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In this work, we have analyzed the dynamics of the model of a free
particle over a 2-sphere in a noncommutative (NC) phase-space. Besides,
we have shown that the solution of the equations of motion allows one to
show the equivalence between the movement of the particle upon a 2-sphere
and the one described by a central field. We have considered the effective
force felt by the particle as being caused by the curvature of the space.
We have analyzed the NC Poisson algebra of classical observables in order
to obtain the NC corrections to Newton’s second law analogous to the one
caused by a central field. We have also discussed the relation between affine
connection and Dirac brackets, as they describe the proper evolution of the
model over the surface of constraints in the Lagrangian and Hamiltonian
formalisms, respectively. As an application, we have treated the so-called
Zitterbewegung of the Dirac electron. Since it is assumed to be an observ-
able effect, then we have traced its physical origin by assuming that the
electron has an internal structure.
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1. Introduction

The great interest in noncommutative (NC) space-time theories nowa-
days had inspired the analysis of both several models/theories and the be-
havior of the divergences in this ‘new” regime. The last one, by the way,
was the original motivation that made Snyder to publish the first paper on
the subject [1]. However, since it was demonstrated that the tame of the
infinities of QFT was not accomplished [2], the NC formalism was put to
sleep for more than fifty years. The string formalism [3] has awaked the
noncommutativity procedure and since then we have witnessed the growing
interest on noncommutativity [4]. One of these interests is to observe what
is the contribution of this formalism concerning both classical mechanics and
general relativity. There are several ways to introduce noncommutativity in
a physical system. One of them is through the introduction of the so-called
NC parameter, which has area dimension and its value is within Planck
scale, we can say that, when introduced in classical theories, it could mean
a kind of semi-classical approach. Therefore, considering general relativity,
noncommutativity is one candidate to obtain a path to quantize gravitation.
Considering other classical systems, the introduction of noncommutativity
can be realized as a link to Planck scales, like quantum mechanics and its
possible relation to UV/IR mixing [5].

In the specific case of classical mechanics considered here, one can an-
alyze the contribution of noncommutativity in order to add a perturbation
in Newton’s second law for the systems considered [6]. Namely, since the
equations of motions are modified, when treated in a NC space, we can ask
about the effects in the acceleration coordinate |5, 6]. Here, we will describe
classically our system, a free particle in a curved space, i.e., a 2-sphere.

Classical mechanics is one of the most enlightening starting points for
introducing many distinct mathematical tools such as differential equations,
symplectic structures [7] and, in particular, the basic concepts of differen-
tial geometry. For example, in [8], the author used a potential motion to
construct the corresponding geometric setting. In this way, some notions
such as Riemann metric space, Christoffel symbols, parallel transport and
covariant derivative were introduced. We extend this idea here. Instead
of treating a potential motion, we will describe a free particle constrained
to a curved surface. By constructing its corresponding Lagrangian, we are
naturally led to a free motion in a Riemann space. Definitions of metric and
Christoffel symbols appear in the course of constructing the dynamics of the
model.

We will analyze in details the movement of a particle over a 2-sphere,
which is the analog to the nonlinear sigma model problem, which was in-
tensely studied in the past (see [9] and references within). Solution of the
equations of motion are given in two different ways. Firstly, we will ex-
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plore the geometrical properties of the model and after that, we will use
the Noether charges to decouple the equations of motion. Moreover, due to
the symmetrical structure of the 2-sphere, we will establish the equivalence
between the motion in a central field and the free particle over the 2-sphere.
It turns out that the central potential is proportional to the curvature of
the surface. Then, constrained systems may be also a suitable analogue
formalism to introduce general relativity, once Einstein interpreted grav-
ity as a deformation of space-time due to the presence of mass [10]. We
will also treat the corresponding hamiltonization of the free particle over
the 2-sphere according to the Dirac algorithm for constrained systems [11],
which enables one to establish the intrinsic relation between the Dirac brack-
ets and Christoffel symbols, since both of them are supposed to provide the
proper evolution over the surface where the model is defined, the first in the
phase space and the former, in the configuration space. Although all the
calculations are performed classically, we will discuss an application in the
quantum realm. We set one possible interpretation of the so-called Zitter-
bewegung, a quivering motion predicted by Schréodinger when he scrutinized
the Dirac equation [12]. The time evolution of the electron position opera-
tors may be separated in two parts: one in a rectilinear movement and the
other oscillates in a ellipse as trajectory, resembling the physical variables of
a free particle over a 2-sphere. Thus, the Zitterbewegung may be interpreted
as a position variable constrained to a 2-sphere if we assume an internal
structure to the electron.

