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Possible low-|t| structures in the differential cross section of pp elastic
scattering at the LHC are predicted. It is argued that the change of the
slope of the elastic cross section near t = −0.1 GeV2 has the same origin
as that observed in 1972 at the ISR, both related to the 4m2

π branch point
in the |t|-channel of the scattering amplitude. Apart from that structure,
tiny oscillations at small |t| may be present on the cone at low |t|.
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1. Introduction

Followed by the first publications on pp elastic scattering at
√
s = 7 TeV

in the broad |t| range of 5× 10−3 GeV2 < |t| < 2.5 GeV2 [1, 2], the TOTEM
Collaboration recently made public [3] their new results at still lower values
of |t| at

√
s = 8 TeV.

Contrary to earlier statements [2], considerable deviation from the linear
exponential cone was found. Namely, a change of the local slope B(t) =
d
dt(ln

dσ(s,t)
dt ) at 8 TeV by about 0.5 GeV−2 around |t| ≈ 0.1 GeV2 was ob-

served as well. As emphasized in Ref. [4], a single exponential is excluded
by 7σ.

∗ Funded by SCOAP3 under Creative Commons License, CC-BY 3.0.
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In the present paper, we argue that this structure is a recurrence of the
similar phenomenon observed in 1972 at the ISR, both related to
t-channel unitarity effects of the scattering amplitude. Anticipating the rel-
evant TOTEM publication, below, we present a method to handle possible
structures in the diffraction cone and make predictions based on a Regge-
pole model extrapolating from the ISR energy region to that of the LHC1.

2. The ‘break’ phenomenon; preliminaries

The change of the local slope B(t) around |t| ≈ 0.1 by about ≈ GeV−2,
called the ‘break’ (in fact, a smooth curvature in B(t), at

√
s = 21.5, 30.8,

44.9, 53.0 GeV) was first observed and discussed in Ref. [6] (see Table I
in [6] quoted below and illustrated in Fig. 1). The change of the slope is
smooth, the word ‘break’ being used merely for brevity. Although there is
little doubt about the universality of this phenomena, the position and the
size of the effects and its dependence on energy is still disputable.

TABLE I

Slope B(t) calculated with different exponentials for the ISR data [6].

√
s |t|-range, B Err. ∆B Err.

[GeV] [GeV2] [GeV−2] [GeV−2] [GeV−2] [GeV−2]

21.5 0.05–0.094 11.57 0.030
0.138–0.2380 10.42 0.17 1.15 0.20

30.8 0.046–0.090 11.87 0.28
0.138–0.240 10.91 0.22 0.96 0.50

44.9 0.046–0.089 12.87 0.20
0.136–0.239 10.83 0.20 2.04 0.40

53.0 0.060–0.112 12.40 0.30
0.168–0.308 10.80 0.20 1.6 0.50

This phenomenon is visible also at other energies, see Table II and Fig. 2
[7]. Recently, it was studied and discussed in a number of papers, see [8, 9]
and earlier references therein.

The phenomenon was not seen at the Tevatron. CDF had Roman pots
only on the antiproton side, i.e. it could not align the proton/antiproton
measurements by using the track on the opposite side as is normally done.
Instead, they used the assumed t-distribution. This technique prevents any
measurement of the t-distribution. The D0 experiment [10], on the other

1 Preliminary results of this paper were presented in June, 2014 at the Protvino Con-
ference on High-energy Physics [5].
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Fig. 1. Local slopes B(t) calculated at ISR energies with two different exponentials
(see Table I).

hand, did publish a t-distribution in the interval of interest. Their measure-
ment covers the interval of 0.26 < |t| < 1.2 GeV2, where a change of the slope
at −0.6 GeV2 was observed (‘rudiments’ of the diffraction minimum). Pre-
dictions for high-energy, low-t pp̄ scattering are possible, however, without
prospects to be tested experimentally in the near future.

