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A consistent scheme of semiclassical quantization in polygon billiards
by wave function formalism is presented. It is argued that it is in the spirit
of the semiclassical wave function formalism to make necessary rationaliza-
tion of respective quantities accompanying the procedure of the semiclassi-
cal quantization in polygon billiards. Unfolding rational polygon billiards
(RPB) into corresponding Riemann surfaces (RS) periodic structures of
the latter are demonstrated with 2g independent periods on the respec-
tive multitori with g as their genuses. However, it is the two-dimensional
real space of the real linear combinations of these periods which is used
for quantizing RPBs. A class of doubly rational polygon billiards (DRPB)
is distinguished for which these real linear relations are rational and their
semiclassical quantization by wave function formalism is presented. It is
shown that semiclassical quantization of both the classical momenta and
the energy spectra are completely determined by the periodic structure of
the corresponding RSs. Each RS can be reduced to elementary polygon
patterns (EPP) as its basic periodic elements. Each such EPP can be
glued to a torus of genus g. Semiclassical wave functions (SWF) are then
constructed on EPPs. The SWFs for DRPBs appear to be exact and have
forms of coherent sums of plane waves. They satisfy well defined boundary
conditions — the Dirichlet, the Neumann or the mixed ones. Not every
mixing of such conditions is allowed however. A respective incompleteness
of SWFs provided by the method used in the paper is discussed. Dense
families of DRPBs are used for approximate semiclassical quantization of
RPBs. General rational polygons are quantized being approximated by
DRPBs. An extension of the formalism to irrational polygons is described
as well. The semiclassical approximations constructed in the paper are con-
trolled by a general criteria of the eigenvalue theory. A relation between the
superscar solutions and SWFs constructed in the paper is also discussed.
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1. Introduction

It is well known that the classical dynamics in the irrational polygon
billiards (IPB) are chaotic, while in the rational polygon billiards (RPB)
this dynamics can be considered as medium between the integrable and the
chaotic ones, being described as pseudointegrable [1–3]. Indeed, only a few
cases of the integrable RPB are known, i.e. the rectangle and several triangle
billiards, while the remaining pseudointegrable RPBs are represented in the
corresponding phase-space by closed Lagrange surfaces with genuses g > 1.
For the irrational billiards, none Lagrange surface exists at all [4].

The above circumstances are bases for claiming that classical motions
in the irrational billiards cannot be quantized semiclassically at all by the
wave function formulation language as well as in the case of the rational
polygon billiards, despite the fact of existence of respective Lagrange sur-
faces since the basic quantities defined on the surfaces — the actions —
cannot be quantized independently in a consistent way satisfying geometry
of billiards [1].

Such a point of view can be, however, criticised having in mind that the
semiclassical approach is just an approximation to the exact wave functions
introducing natural length measures — the wave lengths. Because of that
the Lagrange surface periods have all to be measured by the wave length
units providing us with integer numbers as results of such measurements,
i.e. all these periods should be commensurate. Since the last situation can
be rather exceptional than typical, one has to consider it as approximate i.e.
as being satisfied with a sufficient accuracy.

This situation is, in fact, similar to the one where we are to compare
a side of the square with its diagonal having a particular unit of measure
which provide us with an integer number of the side length, say 100. For
the diagonal length, we get then as we well know the number 141 plus the
rest of its length smaller than 1, i.e. the square side and its diagonal are
commensurate within the accuracy of the used measure unit. We can, of
course, improve this commensurateness to an arbitrary level of accuracy by
diminishing the used measure unit.

Therefore, to be consequent in applications of the semiclassical approx-
imations, we have to be ready also for accepting necessary approximations
appearing as results of using the wave lengths provided by the semiclassical
approach as the natural units of length measurements. It is clear that an
accuracy of such approximations are the better the shorter are the wave
lengths used to measure the respective length quantities. But such a situ-
ation is just in an agreement with the assumed validity of the semiclassical
approximation which is to be the better the higher energy are considered,
i.e. the shorter waves dominates in the quantum problem considered.
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It is the aim of this paper to describe the way in which RPBs can be
quantized semiclassically according to the “philosophy” described above and
in a consistent way.

As main areas on which our goal is realized are Riemann surfaces de-
veloped by unfolding rational polygons considered. Such surfaces have pe-
riodic structures formed by elementary patterns of polygons periodically
distributed on the surfaces. An even number of periods of a RS equal to 2g
corresponds to a multitorus of genus g obtained by gluing respective bound-
aries of EPPs. Semiclassical wave functions are defined on skeletons totally
covering RSs on which they have to satisfy periodic conditions with these
2g independent periods. The latter conditions can be satisfied, however,
only by SWFs constructed on a special class of RPBs, i.e. on DRPBs the
linear real relations between their periods on the plane are, in fact, ratio-
nal. The rational periodic conditions demand then the classical momenta to
be quantized. The periodicity of SWFs on DRPBs is the key for the final
forms of them which are coherent sums of plane waves and determines also
their corresponding energy spectra. The approach applied to DRPBs can
be used to quantized semiclassically those families of RPBs which contain
the respective DRPBs as their dens subsets. The approximate description
of the energy levels are then controlled by general theorems on the behavior
of the levels [15]. A natural extension of the method can be next done to
IPBs being controlled by the general theorem just mentioned [15].

Our paper is organized as follows. In Sec. 2, the main tools of our
approach are presented and it is shown how with their help one can quan-
tize the classical momenta of the billiard ball in any DRPB. In the next
section, energy spectrum corresponding to periodic and aperiodic skeletons
are established. In Sec. 4, SWFs are constructed on periodic and aperiodic
skeletons satisfying boundary conditions allowed by polygons considered. In
Sec. 5, the procedure of semiclassical quantization developed in the previous
sections are applied to the family of parallelogram billiards with the smaller
angle equal to π/3 and to its broken single bay version, and to the fam-
ily of single bay rectangular billiards. In Sec. 6, the generally unavoidable
incompleteness of the SWFs generated by the method presented in the pa-
per is discussed. In Sec. 7, extensions of our approach to RPBs deprived
of dens subsets of DRPBs as well as to IPB are discussed. In Sec. 8, peri-
odic orbit channel (POC) skeletons of Bogomolny and Schmit [5, 6] building
global periodic skeletons are considered and their relations to these skeletons
are discussed. In Sec. 9, our results are summarized and discussed. In Ap-
pendix A, a short list of notions and acronyms used in the paper is attached.
In Appendix B, a construction of basic semiclassical wave functions in pe-
riodic skeletons containing POCs is discussed. In Appendix C, the main
theorems are cited [15] which describe the behaviors of energy levels when
the domain boundaries are varied.



804 S. Giller

2. Unfolding rational polygons, skeletons
and semiclassical wave functions defined on them

The unfolding technique, i.e. subsequent mirror reflections of a ray and
the polygon considered by polygon edges, which substitute a real motion
of the ray by its motion along a straight line crossing subsequent mirror
images of the polygon is well known in investigations of the polygon billiard
dynamics. In simple cases of the integrable polygon billiard motions (in
several triangle billiards, in the rectangle ones), such unfolding is simple and
the respective unfolded polygons cover simply the plane. For the reminder
of the cases, their total unfolding can become extremely complicated even
for simply looking billiards.

2.1. Rational polygon Riemann surface structure
and its relation with tori of genus g

Consider a rational polygon billiard (Fig. 1) with its angles αk equal to
pk
qk
π, where pk and qk, k = 1, . . . , n, are coprime integers. Unfolding the

polygon around the angle αk by reflecting it subsequently by the two edges
making the angle, we come back to its initial position after making 2qk such
reflections by which each edge of the angle is turned by 2pkπ around the
angle vertex. Therefore, if pk > 1, the polygon is unfolded locally by such a
vertex onto pk planes which locally have the Riemann surface structure with
the vertex as the branch point. Every such a vertex will be called branching,
i.e. a vertex with pk = 1 is no branching.

Fig. 1. A rational polygon billiard with a global skeleton defined by its global com-
pound bundle bounded by the rays A and B and bearing a classical momentum pcl.
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If further such unfoldings are made around each polygon vertex, we get
a branching figure which consists of pk planes depending on the kth vertex,
k = 1, . . . , n for the n-vertex polygon and forming locally the Riemann
surface structure. However, these local Riemann surface structures cannot
be glued, in general, into a global one composed of a finite number of planes
except a few cases of such unfoldings, one of which is the π/3-rhombus.

Therefore, a figure provided by unfolding a rational polygon is, in general,
infinitely branching with an infinite number of branching points determining
only a local structure of the figure. Its global form will be called the rational
polygon Riemann surface (RPRS). The complexity of RPRS is the reason
why trying to unfold a rational polygon on the plane one finds such a task
almost impossible to be done even for simpler cases of such polygons.

However, each particular rational polygon develops its unique RS. While
making it, the original polygon changes its orientation after each mirror
reflection so that after each two subsequent reflections it is rotated by an
angle defined by the edges by which it is reflected. However, after a finite
even number of such reflections, the rational polygon always comes to a
position to which it can be brought by a finite translation from its original
one. In each such a position, a polygon is a faithful copy of the original one.
Each such a copy will be therefore called faithful, while the original polygon
will be called basic (BRPB). The corresponding translation is a period of
RPRS which, of course, is one of infinitely many such periods of RPRS since
there are infinitely many of faithful positions periodically repeated on RPRS.

Note, however, that any image polygon can be chosen as basic and a
RPRS generated by such a choice is the same, i.e. the RPRS as well as its
periodic structure is invariant on a choice of a basic polygon which means
also that the RPRS is invariant under action of any of its periods men-
tioned above.

Consider a RPB as a basic one and let us start unfolding it around one
of its arbitrarily chosen vertex completing the respective local branching
structure of the RPRS defined by this vertex. Such a vertex unfolding will
be called complete. Note that none of the obtain images of the polygon is
faithful with respect to any other of them in any complete vertex unfolding.
Note also that if the angle with the chosen vertex is equal to pk

qk
π, then

the complete unfolding considered is invariant under rotations by integer
multiples of the angle 2pk

qk
π. Such invariant rotations will be called further

vertex rotations around a given vertex.
Next, continue unfoldings around the remaining vertex of the polygon in

a similar way to obtain a compact and connected figure with the following
two properties:

— none of the polygon image contained by the figure is faithful with
respect to any other of them belonging to the figure; and
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— any other polygon image obtained by the further unfolding process
becomes a faithful picture of some of the polygons belonging to the
figure.

