dif-
ference between the random walks on the isolated network and the multiplex
network is that the particle can randomly shift between two networks with
probability λ. The ATT is calculated by the help of a degenerated master
equation, and the complexity of the calculation is the same as in the case
of the isolated network because of the properties of the block matrix. The
analytical expression (Eq. (6)) of ATT is associated with the inverse of the
degenerated transition rate matrix and the initial condition.
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We further study the trapping problem by applying the random walk
processes to two simple deterministic multiplex networks. In the case of the
initial condition in our example, both of the 〈τ〉 (ATT) in the two systems
present a decrease then surge trends as the increase of coupling strength λ,
which indicates a point where the minimal trapping time is reached. In the
directed linear multiplex graphs, we show that the minimum declines with
the increase of the size of the network (Eq. (14)), while the point does not
depend on N (Eq. (16)) in the regular multiplex networks because of the
symmetry of the system.

This point of minimal trapping time λ∗ captures some invisible structural
change of the system, which provides a possible access to the pursuit of
optimal coupled system or the control of the efficiency of random processes
such as searching, localization, navigation etc.
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