TABLE II

Average slope values for fits in different bins of |t| for the UA4 data [7].

|t|-range [GeV2] B [GeV−2] Err. [GeV−2]

I 0.03–0.10 15.3 0.3
II 0.03–0.15 15.2 0.2
III 0.15–0.32 14.2 0.4
IV 0.21–0.32 13.6 0.8
V 0.21–0.50 13.4 0.3

Thus, the magnitude of the slope break at different ISR energies, cal-
culated in a simple exponential approximation for nearly the same range of
momentum transfer 0.05 GeV2 < |t| < 0.10 GeV2 and 0.14 GeV2 < |t| <
0.25 GeV2, varies within the range of ∆B(t) ≈ (1–2) GeV−2. Using the
data from Table II on the slope parameter for the SPS energy 546 GeV for
antiproton–proton scattering, one can obtain different values for the slope
break depending on the choice of bin pairs. For example, the largest value
of the slope break ∆B = 1.9 ± 0.6 GeV−2 can be obtained by choosing a
couple (adjacent bins) made of the farthest values I, V, and the smallest
one for the pairs I and III, ∆B = 1.1± 0.7 GeV−2, taking into account two
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Fig. 2. Local slopes B(t) calculated for the UA4 data [7].

adjacent intervals. A different approach to the choice of the individual t-bins
was used in the recent paper [2], where constancy of the slope was stated,
at least until |t| = 0.2 GeV2.

Note that the break found at 8 TeV can be obtained even with simpler
methods where two single exponential are fitted in non-overlapping t-ranges,
the relevant B(t) differing by more than 7σ. The overall behaviour of B(t)
as a function of energy is illustrated in [11] and [12].

The ‘break’ (we recall that in fact it is a smooth curvature approximated
by linear exponentials) has a clear physical interpretation: it results from
the t-channel branch point at 4m2

π ≈ 0.08 GeV2 imposed by unitarity. The
‘break’ due to the two pion threshold is related to the pionic atmosphere
(cloud) of the nucleon [13] (for more details, see the next section).

An immediate conclusion is that in the calculation of B(t) the result
depends on the bins in t chosen. Generally speaking, the bins can be chosen
arbitrarily: small (containing at least three data points) or large. They may
be chosen in a touching sequence or overlap. The latter option (so-called
overlapping bins method (OBM)) was studied in details in a number of
papers [11, 12, 14–16], whose ideas and results are summarized in Appendix.

Below, we discuss in more details all these results and make predictions
for 8 TeV. A preliminary version of this study was presented at the Protvino
Conference on High-energy Physics in June, 2014 [5].

To start with, we recalculate the local slope with account for both the
statistical and systematic errors. To this end, we will choose the compiled
data from [17]. At the LHC, we include only data from the first cone [2, 3]
for |t| < 0.2 GeV2.
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For the ISR data, we have chosen the Amaldi et al. data [18] for center-
of-mass energies 23.5, 30.8 and 44.7 GeV. The results are quoted in Table III.

TABLE III

Local slopes B(t) recalculated with different exponentials for the ISR data [18].

√
s |t|-range B Err. ∆B Err.

[GeV] [GeV2] [GeV−2] [GeV−2] [GeV−2] [GeV−2]

23.5 0.05–0.102 11.5 0.7
0.138–0.238 10.2 0.4 1.22 1.1

32.0 0.05–0.094 11.6 0.4
0.138–0.240 10.9 0.3 0.7 0.7

44.7 0.05–0.096 13.3 0.3
0.138–0.238 10.6 0.2 2.7 0.5

The results of the calculations coincide within errors with the data from
Table I of Ref. [6].

There is a gap between adjacent bins in the ISR data, seemingly in-
creasing the ‘break’ of the slope (see Fig. 1). For example, the choice of
the bins adopted in Ref. [6] is not unique. For example, by selecting the
location of the second bin at

√
s = 23.5, (0.5 < |t| < 1.0) GeV2, the

averaged slope within this bin will be B = 9.5 ± 0.1 GeV−2, implying
∆B=(1.9±0.8) GeV−2, which is more reliable than the results of Table III.

On the other hand, it is more natural to calculate the ‘break’ for neigh-
bouring bins in the vicinity of |t| ≈ 0.1 GeV2, close to the ‘break’ we are
scrutinizing. The local slopes calculated for the ISR and SPS data [7, 18]
(compiled in [17]) for bin intervals being near the same as in [6] are shown
in Table III.