It is clear that such a figure will contain a finite number of the basic
polygon images obtained by a finite even number of reflections. Each such
a figure will be called elementary polygon pattern (EPP).

EPPs are however not unique. Nevertheless, they all possess the follow-
ing properties:

— a number 2C of polygon images they contained is the same for all of
them and is even;

— their boundaries are constituted by the sides of images of the unfolded
polygon;

— sides of an EPP appear in pairs of parallel sides, i.e. a subsequent
reflection of the polygon by one of these sides gives as an image the
faithful one of the polygon containing the second side; and

— identifying any such a pair of sides of EPP, one can conclude that a
number of all images of any side of the polygon in EPP is the same
and equal to C.

Consider an EPP and a pair of polygons whose sides are pieces of the
EPP boundary and are parallel to each other. Such sides can be joined by a
period of the respective RPRS. Such a period will be called simple for a given
EPP. Translating by this period any polygon of the considered polygon pair
to cover their parallel sides, we get another EPP. Any EPP can be obtained
from the other ones in this way, i.e. by successive simple period translations
of polygons with parallel sides. It is obvious that

— such simple period translations leave the total number of polygons
unchanged in successive EPPs;

— by respective simple period translations, one can reconstruct each com-
plete unfolding of a RPB around any of its vertex; and consequently,

— since C is the number of any polygon side images in EPP and kth

vertex which is enclosed by an angle pk
qk
π provides us with a complete

unfolding around the vertex containing qk images of such a side then
C = nkqk, where nk is the total number of the kth vertex images in
EPP, i.e. C has to be the least common multiple of all qk, k = 1, . . . , n.
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Any two EPPs related by the above simple period translations of poly-
gons they contained will be called equivalent. A number of all equivalent
EPPs is, of course, finite.

Each EPP is a periodic element of RPRS reconstructing it completely
by its all simple periodic translations and their multiple repetitions.

Simple periods of an EPP can be of two kinds:

— the ones which can be represented by translation vectors lying totally
inside a EPP; and

— the remaining ones.

The first kind of simple periods provide us with periods of periodic tra-
jectories, i.e. each such a trajectory is equipped with a period of this kind
and each such a simple period defines a periodic trajectory and bundles of
them as well with this simple period.

The second kind of simple periods which will be called structural act
between two different sheets of RPRS, i.e. a trajectory starting from one
side of EPP and running in the direction of such a period to the correspond-
ing parallel side cannot cross the latter. It means, of course, that such a
trajectory passes close to a corresponding branching point generating the
sheets. Therefore, this kind of periods has a structural nature for RPRS
representing its periodic structure.

Among all possible EPPs, one can distinguish those which are invariant
under the vertex rotations around some of the RPB vertices. It should be
clear that starting from any such a vertex, one can always build a corre-
sponding invariant EPP. Such EPPs will be called rotationally invariant. If
such a rotationally invariant EPP is generated by a vertex with the cor-
responding angle equal to pk

qk
π, then the respective invariant rotations are

defined by integer multiples of 2pk
qk
π.

Consider an EPP. Identifying each pair of their corresponding parallel
sides, we transform the EPP into a two-dimensional closed compact surface
of a genus g given by (see, for example, [1, 3, 7])

g = 1 +
C

2

n∑
k=1

pk − 1

qk
, (1)

where n is a number of the polygon vertices.
Note that the obtained surface is independent of the chosen EPP.
The respective constructions of two EPPs for the parallelogram with the

smaller angle equal to π/3 is shown in Fig. 2.
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Fig. 2. Different EPPs (Fig. 2 (1)–2 (3)) for the parallelogram ABCD with the
smaller angle equal to π/3. The four independent periods the same for each EPP
are shown as well as five POCs parallel to the period D1–D2. The prescription
of signs is consistent for the first two EPPs and inconsistent for the third one (see
Sec. 4.1). An SWF (superscar) built in the parallelogram ABCD (Fig. 2 (4)) on
the POC P1 according to the sign prescriptions shown in the third EPP (Fig. 2 (3))
satisfies the Dirichlet and the Neumann boundary conditions marked by D and N
on respective segments of the parallelogram boundary (see Sec. 6). Numbers at
the distinguished points of Fig. 2 (4) show the multiplicity by which the P1-POC
flow covers the points.

Let us project now all the periods of RPRS on the plane occupied by the
original RPB. Then the set of them has the following two properties:

— at most only two of them are linearly independent in the algebra of
the real numbers; and

— at most only 2g of them are linearly independent in the algebra of
integer numbers.

Let Dk, k = 1, . . . , 2g, be periods which are linearly independent in the
algebra of integer numbers. Then we have for any period D

D = n1D1 + . . .+ n2gD2g . (2)

The last relation defines the period algebra on the plane with an infinite
but countable number of elements.

A fundamental role of EPPs can be expressed now as the statement that
all linearly independent periods of RPRS are contained in the set of all
simple periods of all equivalent EPPs.
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Let us, however, note further that a period which is simple in an EPP
can be not as such in another equivalent EPP, i.e. to be reconstructed in
the latter EPP, it needs to be “broken” in some number of pieces to join the
corresponding parallel edges of the EPP. Such a “broken” period in an EPP
will be called compound. It means, therefore, that compound periods which
can be found in an EPP can be identified as a simple one in another EPP
equivalent to the former.

In fact, having only a single EPP and identifying all its independent
periods both the simple and the compound ones, one can collect all linearly
independent periods of RPRS.

2.2. Periodic orbit channels of Bogomolny and Schmit

Consider now a relation between periods of an RPRS which are not
structural and branch points of the latter formed by the branching polygon
vertices with pk > 1 in (1). For this goal, consider a bundle of periodic
rays with such a period. Such a bundle has been called a periodic orbit
channel (POC) by Bogomolny and Schmit. The POC cannot pass, however,
by any branching vertex of RPRS since it would have to be splitted into
two another periodic bundles with two, in general, different periods, i.e.
branching polygon vertices of the RPRS can lie only on the periodic bundle
boundary.

Therefore, POCs with different although parallel periods (i.e. not related
by (2)) have to lie on different sheets of the RPRS.

2.3. A real algebra of periods and doubly rational polygon billiards

While the 2g periods Dk, k = 1, . . . , 2g, are linear independent in the
algebra of the integer numbers, they are not as such in the real number
algebra so that taking a pairDk, k = 1, 2, of them being linear independent
we can represent the remaining periods Dk, k = 3, . . . , 2g by the following
relations

Dk = ak1D1 + ak2D2 , k = 3, . . . , 2g , (3)

where aki, i = 1, 2, k = 3, . . . , 2g, are real numbers, some of them or even
all can be irrational.

It is convenient to notice that by applying the relations (2), we can always
reduce all the periods Dk, k = 3, . . . , 2g to lie in the parallelogram defined
by the periods Dk, k = 1, 2, so that for the number aki, i = 1, 2, k =
3, . . . , 2g, we can have

0 ≤ aki ≤ 1 ,

i = 1, 2 , k = 3, . . . , 2g . (4)
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Consider all linear combinations n1D1 + n2D2, n1, n2 = ±1,±2, . . ., of
the periods Dk, k = 1, 2. They produce on the plane a regular lattice of
points.

However, it is not difficult to note that translating this lattice by all
integer multiples of every of the remaining periods covers densely the plane
by the vertices of the translated lattice if the numbers aki, i = 1, 2, k =
3, . . . , 2g are not all rational, i.e. a set of points on the plane defined by all
the periods (2) will be dense on the plane in such a case.

The last conclusion means that in such a case there is no room for quan-
tizing the motion in the corresponding RPB semiclassically by the Maslov–
Fedoriuk method [8].

To discuss this problem further, let us note that any polygon is fixed by
the sequence (α1, . . . , αn,a1, . . . ,an) whose elements are defined by Fig. 1 so
that the vectors ak, k = 1, . . . , n, form a closed chain of them. Consider the
vectors to behave as pseudo-ones by the polygon reflections. If the polygon
is rational, then an EPP corresponding to it is also represented by closed
chains of the vectors ak, k = 1, . . . , n and their images. Formally, the inner
EPP vectors annihilate each other on each polygon side except the vectors
forming a boundary of the EPP itself. Let us, however, ignore all such
annihilations. Then any simple period of the EPP can be represented as a
vector sum constructed from properly chosen EPP vectors.

Let us now transform the considered polygon (α1, . . . , αn,a1, . . . ,an)
into the following (α1, . . . , αn, b1, . . . , bn), i.e. keeping the polygon angles
fixed. It is then clear that if the vectors a1, b1 are parallel to each other
then the remaining vectors of both the polygons with the same indices are
also parallel to each other. Let us call such two polygons angle similar. It is
then clear that EPPs corresponding to both the polygons are also pairwise
angle similar so are the vectors constituted them, i.e. they are also pairwise
parallel to each other.

To see what freedom we have considering families of angle similar poly-
gons (ASP), let us note that lengths ak, k = 1, . . . , n, of the sides of the
general polygon of Fig. 1 are related by the following two constraints

n∑
k=1

(−1)k−1ak cos(α1 + . . .+ αk−1) = 0 ,

n∑
k=1

(−1)kak sin(α1 + . . .+ αk−1) = 0 ,

α0 = 0 , (5)

i.e. there are n − 2 independent lengths which can be freely changed to
form a full family of ASPs. Of course, this freedom can be limited by other
constraints put on the polygons.
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However, the mentioned earlier parallelness property of the sides of ASPs
is not in general shared by simple periods of both the EPPs which changes
in general both their directions and values by angle similar transformations.
This makes a hope that by such transformations of a RP, one can get such its
angle similar form for which in the relations (3) all the coefficients aki, i =
1, 2, k = 3, . . . , 2g become rational. If it is the case,s we shall call the
respective polygon doubly rational (DRP).