The paper is organized as follows. In Section 2, we will discuss an al-
ternative way to introduce a constraint into a Lagrangian. We show the
equivalence between the formulation to describe the model in terms of phys-
ical variables and the one where the constraint is inserted via Lagrange
multipliers. Sections 3 and 4 will be dedicated to a detailed analysis of a
particle over a 2-sphere. The construction of the action in terms of physical
variables and its limits according to the principle of least action lead natu-
rally to the concepts of metric and affine connection. We will also obtain the
general solution of the equations of motion. In Section 5, we will establish
the equivalence between the movement in a central field and the one taken
by the physical variables of our particle over a 2-sphere. In Section 6, we
will provide the hamiltonization of the constrained system described in the
previous sections. The application concerning the electron Zitterbewegung
will be discussed in Section 7. In Section 8, we will introduce noncommu-
tativity in the system and through the equations of motion, via symplectic
framework and Poisson brackets, we will analyze the results. Section 9 will
be dedicated to the conclusions and perspectives.
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2. Constrained systems: the basic formalism

The basic path to introduce a constraint into a Lagrangian is via La-
grange multipliers. Equivalently, knowing a priori the constraint of the
model, one may find one of the variables in terms of the others and include
it into the Lagrangian, leading to a new formulation in terms of physical
variables, i.e., whose dynamics is independent of the remaining ones. Our
first step in this notes is to show the equivalence between the new and for-
mer formulations. Besides, this section also fixes the notation which shall
be used throughout the paper.

Let us consider a free particle constrained to the surface

o (2') =0, (1)

where 2! = 2%(t); i = 1,..., N are the coordinates of the system. There are
technical conditions satisfied by the function @ where we can find one of the
variables, say !, in terms of the others,

P (z') =0z = f(a%); a=2,...,N. (2)

From now on in this section, Greek letters mean the values 2,...,N. In
this case, ! is a nonphysical degree of freedom because its dynamics is
dependent of the remaining variables . If L = L(2%, &) is the Lagrangian
of the free particle in the absence of the constraint (1), then the prescription
to construct an action in terms of the physical variables z¢ is the following

Si = /dtL (z',4")

wl=f(z)’

i — dx’

where we have denoted z* = - We can also write that

=L <a:1: f(z®),d! = af#,ﬂ,ﬁ) = L(z®, &%) . (4)

L (2, i") 57

wl=f(z%)

The notation L indicates the substitution of z! = f(z%) in (3) and repeated
indexes mean summation, as usual. To obtain the Euler-Lagrange equations
of (3), we evaluate separately the derivatives of the expression (4)

OL (z*,i*) OL (2%, 2%)

of OL (m’,azz) 0% f .5 oL (wz,:c’)

orr . ont |ow T 0l |9w0aP” o |'®)
OL (z, %) B oL (mi, :C’) of 0L (:Ei, azz) (©)
el gt dxY Bhal ’
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where | corresponds to the substitution expressed in (3). It will be used in
subsequent calculations. Hence, the equations of motion given by

08 _OL(x%,3%) d <aL (ma,:'ca)> 0 )

Sa7 0z dt i

provide, after rearranging the terms,

0S1| 051

dx7| " oxt

9 _y, (8)

oxY

ozt

The idea here is to show that one may insert the constraint @(x%) = 0 into
the initial Lagrangian leading to an equivalent description. Let us consider
the following action

Sy = / dtL (z%,3%, ) | (9)
defined in an extended configuration space parametrized by x* and ), where
L(2%,d"\) = L (2", 3") + A (27) . (10)

The functions L and @ are the same as the initial construction and X is a
Lagrange multiplier. Hence, the Euler-Lagrange equations are

08y oL (xl,ml) o¢ d (0L (x’,xl)
oot ~ V7 Paa Tt e ) W
05y oL (xl,ml) o¢ d (0L (a:l,ajl)
Sz 0= oxY * )\(%W T dt oz ’ (12)

From (11), we can find that

(o N\ '|OL(2,d') d (OL(a%,d)
)\__<8xl> [ ol _dt< ot ‘ (14)

The substitution of (14) in (12) eliminates the A-dependence of equations
of motion