It is interesting to study whether this effect (the ‘break’ of the local slope)
persists up to the LHC energies. To this end, we construct a similar plot for
the slopes B(t) (and compare it with Table 6 of [2]) for the differential cross
sections measured at

√
s = 7 TeV in the interval (0.005 < |t| < 0.3) GeV2

(Fig. 3).
For clarity sake, we performed the calculations of local slopes in adjacent

bins around |t| = 0.1 GeV2 for nearly the same length as in [6]: the first bin
is (0.05 < |t| < 0.1) GeV2; the second one is (0.1 < |t| < 0.14) GeV2. As a
result, the value of the ‘break’ ∆B varies within 0.5–1.2 GeV−2 for the ISR
and TOTEM energies (see Table IV).

This estimate of the ‘break’ is less reliable, but shows the trend with
energy. One concludes from Table IV that the break does not diminish with
energy.
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Fig. 3. Local slopes B(t) calculated at 7 TeV up to |t| = 0.3 GeV2, Table III (see
also Table 6 in [2]).

TABLE IV

Calculated break ∆B from adjacent bins for the ISR and TOTEM data.

√
s t-bin B Err. ∆B Err.

[GeV] [GeV2] [GeV−2] [GeV−2] [GeV−2] [GeV−2]

23.5 0.05–0.094 11.5 0.7
0.094–0.138 10.2 0.9 1.3 1.6

30.7 0.05–0.094 11.6 0.4
0.090–0.138 11.2 0.6 0.4 1.0

44.7 0.05–0.094 13.1 0.3
0.094–0.136 12.3 0.5 0.8 0.8

546. 0.05–0.10 15.3 1.2
0.10–0.138 13.9 1.5 1.4 2.7

7000 0.046–0.091 19.8 0.7
0.091–0.137 19.3 0.9 0.5 1.6

8000 0.05–0.095 19.8 0.2
0.095–0.137 18.8 0.4 1.0 0.6

8000 0.05–0.095 19.8 0.2
0.095–0.189 19.1 0.3 0.7 0.5

3. Physics of the ‘break’ phenomenon

The physics of the phenomenon was explained in Ref. [13]. The ‘break’
is, in fact, a smooth concave over the linear exponential, approximated by
two linear exponentials (cf. [3]). This structure is due to the lowest two-pion
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exchange in the t-channel required by unitarity [19], see Fig. 4. The threshold
appears at t = 4m2

π ≈ 0.08 GeV2, which is the mirror (with opposite sign of t)
position of the ‘break’ of the cone. We recall that any analytic function (here,
the scattering amplitude) is sensitive to ‘mirror reflection’ of its singularities
(here, the 4m2

π branch point in the amplitude).

Fig. 4. Feynman diagram for elastic scattering with a t-channel exchange containing
a branch point at t = 4m2

π.

According to the ideas of duality [19, 20], the singularities enter the
amplitude through Regge trajectories. Below, following Ref. [13], we present
a model amplitude realizing this principle and reproducing the observed
‘break’.

The t-channel threshold shown in Fig. 4 may enter both through leading
(Pomeron, Odderon) or non-leading (f, ω) trajectories. While at the LHC,
the low-|t| are dominated completely by the Pomeron contribution (whatever
it be!) [12], at the ISR energies, secondary Reggeons are not negligible, at
least in nearly forward scattering.

A cut Pomeron trajectory including the lowest-lying 2mπ cut may be
approximated by [13, 20]

α(t) = 1 + δ + α′t− γ
(√

4m2
π − t− 2mπ

)
. (1)

The linear term in Eq. (1) is an effective contribution from heavy thresholds
in the trajectory. It can be ignored in a limited range of small |t|, as shown
e.g. in Ref. [21], Eq. (1) therein.

In the next section, we extrapolate in s the forward cone from the ISR
to the LHC energies. This is not a trivial task since a detailed fit requires
the inclusion at ‘low’ ISR energies the contribution from at least four tra-
jectories, namely that of the Pomeron, eventually the Odderon, and two
secondary Reggeons, f and ω. Postponing this discussion to a forthcoming
detailed analyses, here we use a single ‘effective’ trajectory that at the low-
energy part mimics all contributions mentioned (at the LHC energies, it is
the Pomeron alone, see Ref. [12]).
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4. Extrapolating from the ISR to the LHC

To extrapolate the cross section (or just the slope) from ‘low’ (ISR)
energies to those at the LHC, we use a simple single Regge pole amplitude
with an ‘effective’ trajectory that is close to the Pomeron dominating the
high-energy region. The intercept of the trajectory α(0) = 1 + δ, following
the Donnachie and Landshoff approach [22] to high-energy phenomenology,
will be set slightly above 1. The relevant scattering amplitude reads

A(s, t) = g ebts̃α(t) , s̃ = −i s
s0
, (2)

dσ

dt

∣∣∣∣
th

=
π

s2
|A(s, t)|2 . (3)

We use a representative Pomeron trajectory, namely that with a two-pion
square-root threshold, Eq. (1), required by t-channel unitarity and account-
ing for the small-t ‘break’ [13].