It is easy to note that from any broken rectangle [9, 16] one can always
obtain infinitely many doubly rational ones by its angle similar transforma-
tions, see Fig. 3. The same is true also for some rational parallelograms
such as the ones shown in Fig. 2, the semiclassical quantization of which is
discussed in Sec. 5. The broken forms of the latter billiards shown in Fig. 4
can be also doubly rational.

Fig. 3. A single bay broken rectangle billiard ABCDEF (left) with its symmetric
EPP (right) on which the four independent periods of RPRS are shown. An angle
similar broken rectangle billiard AB’C’DEF is an ε-approximation of the former
with ε = x2−x3 for x2−x1 > 1 or ε = x2−x3

x3−x1
in the opposite case, see Appendix C.

Moreover, in the cases mentioned above, the sets of angle similar DRPs
are dens in the respective sets of all angle similar polygons having the forms
of parallelograms or the forms of both the broken rectangles and the broken
parallelograms.

It is, therefore, reasonable to distinguish among all RPBs the families of
doubly rational polygon billiards (DRPB) as sets of all angle similar RPs
which contain dens subsets of DRPs. As it will be shown in next sections,
the main striking feature of the doubly rational billiards is that their semi-
classical quantization is exact.
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Fig. 4. A symmetric EPP of a single bay broken parallelogram billiard ABCDEF
with the smaller angle equal to π/3 providing us with an angle similar family of
such billiards containing a dense set of DRPB. There are ten independent periods
of the billiards shown in the figure and corresponding to a multiple torus with
g = 5.

Consider now a DRPB. Then all aki in (3) are rational, i.e.

aki =
pki
qki

, (6)

where pki, qki are coprime integers with 0 ≤ pki ≤ qki.
Let further C1 be the lowest common multiple of qk1 and C2 of the re-

spective qk2, i.e. Ci = qkinki, i = 1, 2, k = 3, . . . , 2g. Then the relations (3)
can be rewritten as

Dk = nk1pk1
D1

C1
+ nk2pk2

D2

C2
, k = 3, . . . , 2g (7)

and

D = n1D1 + . . .+ n2gD2g = (n1q + n3n31p31 + . . .+ n2gn2g1p2g1)
D1

C1

+(n2q + n3n32p32 + . . .+ n2gn2g2p2g2)
D2

C2
= r1

D1

C1
+ r2

D2

C2
(8)

for any period D of RPRS, while rj , j = 1, 2, are integers and Ci, i = 1, 2,
are D-independent. Of course, ri = Ci for Di, i = 1, 2.
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The relations (8) show, therefore, that all periods of the DRPBs can be
done mutually commensurate being all linear combinations of two indepen-
dent vectors Di

Ci
, i = 1, 2, in the algebra of integer numbers.

Obviously, the form of the relation (8) is independent of a choice of the
linearly independent pair of periods but the factors Ci, i = 1, 2, can, of
course, depend on such a choice.

Note also that if the classical motion in the RPB is integrable, then
Ci = 1, i = 1, 2, since each period D satisfies then (1) with g = 1.

The above representation of the DRPB periods will be utilized in the
semiclassical quantization of motions in DRPB.

2.4. Unfolding skeletons and semiclassical wave functions
defined on DRPBs

Consider a rational polygon billiard in its basic position and choose a
global skeleton defined on it, Fig. 1. According to our description of the
global skeleton, it can be defined by some of its 2C global compound bundles.
Suppose that such a bundle has been chosen. Then all rays it contains are
parallel to each other. Let us unfold the polygon considered infinitely in
every direction together with the rays of the global bundle chosen. It is
clear that all the rays of the bundle will be transformed into an infinite
family of straight lines parallel to the rays of the global bundle but totally
covering the RPRS.

Assuming some coordinate system on the RPRS, suppose further that
we have constructed in the considered RPB on the chosen global skeleton
a semiclassical wave function (SWF) Ψas(x, y, px, py) with the classical mo-
mentum pcl = (px, py) parallel to the rays of the global bundle chosen. It
is clear that by unfolding the polygon, the SWF is extended on the whole
RPRS. Because of that it becomes a periodic function defined on the RPRS
with the periods considered in the previous section.

However, since on the plane any function can be periodic with at most
two independent periods (in the algebra of integer numbers) then to avoid
the obvious contradiction for the case considered, we have to focus ourselves
on DRPBs to demand from Ψas(x, y, px, py) to be periodic under any period
of the corresponding RPRS, i.e.

Ψas(x+Dx, y +Dy, px, py) = Ψas(x, y, px, py) (9)

for any period D = (Dx, Dy) of the RPRS.
According to its construction [9, 16], a SWF is a sum of the basic semi-

classical wave functions (BSWF) of the form

Ψ±(x, y, px, py) = e±iλ(pxx+pyy)χ±(x, y, p) , (10)
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where λ = ~−1 (and will be put further equal to 1 as well as the billiard
ball mass), p is a value of the billiard ball classical momentum pcl, and the
factors χ±(x, y, p) are given by the following semiclassical series for p→ +∞

χ±(x, y, p) =
∑
k≥0

χ±k (x, y)

pk
. (11)

It is clear that the BWSFs have to be also periodic on the RPRS satis-
fying the equations

e±i(px(x+Dx)+py(y+Dy)) = e±i(pxx+pyy)e±ip
cl·D = e±i(pxx+pyy)

χ±k (x+Dx, y +Dy) = χ±k (x, y) , k ≥ 0 (12)

for any period D = (Dx, Dy) of the RPRS so for the classical momenta, we
have to have the conditions

pcl ·D = 2kπ , k = 0,±1,±2, . . . (13)

To solve the conditions (12) and (13), we have to consider further two
different cases of the global skeletons, namely the ones whose trajectories
are parallel to some of the periods of the corresponding RPRS and contain
periodic trajectories and the remaining ones. The first kind of the global
skeletons, which will be called periodic, have to contain, of course, POCs
while the second kind, the aperiodic ones, are completely deprived of any
periodic trajectories.

2.4.1. Periodicity constraints put on a momentum of a motion on aperiodic
skeletons

Consider first an aperiodic global skeleton. It means that a momentum
pcl of the billiard ball moving on the skeleton cannot be parallel to any of the
periods of RPRS so that it has two independent projections on the periods
Di, i = 1, 2.

Let us now make use of the commensurateness of the periods expressed
by (8) and enforce the BSWFs (10) to be periodic with two periods equal to
D1
C1

and D2
C2

. It is clear that then these BSWFs will be periodic with respect
to all periods of the RPRS. Therefore, we demand for the classical momenta
to satisfy the following conditions:

pcl ·D1 = 2πmC1 ,

pcl ·D2 = 2πnC2 , m, n = 0,±1,±2, . . . (14)
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and hence

pclmn = 2π
(mC1D2 − nC2D1)× (D1 ×D2)

(D1 ×D2)2

= 2π
mC1D

2
2 − nC2D1 ·D2

(D1 ×D2)2
D1 + 2π

nC2D
2
1 −mC1D1 ·D2

(D1 ×D2)2
D2

|m|+ |n| > 0 , m, n = 0,±1,±2, . . . (15)

i.e. the possible classical momenta of the billiard ball have to be quantized
just by the periodic structure of the RPRS only.

It is to be noted that both the form of the formula (15) and the momen-
tum spectra it provides are independent of the choice of the linear indepen-
dent pair of periods Di, i = 1, . . . , 2g. However, a knowledge of any pair of
these periods is not sufficient for the formula (15) to be completed, i.e. for
that goal, the formula needs the constants Ci, i = 1, 2, to be known also and
the latter can be established only when the remaining independent periods
are also identified.

Let pi, p be projections of the momentum pcl on the periods Di, i =
1, 2, and D as given by (8) respectively. Then the conditions (14) and the
relation (8) can be written in terms of the respective wave lengths λi =
2π
|pi| , i = 1, 2 and λ = 2π

|p| as follows:

λi =
Di

niCi
,

λ =
D

r1n1 + r2n2
,

ni = 1, 2, . . . , i = 1, 2 , (16)

where D, Di are lengths of the periods D, Di, i = 1, 2.
It follows from (16) that each period of RPRS measured by the respective

wave length has the integer total length.

2.4.2. Periodicity constraints put on the classical momentum of a motion on
a global periodic skeleton

Consider a global periodic skeleton which contains a periodic trajectory
with the period D2. Then corresponding classical momentum is also par-
allel to this period so that taking into account (15), we have the following
quantization condition for the classical momentum of the periodic skeleton

mC1D
2
2 − nC2D2 ·D1 = 0 , m = 0,±1,±2, . . . , n = ±1,±2, . . . (17)

and

ppern =
2πnC2

D2
2

D2 , n = ±1,±2, . . . (18)
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The condition (17) is, of course, a constraint on the periods D1 and D2

with the following solution independent of m and n

C2D2 ·D1 = kC1D
2
2 ,

m = kn ,

k = 0,±1,±2, . . . , n = ±1,±2, . . . (19)

The last condition, however, cannot be satisfied in general by an arbi-
trary RPB which defines the periods Di, i = 1, 2, uniquely. However, for
some particular RPBs and for some particular k (19) can be satisfied. Such
a possibility takes place, for example, if the periods Di, i = 1, 2, are per-
pendicular to each other so that k = 0. Nevertheless, the conditions (19)
limit possible forms of RPB seriously.

RPBs for which there are not any pair of linear independent periods
satisfying the conditions (19) for some integer k will be called generic.

We can conclude, therefore, that for generic cases of RPBs, only ape-
riodic skeletons provide us with a possibility of consistent construction on
them of semiclassical eigenfunctions of energy together with the correspond-
ing semiclassical spectra of the latter. For the non-generic forms of RPBs,
it is necessary to consider also global periodic skeletons to quantize the cor-
responding classical motions fully.