OL(x%,3") d <0L (x’,ajl))

dt i

ox" Cdt
oo\ ' 0 |OL (z%,4) d (OL(a',3") 0 5
\ozl ) orl  dt P =0. (19
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Finally, from (13) and according to (2)
(z')=0&z" = f(z%). (16)
Substitution of ! = f(z%) into the constraint ¢(z%) = 0 gives the identity
o (z' = f(2%),2%) =0, (17)

whose derivative provides

— d 1 _ a a\ oP (:’Uz) 8f oP ($Z>
0= %dj (2" = f(2%),2%) = oxl |0z oxv | (18)
Then, we have that
o [o@ ()] oo (1) "
0z | ozl oY |’ (19)

This expression appears in (15), which is now rewritten by eliminating x!

oL (ah,i%)  d <8L @@)] ‘

orY  dt 017

OL (z',4") d [OL(a%, ") of
+ [ ort i ( Dl Bz (20)
Since % (L) = %L we arrive at
51| 6Si|af
07| T oat o~ O (21)

These are the same equations of motion of the initial formulation, see (8).
The equivalence between both constructions that have been developed so
far becomes clearer if we compare the number of degrees of freedom in each
description. The initial construction described by L = L(z7,47) was formu-
lated by eliminating ! with the previous knowledge of the constraint surface
the model is immersed in. We are left with N — 1 degrees of freedom. On
the other hand, the second one starts with N + 1 variables. First, we have
excluded A from the description by using (11). Then, with the help of (13),
x! was eliminated, see (16). These two steps left us with N+1—-2= N —1
degrees of freedom, as expected. This concludes the equivalence between S
and S2. An application will be treated in the next section, when we consider
the example of a particle over a 2-sphere.
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3. A concrete example of constrained dynamics:
particle over a 2-sphere

We will now discuss an application of the result found in the last section.
Actually, the main aim of these notes is the classical and NC descriptions of
a free particle over a 2-sphere. Besides, the example of the particle over a
2-sphere will be used for a classical description of the Dirac spinning electron,
see Section 7.

Let m be the mass of the particle and z* = 2%(¢), i = 1,2, 3, its spatial
coordinates. Since we want to formulate the particle evolution constrained
to a 2-sphere, we take the following action,

S\ = /dt [%(&jiil“j + A (5ijl‘il‘j - Cﬂ)} ) (22)

where §;; stands for the delta Kronecker symbol and A is a Lagrange mul-
tiplier. Sy has manifest SO(3)-invariance, which guarantees, for example,
conservation of angular momentum. The equation of motion for A\ gives the
desired constraint

Sijrtal = a?. (23)

So, Eq. (22), in fact, describes a free particle over a 2-sphere of radius a. On
the other hand, we could exclude one of the variables with the help of (23)

2% = +4/a% — §;wiad (24)

where 4, j run the values 1 and 2. Concerning the parametrization of the
2-sphere, we take the upper half plane 3 > 0. Then, according to (3), we
substitute (24) into the action for the free particle in a flat 3-dimensional
space leading to

Son = / dt%gaﬁa’:%ﬁ, (25)

where ‘ph’ refers to the physical variables and we have that

Talp

gaﬁ($) = 5(16 + (26)

a? — djxiad
The action was named Spp since we have eliminated the spurious degree
of freedom z3, obtaining an equivalent description of the particle over a
2-sphere in terms of physical variables z!', z2. It has a simple interpretation:
since the particle is constrained to a 2-sphere, (25) describes a free particle
in a Riemann space whose metric is given by g. [13]. The elimination of
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23 naturally led us to the concept of first fundamental form (or metric) [14].
In the limit a — +o0o, we have a free particle in a flat bi-dimensional space.
Namely, gog — dop and the Lagrangian originated from (25) becomes the
kinetic energy of the particle,

oasi®d’ > [+ ()] 21)

We now turn our attention to the time evolution of the model. The
dynamics is governed by the principle of least action. The minimization
0Sph = 0 gives the equation of motion

(07

N (28)
where
G%p=g"" (%87905 - 80%5) : (29)

g™ corresponds to the inverse of the metric: g*? gsy = 0% and 0y = 8%.
Explicit calculation of G gives

GOy = lwado‘g — 280% B 9o
o8 = )

2 a?— 6,7z a? (30)

The first term of G is antisymmetric on ¢ <> 8. Then, it vanishes when
contracted with the symmetric factor 745 of (28). We are finally left with

i+ I,iP37 =0, (31)
and I is given by
xOL
gy = 298 (32)

where (31) is the equation of a geodesic line: the particle chooses the tra-
jectory with the shortest length. Moreover, the principle of least action
gave us the Christoffel symbol or affine connection I'“g,. Once again, the
“static” concepts of differential geometry (geodesic line and second funda-
mental form I') were discovered via a dynamical realization. In the limit
a — +oo, the equation of motion tends to

i =0, (33)

which corresponds to the motion of a free particle (in flat bi-dimensional
space) since I'*g, — 0, in accordance with our intuition.