The normalized ‘experimental’ points of R(t) are defined as

R(t) = ((dσ/dt)exp − (dσ/dt)lin) /(dσ/dt)lin , (4)

where (
dσ

dt

)
lin

= aebt . (5)

The theoretical values of R(t) are calculated from

R(t) = ((dσ/dt)th − (dσ/dt)lin)/(dσ/dt)lin . (6)

Those for (dσ/dt)th correspond to the solid curve in Figs. 5 and 6 calcu-
lated as the best fit of (1)–(3) to the experimental differential cross sections
for a given energy with the free parameters a, b, and fixed δ = 0.08 and
α′ = 0.23, γ = 0.10 and t0 = 4m2

π, where mπ is the pion mass.
For all energies, the value of R(t) clearly demonstrates concavity at t =

−0.1 GeV2, which is in qualitative agreement with the ‘experimental’ one in
R(t)exp.

The value R(t) 6= 0 around t = −0.1 GeV2 means that the experimental
data (dσ/dt)exp are not compatible with a simple exponential.
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Fig. 5. R(t) calculated at ISR energies.
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Fig. 6. R(t) calculated at 7 and 8 TeV.

5. Tiny oscillations?

Besides the ‘break’ discussed above, small-|t| oscillations on the smooth
exponential cone may also be present. They were discussed in a number of
papers — theoretical and experimental [15, 24–28]. Since the amplitude of
the possible oscillations appears to be close to the error bars, it is still not



872 L. Jenkovszky, A. Lengyel

clear whether this is an experimental fact or an artefact. In Refs. [14, 15],
the low-t data were fitted to a model which, apart from the t0 = 4m2

π cut,
contains also an oscillating term (in the cross section or in the slope B(t))

B(t) = 2

[
b+

(
α′ − γ

2
√
t0 − t

)
ln(s/so)

]
+ a cos (ωt+ φ) . (7)

The result is shown in Figs. 7 and 8. The dashed curves are calculated from
Eqs. (1)–(3) and they correspond to the smoothed part of (7), see Ref. [15].
Note that, since the derivative of an oscillating function is also oscillating, it
makes little difference whether one is fitting the cross sections or the slope.
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Fig. 7. Local slope B(t) calculated at 23.5 GeV, 32.5 GeV and 45 GeV for overlap-
ping bins.

The overlapping bins method (see Appendix) may be extremely useful
in performing this delicate analysis. Since the earlier (theoretical and ex-
perimental) results are still inconclusive, new measurements (e.g. those by
the Denisov group in Protvino [27]) are very important to shed new light on
this phenomenon.
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Fig. 8. Local slopes with overlapping bins calculated at 7 and 8 TeV.

The physics behind the possible low-t, small amplitude oscillations may
be related to those at large impact parameters. As discussed in Ref. [35],
large-distance residual van der Waals forces may be responsible for these
oscillations.

6. Conclusions

Figures 1–3 are introductory, showing published results on the ‘break’
(we reiterate that the ‘break’ implies a smooth curvature). Subsequent fig-
ures show the results of our calculations, including the errors quoted also
in the tables. We conclude that the ‘break’ observed [3] by TOTEM near
t = −0.1 GeV2 at 8 GeV is a ‘recurrence’ of a similar structure seen in 1972
at the ISR.

Note that no ‘break’ was seen at the Tevatron at 1.8 TeV. Possible reasons
for the non-appearance of the ‘break’ in p̄p may be related to the Odderon
contribution masking it. In any case, poor statistics of those data prevents
from any definite conclusion concerning the presence of fine structures at
the Tevatron.

While the change of the slope B(t) near −t ≈ 0.1 GeV2 appears to be a
universal and well established phenomenon (although its energy (in)depen-
dence needs better understanding), the status of the tiny oscillations is still
ambiguous. It may be that the ‘break’ near t = −0.1 GeV2 is part of the
oscillations [15].