The global periodic skeleton considered contains, of course, at least one
POC with the period D2. If there are more POCs with the periods Dl, l =
3, . . . , r, thenDl = pl/qlD2 and C2 = qlnl for integer nl, l = 3, . . . , r, so that

ppern ·Dl = 2πnC2
pl
ql

= 2πnnlpl (20)

and if Cl ≡ nlpl, then

ppern =
2πnCl
D2
l

Dl , n = ±1,±2, . . . , l = 3, . . . , r . (21)

3. Energy quantization on skeletons in DRPBs

Let us choose the x, y-coordinates on the RPRS to be such that the y-axis
is parallel to the rays of the considered unfolded skeleton so that the x-axis
is perpendicular to the rays. Any such a coordinate system will be called
local for the considered skeleton.

The factors χσ(x, y, p), σ = ±, of the BSWFs (10) have then to satisfy
the following semiclassical limit p→ +∞ of the Schrödinger equation [9, 16]

σ2ip
∂χσ(x, y, p)

∂y
+4χσ(x, y, p) + 2

(
E − 1

2
p2
)
χσ(x, y, p) = 0 , (22)

where E is the energy parameter.
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Note also that the variable x enumerates locally the rays of the skeleton.
In the semiclassical limit p → +∞, we are looking for the semiclassical

spectrum of the billiard ball energy E in the form of the following semiclas-
sical series [9, 16]

E =
1

2
p2 +

∑
i≥0

Ek
pk

. (23)

Using (11) and (23), equation (22) can be solved recurrently to get [9, 16]

χσ0 (x, y) ≡ χσ0 (x) ,

χσk+1(x, y) = χσk+1(x) +
σi

2

y∫
0

(
4χσk(x, z) + 2

k∑
l=0

Ek−lχ
σ
l (x, z)

)
dz ,

k = 0, 1, 2, . . . (24)

3.1. Energy quantization on aperiodic global skeletons

Consider a generic RPB and a particular momentum quantized in it ac-
cording to (14), i.e. corresponding to an aperiodic global skeleton which
starts from some basic polygon. All its trajectories start from a definite
part of the polygon boundary to move by the RPRS. Let us choose any
of its trajectory and follow its running on the RPRS. By its aperiodicity,
the trajectory meeting faithful images of the basic polygon never cuts its
boundary in the same point from which it starts. In fact, since every trajec-
tory meets on its way infinitely many faithful images, it cuts their boundary
in points which if collected together are densely distributed on the starting
boundary of the basic polygon.

According to formula (24) the factors χσ(x, y, p), σ = ±, of the BSWFs
(10) for a given trajectory change only along it just by varying y. However,
its zeroth order term χσ0 (x) does not depend on y. Therefore, its value
on a given trajectory is distributed densely on others and demanding its
continuity on the polygon boundary, we come to the conclusion that it has
to be a constant function of x on the polygon boundary.

From the recurrent relations, we get immediately that the same prop-
erty has to have the remaining terms of the semiclassical series (11), i.e. the
factors χσ(x, y, p), σ = ±, have constant values independent of x and y.
Moreover, the corresponding energy coefficients Ek, k ≥ 0, of the semi-
classical expansion for energy (23) have all to be equal to zero in such a
case.
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Therefore, we can put both the factors χσ(x, y, p), σ = ±, equal to unity
and to conclude that in the generic cases of RPBs, the BSWFs defined on
them have to be constructed in (10) by the exponential factors only and the
energy spectrum is then given by

Emn =

(
pclmn

)2
2

= 2π2
|mC1D2 − nC2D1|2

|D1 ×D2|2
, m, n = ±1,±2, . . . (25)

3.2. Energy quantization on global periodic skeletons

If an RPB is not generic, then there are at least two linear independent
periods, say Di, i = 1, 2, which for some integer k satisfy the relation (19).
The quantization condition (15) takes then the form

pclmn = 2π
nC2D

2
1 −mC1D2 ·D1

(D1 ×D2)2
D2 + 2π

(m− kn)C1D
2
2

(D1 ×D2)2
D1 ,

|m|+ |n| > 0 , m, n = 0,±1,±2, . . . (26)

which reduces to (18) for m = kn, i.e. ppern ≡ pclkn n.
In the considered case, there are, of course, global aperiodic skeletons

but also global periodic ones, one of which has a momentum parallel to the
periodD2 which can be quantized according to the conditions (18) and (19).

For global aperiodic skeletons, the energy spectrum is still given by (25)
where momenta pclmn are given by (26), i.e.

Eap
mn =

(
pclmn

)2
2

= 2π2
m2C2

1D
2
2 + n2C2

2D
2
1 − 2mnkC2

1D
2
2

|D1 ×D2|2
,

m, n = ±1,±2, . . . (27)

For a global periodic skeleton, however, the corresponding energy spec-
trum is a sum of the classical kinetic energy given by (25) and the remaining
terms of the semiclassical series (23). The latter have to be established by
solving equations (23) and (24) for the case of the periodic skeleton consid-
ered. This has been done in Appendix B.

As it follows from Appendix B, BSWFs in POCs and in aperiodic bun-
dles of the global periodic skeleton differ in their forms. These differences
are essential for global BSWFs which have to be constructed by a smooth
matching of the BSWFs defined on POCs and on aperiodic bundles of the
skeleton.

Making such a matching of BSWFs between any two neighbor POCs,
we conclude that on their common boundaries ppern and Ek,0 have to be the
same for each POC.
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Matching however two BSWFs on a common boundary of a POC and
an aperiodic bundle, we are led to the conclusion that Ek,0 = 0 for each
POC, and ppern has the same value for all the bundles of the skeleton. i.e.
the considered periodic skeleton behaves in such a case as an aperiodic one.

As it follows from Appendix B, corresponding forms of the BSWFs in the
global periodic skeleton written in its local x, y-variables can be, therefore,
the following:

Ψ±mn(x, y) = e±i(±
√

2E0,mx+p
per
n y) ,√

2E0,mD1 sinα = 2mC1π , m = 0, 1, 2, . . . , (28)

where the casem = 0 corresponds to the presence of at least one of aperiodic
bundles in the skeleton, while the remaining values of m correspond to their
total absence in the skeleton, i.e. the skeleton is then constructed only of
POCs. In the above formula, α is the angle between the periods D1 and
D2, E0,m and ppern are the same for all POCs and aperiodic bundles and
±-signs in (28) are independent.

The independence of the form (28) of Ψ±mn(x, y) on POCs is due to linear
rational relations between all their periods as well as due to similar relations
between the period D1 and the remaining periods of the RPRS not parallel
to the period D2 since for them, we have

Dx =
p

q
D1,x ,√

2E0,mDx =
p

q

√
2E0,mD1 sinα = 2mC1π

p

q
= 2mprπ , m = 1, 2, . . . ,

(29)

since C1 = rq for some integer r.
Therefore, for the energy spectrum generated by the global periodic

skeleton defined by the periods D1 and D2, we get

Eper
mn =

1

2
(ppern )2 + E0,m = 2π2

(
m2C2

1

D2
1 sin

2 α
+
n2C2

2

D2
2

)
= 2π2

m2C2
1D

2
2 + n2C2

2D
2
1 − k2n2C2

1D
2
2

|D1 ×D2|2
, m, n = 1, 2, . . . (30)

It is to be noted that despite an apparent similarity between the energy
spectrum formulae for the global periodic skeletons (30) and the aperiodic
ones (27), the formulae are, in general, different. They coincide only for
k = 0, i.e. when the periods D1 and D2 are orthogonal to each other.

However, there are also other essential differences between both the cases.
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The first one follows from the fact that in the spectra (30) E0,m is the
second term of the semiclassical expansion for the energy and, therefore, it
should be clearly smaller than the first one, i.e. it has to satisfy the following
inequality √

2E0,m � ppern (31)

or

|m| � C2D1 sinα

C1D2
|n| , m, n = 1, 2, . . . (32)

The last condition is just the one which has justified the considerations
of Bogomolny and Schmit on the superscar phenomenon [5, 6].

There is no relation like (32) for the aperiodic case spectra for which
the unique condition is that pclmn has to be large (in comparison with pcl11,
for example), the latter condition being also satisfied by the periodic case
spectra.

The second difference between the aperiodic and the periodic cases is
that in the latter case all the SWFs can be built on the same global peri-
odic skeleton independently of the momenta (which are always parallel to
the period D1), while in the opposite case for different momenta pclmn, the
corresponding aperiodic skeletons are different.

It will be convenient for further considerations to unify the momentum
ppern and the quantities ±

√
2E0,m in the formula (28) for the global BSWFs

into a pseudo-momentum pqmn having in the local coordinate system of the
skeleton the components (±

√
2E0,m, p

per
n ) which will be called a quantum

momentum. By this unification, (30) takes the form similar to the aperiodic
cases (25) and (27), i.e.

Eper
mn = 1

2 (p
q
mn)

2 (33)

under the conditions (31)–(32).

4. Semiclassical wave function constructed on skeletons
in DRPBs

We have now to construct SWFs corresponding to the semiclassical en-
ergy spectra (25) and (30). It should be stressed that these spectra have
followed uniquely as the direct consequences of the periodic structure of
RPRSs and the asymptotic structure of BSWFs defined by (10), (11) and
(22)–(24). Since these spectra are already fixed, they seem to correspond
to some particular boundary conditions — the Dirichlet ones, the Neumann
ones or their mixtures. It is quite surprising that, as it will be shown below
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for the energy spectra mentioned, one can easily construct SWFs satisfy-
ing the Dirichlet boundary conditions as well as the Neumann ones, while
mixtures of these conditions can be used with some limitations being even
excluded depending on billiard forms.

This last fact i.e. a lack of freedom in choosing mixtures of the Dirichlet
and the Neumann boundary conditions is quite important since it means
that many exact states may have no their representations in the semiclas-
sical limit relied on the assumption that the classical motions in the RPBs
are ruled by the optical reflections of the billiard ball off the billiard bound-
ary. As an example of such states can be mentioned the symmetric ones in
the quantized rhombus billiard whose existence is equivalent to satisfy the
Neumann boundary condition on a single side of the quantized equilateral
triangle by the corresponding SWFs [1]. As a consequence of this is a possi-
ble quantum mechanical incompleteness of the asymptotic states generated
by the assumptions on the classical motions in RPBs utilized in our paper.

4.1. SWFs satisfying desired boundary conditions

To construct SWFs satisfying desired boundary conditions, we can make
use of the EPPs corresponding to a given DRPB considered as basic. To
do it, let us choose an EPP corresponding to this BRPB. Let us enumer-
ate further all 2C component polygons of the EPP prescribing the number
one to the BRPB itself. Choose a point inside the BRPB with the co-
ordinates (x, y) ≡ (x1, y1) in the chosen coordinate system. Let further
(xk, yk), k = 2, . . . , 2C denote coordinates of all images of the point (x1, y1)
in the remaining enumerated images of the BRPB. With every of the poly-
gon of EPP and with the respective points they contain, we can associate
any of the signs ±.

Consider further an edge of the considered polygon and all its copies in
the chosen EPP including the edge itself. The copies can lie inside the EPP
or can be pieces of the EPP boundary. The latter copies appear always in
parallel pairs being translated in each such a pair by some of the RPRS
periods which allows to identify them in each of the pair. Making this, we
can find that there are exactly C copies of each edge in every EPP.

Let us now note that with each copy of an edge (including the edge
itself),s there is associated a pair of image points, i.e. just the ones which
are reflected in it. It is now important to note that all image points in EPP
(its number is 2C) can be joined in such pairs associated with all copies of a
single edge. Of course, component points of such pairs depend on an edge.
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Let us now prescribe a definite sign plus or minus to every image point.
In this way, pairs of points associated with copies of an edge prescribe to
each of them a pair of signs. We say that such a prescription is consistent
with respect to this edge if in all these pairs both signs are the same, i.e.
both are pluses or both are minuses or if in all these pairs both the signs
are opposite. If such a prescription of signs is consistent with respect to all
edges of the EPP, we say that such a prescription is consistent with respect
to the EPP considered.

Note however that if a prescription is consistent for some EPP, it is also
as such for all other equivalent EPPs.

Since the image points have been enumerated, then we can associate with
the kth-image its corresponding sign ηk in each consistent prescription. Of
course, a sign associated with an image point depends on the prescription
used.

The following two prescriptions are consistent with respect to any EPP
of any RPB:

1. each pair of signs are opposite for each edge; and

2. all pairs of signs are strictly the same for each edge, i.e. (+,+), by a
convention.

The first prescription will be called the Dirichlet one, while the second
— the Neumann one.

Let us note that prescribing the sign “+” to the original point in the
BRPB an image point in the Dirichlet prescription gets the sign “+” if it is
obtained by an even number of reflections and the sign “−” in the opposite
case.

Consider now a global skeleton in the chosen EPP represented by some
of its global bundles. Note further that the BSWFs defined in the chosen
global bundle have the same exponential forms e±i(Ax+iBy) independently
of whether they are defined in the periodic skeletons or in the aperiodic
ones, where (A,B) are the components in the chosen coordinate system
of the quantum momentum pqmn or the quantized classical momentum pclmn
respectively. It is, therefore, enough to construct with these forms the SWFs
satisfying desired boundary conditions on all the sides of the DRPB unfolded
to its EPP which lie inside the EPP, while on the sides of the unfolded DRPB
which form the boundary of its EPP, the chosen boundary conditions will
be satisfied by the periodicity conditions.

For a given EPP, consider now a consistent prescription of pairs of signs
prescribing the signs ηk, k = 1, . . . , 2C, to the image points of a point
(x, y) = (x1, y1) of the BRPB so that η1 ≡ +, by a convention. Then
two SWFs with definite boundary conditions on the BRPB edges are the
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following

Ψas,±(x, y,A,B) =
2C∑
k=1

ηke
±i(Axk+Byk) . (34)

The above SWFs have the following properties:

1. they are uniquely defined in the chosen BRPB;

2. they are smooth inside the BRPB;

3. they satisfy the Dirichlet boundary conditions on these sides (edges)
of the BRPB boundary for which the signs of the prescribed pairs are
opposite;

4. they satisfy the Neumann boundary conditions on these sides (edges)
of the BRPB boundary for which the signs of the prescribed pairs are
the same;

5. they are exact, i.e. they satisfy the Schrödinger equation with the
energy spectra (10), (11) and (22)–(24);

6. they are mutually complex conjugate; and

7. they are independent of the chosen EPP.

In particular, for the Dirichlet prescription the corresponding SWFs sat-
isfy the Dirichlet boundary conditions on the BRPB boundary, while for the
Neumann prescription — the Neumann ones.

Note that if Ψas,±(x, y,A,B) do not coincide with each other (up to a
constant), then the corresponding energy levels Emn are degenerate.

One can rewrite the representation (34) for Ψas,±(x, y,A,B) using the
fact that the coordinates (xk, yk), k = 2, . . . , 2C, of the images of the point
(x, y) are linearly dependent on x and y being a result of some rotation of
the point (x, y) followed by a translation, i.e. we can write

xk = ak,xx+ ak,yy + ak ,

yk = bk,xx+ bk,yy + bk ,

k = 2, . . . , 2C . (35)

Therefore, (34) can take the following form:

Ψas,±(x, y,A,B) =

2C∑
k=1

ηke
±iαke±i(pk,xx+pk,yy) ,
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p1,x = A, p1,y = B ,

pk,x = ak,xA+ bk,xA ,

pk,y = ak,yA+ bk,yB ,

α1 = 0 ,

αk = Aak +Bbk ,

k = 2, . . . , 2C , (36)

where pk = (pk,x, pk,y), k = 2, . . . , 2C, are all possible quantized momenta
of the billiard ball generated by the quantized momentum p1.

If the considered skeleton is generic, then p1 coincides with the quantized
classical momentum pclmn of the chosen global bundle and the phases αk are
gained by the respective BSWFs along the rays of this global bundle which
after subsequent reflections off the billiard boundary achieve the point (x, y)
with the quantized momentum pk, k = 2, . . . , 2C.

In the opposite case, i.e. for global periodic skeletons the phases αk do
not seem to have such clear physical interpretation.

5. Some simple examples of DRPBs — the π/3-parallelogram
billiard and the single bay broken rectangle and broken

parallelogram billiards

Before considering as an illustration of the DRPBs, let us discuss shortly
the simplest cases of the rectangle and equilateral triangle billiards. Both
the cases are integrable classically. Our main interest is in possible bound-
ary conditions which can be satisfied in these billiards. By analyzing the
consistent prescriptions of signs in the corresponding EPPs, one finds that
in the rectangle billiards despite the Dirichlet and the Neumann ones there
is still possible to put mixed conditions, i.e. different for different pairs of
parallel sides. This exhausts however the allowed possibilities.

In the equilateral triangle however, no other possibilities of the sign pre-
scription except the Dirichlet and the Neumann ones are allowed. This fact
causes the non-existence of the symmetric semiclassical states in the rhom-
bus billiard [1] built by using the approach developed in our paper. This
conclusion will be confirmed also by the case of the parallelogram billiard
which we are going to consider below.

Let us now come back to the cases of DRPBs mentioned, i.e. to the
π/3-parallelograms shown in Fig. 2 and to the single bay broken rectangles
shown in Fig. 3.
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5.1. The doubly rational π/3-parallelogram billiards

Considering first the case of the parallelogram, one has to note the four
independent periods Dk, k = 1, . . . , 4, which are shown in Fig. 2 and which
are related as follows

D3 =
1

a
D1 ,

D4 =
1

a
D2 . (37)

It is seen therefore, that the angle similar parallelogram billiards con-
sidered are doubly rational if a is rational and the set of all these doubly
rational billiards is dense in the set of all the angle similar π/3-parallelogram
billiards. Therefore, for doubly rational parallelograms, we have a = q

p so
that C1 = C2 = q in the corresponding formulae (7)–(8).

For the classical momenta and the energy quantized on any generic skele-
ton in the considered billiard, we get then

pclmn =
4πp2

9q
[(2m− n)D1 + (2n−m)D2] ,

Egen
mn =

16

9
π2p2

(
m2 + n2 −mn

)
,

m, n = ±1,±2, . . . (38)

Considering the quantization on periodic skeletons, we have to note that
there is a pair of periods D1−D2 and D1 +D2 and another pair D3−D4

and D3 + D4 of them in which the respective periods are perpendicular
to each other so that taking them as the new four independent pair of the
periods,s we can satisfy the corresponding formula (19) for k = 0. Then
for aperiodic skeletons according to (26), we get for their quantized classical
momenta and energy

pclmn =
2πp2

9q
[(3m+ n)D1 + (n− 3m)D2] ,

Egen
mn =

4

9
π2p2

(
3m2 + n2

)
,

m, n = ±1,±2, . . . (39)

Considering further the global periodic skeleton shown in Fig. 2 parallel
to the period D1−D2 and composed of five POCs, we get for its quantized
classical momentum

ppern =
2πnp2

3q
(D1 −D2) , n = ±1,±2, . . . (40)



826 S. Giller

and for its energy spectrum

Eper
mn = 4

9π
2p2
(
3m2 + n2

)
,

|m| �
√
3 |n| ,

m, n = ±1,±2, . . . (41)

The formulae (39) and (41) for the energy spectra coincide in accordance
with the general rule since k = 0 for the case considered. It can be also
checked that by the substitutions m → m − n and n → m + n, these
formulae coincide with (38) too because of the same reason.

We can now construct the SWFs corresponding to the established spectra
and to different consistent prescriptions of signs to EPPs. In Fig. 2 are shown
two such consistent prescriptions. It is easy to convince oneself that there
are no other ones, i.e. only the Dirichlet prescription and the Neumann one
are consistent for the parallelogram billiards.