In the present paper, the low-t structured was scrutinized by calculating
both the ratio R(s), Eqs. (4)–(6), and the slope B(t). In our opinion both
are equally useful and they are complementary.

Useful discussions and correspondence with Mirko Berretti, Tamás Csörgő,
Simone Giani and Jan Kaspar are acknowledged.
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Appendix

The overlapping bins method (OBM)

The fine structure of the diffraction peak in the differential pp- and pp-
elastic cross section was first observed in [23] at the ISR [6], followed by
the UA4/2 experiment [7] by normalizing the differential cross section to
the smoothly varying background in the impact parameter representation
[25]. In [24], an attempt was made to relate the observed structure near
|t| = 0.1 GeV2 to the variation of the opacity in b-space, probably reflecting
the density oscillation in matter. The possible existence of oscillations with
even smaller periods was discussed by several authors [31].

In Ref. [14], an entirely different method to identify the fine structure in
the pp- and pp-elastic scattering was proposed. The method, unlike that of
[32], is based on the use of overlapping bins of local slopes. Small oscillations,
over the exponential cone, with a characteristic period were discovered. It is
obvious that in order to determine the nature and periods of the oscillations,
one first has to improve the reliability of the initial information contained in
the experimental data by suppressing the influence of statistical fluctuations.
This problem can be settled by means of the well known method of maximum
entropy [36], used in many areas of physics. Recently, it has been applied
[37] to the hadron scattering data.

The method is based on the use of overlapping bins of local slopes.
To check the expected behaviour of the slope

B(s, t) =
d

dt
ln

(
dσ(s, t)

dt

)
(8)

over t, one must operate with its ‘experimental’ value.
Provided that (

dσ

dt

)
i

=
∣∣∣aiebit∣∣∣2 (9)

has been measured for a given s at N |t|-points lying in some interval
[|t|min, |t|max], we adopt the following procedure. First, we divide this in-
terval into subintervals or elementary ‘bins’ (with nb measurements in each
of them, assumed for simplicity to be the same for all bins). Once the first
bin is chosen, the second bin is obtained from the first one by shifting only
one point of measurement (of course, one could shift it by any number of
points less or equal to nb, the shift of one point is the minimal one giving rise
to the maximal number of overlapping bins). The third bin is obtained from
the second bin by shifting of one data point etc. Thus, we define N −nb + 1
overlapping bins for a given s. For each (kth) bin, nb must be large enough
and its width (in |t|) small enough to allow fitting

(
dσ
dt

)
with the simplest
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form directly involving the t-slope b (9). The parameter b represents the
value of the t-slope B (〈t〉k, s) ‘measured’ at s and ‘weighted average’ 〈t〉k.
This yields the ‘experimental’ values of bk(s, tk) with the corresponding stan-
dard errors determined in the fit of (9) to the data. Then, the procedure
is to be repeated for all bins and ultimately for other ts at which

(
dσ
dt

)
was

measured. A regular structure in the local slope of diffraction cone B(s, t)
was found by the procedure of the overlapping bins described above and
applied to experimental data [14]. However, if one has the bins of ∼ 10
points and shifts them at each step by one only, the overlap my be so strong
that the information from the neighbours is extremely correlated and one
can ascribe the regular tendency of the final plot increase (or decrease) in
many neighbouring bins to this correlation.

To resolve these doubts, the local slopes were re-evaluated with the help
of the Overlapping Bins Metod (OBM) by the LSQ method with the so-
called ‘non-independent’ ys, [34].

Rather than minimizing the functional

s =
N∑
1

(
f (ti,a)− yi

∆yi

)2

, (10)

the form

s =
N∑
ij

(f (ti,a)− yi)wij (f (tj ,a)− yj) (11)

can be used.
In the framework of the OBM calculus

s =

N∑
j=1

j+n−1∑
i=j

(f (ti, aj)− yi)2

∆y2i

−
N∑
j=1

j+n−2∑
i=j+1

(f (ti, aj)− yi) (f (ti, aj+1)− yi)
∆y2i

. (12)

Calculations using correlation over Eq. (12) for the same set of points in-
dicate that the errors ∆bi are reduced and oscillations are revealed more
distinctly, i.e. the relation between the value of errors and the amplitude of
oscillation can be improved.
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