According to the general rule given by (34), having coordinates (x, y)
we have to find an original point of the parallelogram all coordinates of its
image points lying inside the EPP. It is easy to do it using the first EPP
of Fig. 2. We collect the corresponding coordinates in pairs symmetric with
respect to the x-axis. They are [(x, y), (x,−y)], [(−1

2x + 1
2

√
3y, 12

√
3x +

1
2y) (−

1
2x+

1
2

√
3y,−1

2

√
3x− 1

2y)] and [(−1
2x−

1
2

√
3y, 12

√
3x− 1

2y), (−
1
2x−

1
2

√
3y,−1

2

√
3x+ 1

2y)].
Therefore, using the periods D1−D2 and D1+D2 for the quantization

and taking into account that the momenta represented in the x, y-coordinates
of Fig. 2 by [A,B] are then quantized by

3aA = 2π(m+ n)q ,
√
3aB = 2π(m− n)q ,

A2 +B2 6= 0 , m, n = 0,±1,±2, . . . (42)

The SWFs satisfying the Dirichlet boundary conditions in the parallelogram
billiard are

Ψas,±(x, y,A,B) = e±iAx sin(By)− e±iA(−
1
2
x+ 1

2

√
3y) sin

[
B
(
1
2

√
3x+ 1

2y
)]

+e±iA(−
1
2
x− 1

2

√
3y) sin

[
B
(
1
2

√
3x− 1

2y
)]

,

B 6= 0 . (43)

One can obtain two real SWFs taking properly the two linear combina-
tions of the above ones, i.e.
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Ψas
1 (x, y,A,B) = cos(Ax) sin(By)

− cos
[
A
(
1
2x−

1
2

√
3y
)]

sin
[
B
(
1
2

√
3x+ 1

2y
)]

+cos
[
A
(
1
2x+ 1

2

√
3y
)]

sin
[
B
(
1
2

√
3x− 1

2y
)]

,

B 6= 0 (44)

and

Ψas
2 (x, y,A,B) = sin(Ax) sin(By)

+ sin
[
A
(
1
2x−

1
2

√
3y
)]

sin
[
B
(
1
2

√
3x+ 1

2y
)]

− sin
[
A
(
1
2x+ 1

2

√
3y
)]

sin
[
B
(
1
2

√
3x− 1

2y
)]

,

A,B 6= 0 . (45)

For the Neumann conditions on the parallelogram billiard boundary, we
have

Ψas
1 (x, y,A,B) = cos(Ax) cos(By)

+ cos
[
A
(
1
2x−

1
2

√
3y
)]

cos
[
B
(
1
2

√
3x+ 1

2y
)]

+cos
[
A
(
1
2x+ 1

2

√
3y
)]

cos
[
B
(
1
2

√
3x− 1

2y
)]

(46)

and

Ψas
2 (x, y,A,B) = sin(Ax) cos(By)

− sin
[
A
(
1
2x−

1
2

√
3y
)]

cos
[
B
(
1
2

√
3x+ 1

2y
)]

− sin
[
A
(
1
2x+ 1

2

√
3y
)]

cos
[
B
(
1
2

√
3x− 1

2y
)]

,

A 6= 0 . (47)

It is to be noted as a general property of SWFs satisfying the Dirichlet
boundary conditions that if one considers points which are very close to
the vertices of the parallelogram such as the one shown in Fig. 2 (2), then
differences between the phases of the component plane waves in the sum
(43) have to be small just because of small distances between all images of
the original point and the point itself. One can conclude, therefore, that
values of the SWFs satisfying the Dirichlet boundary conditions should be
the smaller at the points mentioned the closer are the points to the vertices
and, of course, have to vanish in the vertices. However, a sufficient distance
of such points to the vertices depends on a SWF considered and has to be
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the smaller the higher is the SWF energy eigenvalue, i.e. the smaller is the
corresponding wave length. In other words, radii of circles which centers
coincide with the vertices and which contain the points considered have to
vanish if the momentum p grows infinitely. As it was shown however by
Hassel et al. [13], vanishing of the circle areas enclosed by the vertices edges
is such that the SWF square moduli integrated over these areas are finite
in the limit p → ∞, while Marklof and Rudnick [14] showed further that
such probabilities are the same in this limit as for the equal measure interior
areas in polygons.

A similar general note can be done when one considers the respective
behavior of SWFs satisfying the Neumann boundary conditions. However,
the corresponding conclusions seems to be quite opposite since in the for-
mula (34) corresponding to the case, the interference of the component plane
waves is constructive for all points which lie very close to the polygon vertices
taking the value 2Ce±i(pxxk+pyyk) in th kth-vertex with coordinates (xk, yk).
Because of that, these SWFs cannot be normalized in polygons.

It is also worth to note that the set of the solutions (44)–(45) is just
an example of incompleteness of the semiclassical states generated by the
method just applied. Namely, putting a = 1, i.e. reducing the parallelogram
to the rhombus and shifting the origin of the coordinate to the center of the
latter and next rotating the axes to put the x-one on the longer diagonal of
the rhombus, one can check that both the solutions (44)–(45) are then odd
under the transformation x→ −x, while under the transformation y → −y
the solution (44) is even and (45) is odd. Therefore, there are no among
the solutions (44)–(45) the ones which are even under the reflection in the
y-axis [1].

5.2. Single bay doubly rational broken rectangle billiards

Consider now a single bay broken rectangle billiard shown in Fig. 3.
Four independent periods are seen in the figure with the following relations
between them:

Dx2 =
x2
x1
Dx1 ,

Dy2 =
y2
y1
Dy1 . (48)

Assuming the coefficients in (48) to be all rational, the billiard becomes
doubly rational. It is obvious that such billiards are dens among all billiards
which are angle similar with the one in Fig. 3. If Cx, Cy are the least com-
mon multiples for the rational coefficients in (48), we get for the momenta
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and energy levels of the considered system

px,m = πm
Cx
x1

,

py,n = πn
Cy
y1

,

Emn =
1

2

(
p2x,m + p2y,n

)
=

1

2
π2

(
m2C2

x

x21
+
n2C2

y

y21

)
,

m, n = ±1,±2, . . . (49)

Considering SWFs corresponding to the spectra above, we should note
that there are four possible consistent sign prescriptions to the EPP from
Fig. 3 for which we get

ΨD
mn(x, y) = sin(px,mx) sin(py,ny) = sin

(
πm

Cx
x1
x

)
sin

(
πn

Cy
y1
y

)
(50)

satisfying the Dirichlet conditions on the billiard boundary and

ΨN
mn(x, y) = cos

(
πm

Cx
x1
x

)
cos

(
πn

Cy
y1
y

)
(51)

satisfying the Neumann conditions and according to the sign prescription
shown in EPP of Fig. 3

ΨND
mn (x, y) = cos

(
πm

Cx
x1
x

)
sin

(
πn

Cy
y1
y

)
(52)

satisfying the Dirichlet conditions on the horizontal sides of the billiard and
the Neumann ones on the vertical sides.

The last allowed consistent prescription exchanges the sin and cos func-
tions in (52) so that the Dirichlet conditions are satisfied on the vertical
sides of the billiard, while the Neumann ones on the horizontal sides.

There are, of course, infinitely many global periodic skeletons one of
which is horizontal with the period Dx,1/Cx and the other is vertical with
the period Dy,1/Cy. However, since among the independent periods of the
considered billiard there are ones perpendicular to each other, then quan-
tizing on such skeletons we get the same energy spectra and SWFs as for
the aperiodic skeletons considered above. Although there is the high energy
constraint (32) on quantizations on such skeletons, it is rather formal since
in the case of DRPBs the obtained solutions are exact.

There are also infinitely many POCs the examples of which are those
four ones in Fig. 3 which are defined by the periods Dx,i and Dy,i, i = 1, 2.
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6. Incompleteness of the SWF approximations

This fact that the semiclassical conditions (16) have to be satisfied on
every period direction is very demanding and limits, in fact, applications
of the SWF quantization to DRPBs. However, despite the fact that in
these cases the SWF quantization provides us with the exact results, it
remains still an approximation in a sense that the energy spectra got by
the method do not cover, in general, the whole spectra corresponding to the
cases considered. It means also that sets of SWFs accompanying the spectra
are, in general, incomplete. The example of such a situation met in the
π/3-rhombus billiard was discussed at the end of Sec. 5.1, where all wave
functions symmetric with respect to the longer axis could not be constructed
in the semiclassical wave function formalism presented in the paper.

Another aspects of losing states by the semiclassical quantization method
used in our paper are provided by the broken rectangle billiards of Fig. 3
for which the set of the solutions (50) satisfying the Dirichlet boundary
condition cannot be considered as coinciding with the set of all solutions
satisfying this condition. In fact, the set of the solutions (50) follows as
a subset of the complete ones vanishing on the boundary of the rectangle
ABGF if vanishing of the latter solutions on the lines x = x1 and y = y1 are
additionally demanded.

To see that there are still more solutions which satisfy the Dirichlet
boundary condition in the broken rectangle ABCDEF which are not recon-
structed by the SWFs (50), consider two such rectangles with the following
sizes x1 = 1, x2 = 2, y1 = 1, y2 = 2 and x1 = 1, x2 = 2 − 1/k, y1 = 1,
y2 = 2, where k is natural and can be taken arbitrarily large. Quantizing
the latter we get according to (50)

Ψmn(x, y) = sin(πmkx) sin(πny) ,

E′mk n = π2
(
m2k2 + n2

)
,

m2 + n2 > 0 , m, n = 0,±1,±2, . . . , (53)

while for the former, we get

Ψmn(x, y) = sin(πmx) sin(πny) ,

Emn = π2
(
m2 + n2

)
,

m2 + n2 > 0 , m, n = 0,±1,±2, . . . (54)

It is seen from the above formulae that subsequent SWFs and the cor-
responding energy levels in (53) coincide only with every kth level of the
second spectrum for each fixed n.
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On the other hand, as it follows from Theorem 1 of Appendix C, both
the spectra coincide up to ε-accuracy with ε = 1/(k−1) for say k > 100, i.e.∣∣∣∣E′mnEmn

− 1

∣∣∣∣ < 1

k − 1
,

m2 + n2 > 0 , m, n = 0,±1,±2, . . . (55)

Therefore, most of the levels of the spectrum of the larger broken rect-
angle are absent in the smaller one despite the fact that both the spectra
have been obtained semiclassically.

Obviously, a reason for that is a difference between the lengths of the
largest waves which can be used as the units for measuring the commensurate
periods in the respective cases of the billiards. In the case of the smaller
broken rectangle family, the largest wave length is equal to 2/k, while for
the larger broken rectangle billiard, it is equal to 2, i.e. is k-times larger
and it cannot be used as a measuring unit for the smaller billiards as well as
the shorter wave lengths equal to 2/r, r = 2, 3, . . . , k − 1, as the respective
subunits.

One can conclude, therefore, that the fuller is the description of energy
spectra of DRPBs which the wave function semiclassical approximation pro-
vide us with the simpler are the fraction structures of the linear relations
between the independent periods. The larger are both numerators and de-
nominators in these fractions, the smaller have to be the largest wave lengths
which can fit periods leading to still rare selections of the energy levels off
their total spectrum.

Therefore, one can conclude that to get more energy levels for the cases of
DRPBs with high fractions relating their periods, one should rather approxi-
mate these billiards by the ones for which these fractions are less complicated
to get the respective energy levels as the ones of the “simpler” billiards with
some ε-accuracy.

7. Semiclassical quantization in any polygon billiard

A natural question which arises after the discussion of the semiclassical
quantization in DRPBs done in the previous sections is how the results got
there can be extended to any polygon billiards, i.e. to the ones which are
RPBs but not DRPBs as well as to the irrational ones.

Let us consider these questions consecutively.

7.1. The RPB families containing the DRPB ones densely

In the case considered, any RPB according to the Theorem 2 of Ap-
pendix C can be approximated by DRPBs with any ε-accuracy. The spectra
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of DRPBs approximate then the spectrum of the RPB considered with the
respective ε-accuracies. But according to our discussion in Sec. 6, one has
to have in one’s mind that the better is the ε-accuracy the more rare are
sets of the approximated energy levels of the RPB and the more incomplete
are the sets of the respective SWFs.

7.2. The RPB families deprived of dense DRPB subsets

A simple example of such a family is the one of the angle similar triangle
billiards ABC shown in Fig. 5. Obviously up to a rescaling, all the members
of the family are the same so that the irrational relations between the four
independent periods D1 and Dx and D2 and Dy as shown in the figure are
irremovable by any angle similar transformation of the triangle. Therefore,
the unique way which allows us to apply the results of Sec. 6 to the case
is to substitute the irrational numbers in these relations by their rational
approximations done with desired accuracy, i.e. by putting

aki ≈
pki
qki

(56)

for each such a coefficient, where pki, qki are coprime integers with qki > 0.

Fig. 5. A symmetric EPP for the isosceles triangle ABC with the angle at the
vertex A equal to π/5.

Once the substitutions (56) are done, the case considered becomes doubly
rational and the procedure from the previous section can be applied in its
full extension. The unique question which arises when the respective results
are got is how exact they are.
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To get an answer to the question, let us note that SWFs (34) cannot be
exact in this case since some of the considered periods were approximated
and these approximations cause that on the sides of the polygon which are
the sides of the EPP used to construct the solutions (34) the latter do not
satisfy the desired boundary conditions exactly. Nevertheless, the conditions
are certainly satisfied on nodal curves of the SWFs which partly can coincide
with the polygon boundary, while the rest of them are very close to it. These
nodal curves of SWFs are, of course, the boundaries of domains for which
the solutions are exact.

Let Dmn be such a domain which corresponds to the solution Ψas
mn and

let DP denote the domain occupied by the polygon considered. If pkiqki
≈ aki

for all irrational aki, then we have to have

Dmn ≈ DP , (57)

where the approximation in the above formula should be understood as mea-
sured by a number εmn > 0 and is called the ε-accuracy, see theDefinition 1
and the Theorem 1 of Appendix C.

Let us enumerate the semiclassical energy levels Esem
mn by their growing

values Esem
kmn

, Esem
kmn
≤ Esem

km′n′ , kmn < km′n′ , kmn, km′n′ = 1, 2, . . ., and do
the same with the energy levels of the exact solutions. Then we can arrange
both the enumerations so that the property (57) ensures according to the
Theorem 1 of Appendix C that for a given εkmn > 0 defining the ε-accuracy
in (57) we have to have also∣∣∣∣ Esem

kmn

ECkmn

− 1

∣∣∣∣ < ηkmn (58)

for all kmn, where ηkmn depends on εkmn and vanishes if does the latter and
C is a necessary rescaling coefficient discussed earlier in Sec. 6.

7.3. Semiclassical quantization in any of polygon billiards

Consider now an arbitrary polygon billiard, i.e. with irrational angles.
An obvious way which is in agreement with the spirit presented in Introduc-
tion would be a farther “rationalization” of the considered irrational polygon
billiard (IPB) by approximating with desired accuracies every of its irrational
angles by rational ones, i.e. to substitute in this way any considered IPB
by its respective rational copy done with an arbitrary accuracy. With the
RPBs obtained in this way, we can proceed as it was described in the previ-
ous sections. An accuracy of such an approach can be estimated again with
the help of general theorems of the Courant and Hilbert monography [15],
see also Appendix C.
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In practice, however, such an approach to the semiclassical quantization
of IPBs can mean using of the corresponding tori with very high genuses
and, therefore, a necessity of establishing a huge number of independent
periods accompanying these tori.

Taking, for example, the right triangle with its remaining angles equal to√
2
4 π and 2−

√
2

4 π and approximating the latter angles by 0, 353π and 0, 147π,
respectively, we should consider a corresponding RPRS with 500 indepen-
dent periods and corresponding EPPs with 2000 component triangles, with
the same number of sides corresponding to the multitorus containing 250
holes.

Therefore, a corresponding task seems to be very complicated and be-
cause of that discouraging to the method. Nevertheless, such an approach
shows that, at least theoretically, there is a room for quantizing semiclas-
sically in the wave function formalism not only the pseudointegrable RPBs
but also classically chaotic systems which the IPBs are considered for.

8. POCs, superscars and SWFs in global periodic skeletons

POCs in the global periodic skeletons are skeletons by themselves which,
in general, are not global however.

POCs being not global periodic skeletons give rise, however, to the phe-
nomenon known as superscars [5, 6] which has been considered in our earlier
paper [9].

A ray flow of each POC which exists in a global periodic skeleton is peri-
odic under one of the independent periods of the skeleton. However, its size
perpendicular to its period depends on a geometry of the RPB considered
being determined by a distance between its two diagonals [9].

POCs being complete skeletons give rise for constructions on them both
BSWFs as well as the corresponding SWFs non-vanishing in the area of the
polygon covered by a POC [5, 9]. In our earlier paper [9], the constructed
SWFs satisfied the Dirichlet boundary conditions in the polygon. However,
one can easily note that other boundary conditions are also allowed.

A good illustration of the latter statement are POCs shown in Fig. 2 (1).
There are five POCs Pi, i = 1, . . . 5, with the respective periods

√
3(1 + a),√

3,
√
3(1 + a),

√
3(1 + a),

√
3a and sides 1

2a, a −
1
2 ,

1
2a,

1
2 −

1
2a, 1 −

1
2a.

On every of these POCs, we can build SWFs periodic with respect to a
corresponding period and satisfying any boundary conditions on the POC
sides. We can then use these POC SWFs to construct SWFs satisfying some
boundary conditions in the parallelogram billiard, i.e. to construct superscar
solutions in the billiard [5, 9].
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Taking, for example, any solution mentioned above constructed on the
POC P1 shown in Fig. 2 (4) and using the sign prescription shown in the
third EPP of Fig. 2 (note that this prescription is inconsistent for building a
SWF for the global periodic skeleton shown in Fig. 2 (1)), we can construct
SWFs satisfying the Dirichlet and the Neumann conditions on the respective
segments of the parallelogram billiard boundary shown in Fig. 2 (4) as well
as any of these conditions on the thin lines shown in Fig 2 (4) being the
P1-POC diagonals.

This clearly shows that SWFs built in RPBs with the help of respective
SWFs constructed on POCs which can be found in such billiards have little
to do with the SWFs constructed in Sec. 4 on the global periodic skeletons
or on the aperiodic ones.

In the paper mentioned [9], the BSWFs built on POCs were periodic
under the POC periods and vanished on their diagonals. The corresponding
SWFs in the corresponding polygons were then built according to the rule
given by (34). However, the corresponding sum in (34) run only over these
image points of EPPs which laid inside only these images of the basic polygon
which were crossed by the POCs. Therefore, such SWFs vanished not only
on the RPB boundaries but also on the lines inside the polygons which were
images of the POC diagonals on which the normal derivatives of the SWFs
were also discontinuous.

In the context of the present paper, SWFs and the corresponding energy
spectra built in the above way in POCs crossing a BRPB can be done peri-
odic on the whole corresponding RPRS just by shifting them by all possible
original periods of the RPRS. In this way, the POC SWF solutions become
also periodic on the RPRS with their spectra however having nothing to
do with the RPRS periods except of these single ones (and all their integer
multiples) which are periods of POCs.

Comparing, therefore, SWFs built on POCs of a global periodic skeleton
with the ones constructed on the skeleton itself, it is seen that if the latter
is not a global single POC skeleton then

— SWFs built on POCs differ from the ones built on the global periodic
skeleton itself;

— SWFs built on a POC are periodic under the POC periods only;

— energy spectra corresponding to POCs differ from the energy spectrum
of the global periodic skeleton itself;

— SWFs in POCs are exact and their set is complete in a rectangular
domain occupied by a given POC.
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In very rare cases of global single POC skeletons (met for example in
the equilateral triangles or in the rectangles), the corresponding SWFs and
energy spectra coincide with the ones obtained by quantizing semiclassically
the rational billiards mentioned on aperiodic global skeletons. For such cases
k = 0, in the condition (19) leading to coincidences of the formulae for the
respective energy spectra.

Bogomolny and Schmit [5, 6] suggested that SWFs built on POCs of
a global periodic skeleton can play some role in a saturation of its quan-
tum states. This suggestion has been however invalidated by Marklof and
Rudnick [14]. Also from our discussion it follows rather just an opposite
suggestion, i.e. that these are rather the POC states which can be expanded
into the SWFs built on the global skeletons.

In our earlier paper [9], we have argued also that, due to the fact that
POCs are perfect skeletons, they can manifest themselves as additional quan-
tum states which can exist in the RPBs accompanying the billiard energy
eigenstates. The same POCs can be developed also in billiards which are
completely different then the RPBs being also chaotic if they only meet there
geometrical conditions allowing for their existence, i.e. they manifest them-
selves as a kind of resonant states in such favorable conditions [6, 10–12].

9. Summary and discussion

In this paper, we have demonstrated the method of the semiclassical
quantization by the wave function approach of the classically non-integrable
systems also chaotic ones represented by the polygon billiards. We have
argued that it is in the spirit of the wave function semiclassical quantization
approach to rationalize respective quantities appearing in subsequent steps
of such an approach. This is due to the natural length measurers provided
by lengths of waves naturally accompanying the wave function formulation
of the semiclassical approximation.

Let us enumerate the main steps which have been leading us to achieve
our goal:

1. construction of RPRS for RPB and revealing its periodic structure;

2. construction of EPPs for a RPB;

3. relating 2g independent periods of RPRS with a genus g tori to which
each EPP can be glued;

4. distinguishing DRPBs which when quantized semiclassically provide
us with exact results for both the SWFs and energy spectra;
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5. showing that the quantization of the classical billiard ball momenta
are determined uniquely and only by periodic structure of RPRS and
BSWFs defined on it;

6. showing that BSWFs defined on any skeleton can have only the form
of plane waves with classical or quantum momenta;

7. writing a general form of semiclassical energy spectra for any DRPB;

8. constructing SWFs with desired boundary conditions (Dirichlet, Neu-
mann or mixed ones) corresponding to given energy spectra and sat-
isfying the rules which such constructions are governed by due to ne-
cessity of satisfying by EPPs the consistent prescription constraints;

9. extending the semiclassical formalism built for DRPBs to RPB ratio-
nalizing linear relations between independent periods of RPBs reduc-
ing this independence to only two of them chosen arbitrarily;

10. extending the semiclassical formalism built for RPBs to irrational ones
by substituting the latter by RPBs approximating the respective IPB
with desired but otherwise arbitrary accuracies.

The main conclusions which follow from the results of this paper are:

– in principle, any polygon billiards can be quantized semiclassically by
the method presented in the paper;

– semiclassical approximations obtained by the method are controlled
by general theorems which can be found in [15];

— the semiclassical energy spectra described by the points 5 and 6 above
are uniquely and only defined for a given polygon by its respective
system of independent periods;

— there is a specific degeneration of energy spectra with respect to bound-
ary conditions, i.e. there are many SWFs corresponding to the same
energy spectra but differing by boundary conditions they can satisfy;

— there is not a full freedom in putting boundary conditions on SWFs
in polygons so that some semiclassical wave configurations and en-
ergy spectra corresponding to them can be ignored in the approach
presented in this paper [5, 6];

— there are specific conditions to be satisfied by periods of a RPRS (see
formula (19), which allow us for constructions of SWFs on global pe-
riodic skeletons;
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— the wave function semiclassical quantization in the polygon billiards
presented in the paper provides us with incomplete energy spectra
and the scale of this incompleteness is the larger the closer to the
irrationality are the sizes of the polygon billiard angles;

— in contrary to the previous conclusions, it is always possible to con-
struct respective SWFs, i.e. superscar solutions, on any POC contained
by global periodic skeletons which are exact and their set is complete
in the rectangular domain occupied by a POC;

— superscar solutions are resonant states in polygon and other billiards
which exist in high energy regime due to existence of classical POCs
in such billiards and having rather little to do with the semiclassical
limits of eigenfunctions and energy spectra in quantum billiards [9, 14].

Appendix A

Polygon billiard skeleton dictionary

We have collected below the main notions used in the paper (see [9, 16]
for their wider descriptions) as well as the list of acronyms used in the paper
frequently.

— rays — classical trajectories in polygon billiards

— reflections of rays— reflections of rays by a side of a polygon billiard
ruled by the reflection law of the geometrical optics

— ray bundle (bundle) — an open continuous set of rays parallel to
each other starting from one side of a polygon billiard and ending on
another side

— compound bundle — a sum of two parallel bundles with a common
boundary

— periodic bundle — a bundle containing only periodic trajectories
with the same periods

— global bundle — a (compound) bundle which covers the whole poly-
gon area

— skeleton — a set of bundles closed under reflections from sides of a
polygon billiard

— global skeleton — a skeleton whose each compound bundle is global
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— periodic skeleton — a skeleton containing at least one periodic bun-
dle

— POC— a single bundle periodic skeleton (periodic orbit channel [5, 6])

— global aperiodic skeleton — a global skeleton with none periodic
trajectory

— global periodic skeleton — a global skeleton with at least one POC

— PB — polygon billiard

— RPB — rational polygon billiard

— BRPB — basic rational polygon billiard

— IPB — irrational polygon billiard

— RPRS — rational polygon Riemann surface

— ASP — angle similar polygons

— EPP — elementary polygon pattern

— DRPB — doubly rational polygon billiard

— SWF — semiclassical wave function

— BSWF — basic semiclassical wave function

Appendix B

BSWFs in global periodic skeletons

Consider a global periodic skeleton with r − 1 POCs having respective
periods Dk, k = 2, . . . , r and some number of aperiodic bundles assuming
some local coordinate system. In the aperiodic bundles, the corresponding
BSWFs have the same forms as in the aperiodic global skeletons considered
in Sec. 3.1, i.e. they are proportional to their exponential factors having
therefore the form

Ψap
k,n(x, y, p

per
n ) ≡ e±ip

per
n y (59)

in the chosen local coordinate systems.
A BSWF Ψk,n(x, y, pn), however, is defined on the kth-POC by (23) and

(24). Since χσk,0(x, y), σ = ±, depend only on x, i.e. χσk,0(x, y) ≡ χσk,0(x),
then (24) for k = 0 takes the following form

χσk,1(x, y) = χσk,1(x) +
σi

2
y
(
(χσk,0(x))

′′ + 2E0χ
σ
k,0(x)

)
. (60)
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Since further χσk,1(x, y) have to be periodic with respect to y with peri-
ods Dk, k = 2, . . . , r, then as it follows from (60), we have to have(

χσk,0(x)
)′′

+ 2Ek,0χ
σ
k,0(x) = 0 . (61)

To get a periodic solution of (61), we have to assume that Ek,0 > 0 so
that

χσk,0(x) = C+
k,0e

i
√

2Ek,0x + C−k,0e
−i
√

2Ek,0x (62)

and additionally we get the independence of χσk,1(x, y) on y, i.e. χ
σ
k,1(x, y) ≡

χσk,1(x).
Next, we have to enforce on χσk,0(x) its periodicity on D1/C1, i.e.

χσk,0(x) = χσk,0 (x+D1x/C1) = χσk,0 (x+D1 sinα/C1) , (63)

where α is the angle between the periods D1 and D2.
Consequently, we have to have further√

2Ek,0D1 sinα = 2mπC1 , k = 2, . . . , r, m = 1, 2, . . . (64)

Making the next step in solving (24), we get for χσk,1(x) the following
equation (

χσk,1(x)
)′′

+ 2Ek,0χ
σ
k,1(x) = −2Ek,1χσk,0(x) (65)

with the solution

χσk,1(x) = C+
k,1e

i
√

2Ek,0x + C−k,1e
−i
√

2Ek,0x −
Ek,1
Ek,0

x
(
χσk,0(x)

)′
. (66)

Again, the periodicity of χσk,1(x) on D1/C1 demands Ek,1 = 0. By
induction, we then get Ek,l = 0, l ≥ 1, and finally

χσk(x, y, pn) ≡ C+
k (pn)e

i
√

2Ek,0x + C−k (pn)e
−i
√

2Ek,0x ,

C±k (pn) =
∑
l≥0

C±k,l
pln

. (67)

Appendix C

Smooth behavior of energy levels as a function of a billiard boundary
— a general theorem and an example

Consider two single bay broken rectangles shown in Fig. 3 having the
bottom side lengths equal to x2 and x3. If the latter is arbitrarily close
to x2, then energy spectra of both the billiards are also arbitrarily close to
each other in the sens of the following theorem proved in the monography
of Courant and Hilbert [15], p. 421.
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Definition 1 It is said that the domain G is approximated by the domain G′
with the ε-accuracy if G together with its boundary can be transformed point-
wise into the domain G′ together with its boundary by the equations

x′ = x+ g(x, y) ,

y′ = y + h(x, y) , (68)

where g(x, y), h(x, y) are both piecewise continuous and less in G in their
absolute values than a small positive number ε together with their first deriva-
tives.

Definition 2 If all conditions of Definition 1 are satisfied while ε → 0,
then it is said that G is a continuous deformation of G′.

Theorem 1 Let G and G′ satisfy all conditions of the Definition 1. Then
for any boundary condition ∂Ψ/∂n+σΨ = 0, the energy spectrum correspond-
ing to G′ approximates the one of G with the ε-accuracy. More precisely, for
any ε, there is a number η depending only on ε and vanishing with it such
that for respectively ordered energy levels E′n and En corresponding to the
domains G′ and G, we have ∣∣∣∣E′nEn − 1

∣∣∣∣ < η . (69)

Theorem 2 Let G and G′ satisfy the conditions of the Theorem 1 and G
is a continuous deformation of G′, then the energy spectrum corresponding
to G′ varies continuously with ε→ 0 approaching the energy spectrum of G
controlled by the conditions (69).

Applying theTheorem 2 to the case of Fig. 3 whereG coincides with the
broken rectangle ABCDEF while G′ with the AB’C’DEF one, it is enough to
construct the respective transformations (68). This can be done as follows

x′ =

{
x , 0 ≤ x ≤ x1 , 0 ≤ y ≤ y2 ,
x− x−x1

x2−x1 (x2 − x3) , x1 ≤ x ≤ x2 , 0 ≤ y ≤ y1 ,
y′ = y

(70)

with ε = x2 − x3 if x2 − x1 > 1 and with ε = x2−x3
x2−x1 in the opposite case

assuming that x2 − x3 � x2 − x1.
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