In the next section, we will solve the equations of motion (31). It will
be accomplished in two different ways. The first one is by exploring the
geometric setup that the model was constructed and the second one is by
using the conserved currents obtained from the Noether theorem [15].
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4. Solution to equations of motion

Let us now obtain the solutions of the equations of motion (31) in the
commutative plane. It will be obtained via two different approaches. In the
first one, we will use the geometric structure of the problem, i.e., since the
particle is free, it is supposed to describe a circumference of radius a with
constant angular velocity. Besides, we will also use the Noether theorem
which provides two integrals of motion, which allow us to find the general
solution of equations of motion.

4.1. Solving equations of motion: geometrical point of view

There is a standard way to solve the equations of motion in different
models: if we know a particular solution, the general one is obtained by
applying a transformation group in which the model is based on. For ex-
ample, in [16], the author finds general spinors connected with an arbitrary
state of motion of the Dirac electron by boosting plane wave solutions of
the Dirac equation for a particle at rest. We will use the same prescription
here. Initially, we take the following particular solution,

0
2'(t) = | asinwt |, (34)
acoswt

that describes our free particle with constant (and arbitrary) angular veloc-
ity w constrained to the 2-sphere of radius a. A direct calculation shows
that it satisfies (31). We have restricted the motion to the plane x2x3. The
general solution is achieved by three successive passive rotations around z?,
x? and x> axes. The rotations introduce three new and arbitrary parameters
which, combined with w, complete the necessary number of four constants
of integration concerning the second order equation (31). Denoting R i (6;)

the rotation around z’-axis by an angle 0;, we have

() = [Rys(03)]" ; [Ry2 (02)) & [Rar (01)]" ' (1) (35)

where, for example,

1 0 0
Rp(01)=1 0 cosfy sinb; | . (36)
0 —sinf; cosb,

The other matrices R,2(02) and R,3(f3) are well-known from the SO(3)-
group. The parameters ; are the Euler angles, taken in the z'2z22? con-
vention. For different representations of the Euler angles, see for example,

[17, 18].
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So, for the general solution one can obtain that

‘ a sin 0y cos O3 cos(wt + 01) + asin O3 sin(wt + 67)
x'(t) = | —asinfasin bz cos(wt + 01) + a cos O3 sin(wt + 6;) . (37)
a cos 0y cos(wt + 607)

In Section 3, we have withdrawn the variable 23 from the description. One
may check that the expression above obeys the identity

22 (t) = Va? — (a1 ()? - (2%(1))?. (38)

Then, the physical solution is given by the projection of #! = x%(t) onto the
plane 2'z2. On this plane, the trajectory is an ellipse. In fact, with no loss
of generality', we take to the solution

F(t) = [Ry2(02))" & [Ror (61)]" /' (1) (39)
in the plane z'z?,
(1) = < o ot ) ' (40)

The trajectory is obtained by excluding the time of the parametric equations
(40). Tt is given by

(@) @
a? sin? 6, a2 L (41)

which is the equation of an ellipse.
Finally, the general solution that we were looking for is given by the
projection of (37) in the plane z'z?,

o) = a sin B cos B3 cos(wt + 01) + asin O3 sin(wt + ;) (42)
v ~ \ —asinfysinfs cos(wt + 61) + acosbzsin(wt +601) )’

whose trajectory is an ellipse. One then can ask about the possibility of in-
terpreting this movement as generated by a central field. It will be discussed
in Section 5. Our next step consists of finding ® = x®(t) with the help of
conserved quantities.

! The only effect of the last rotation R,3(63) is to make the semi-axes of the ellipse
not coincident with the coordinate axes z* and z2. Thus, for simplicity, we obtain
the trajectory by looking to the solution % in (40).
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4.2. Solving equations of motion: conserved quantities

One of the most impressive results in classical mechanics is the Noether
theorem: if an action is invariant under a global transformation, then there
is a related integral of motion, known as Noether charge. In our case, we
may look at (22) or (25) since they are equivalent. Considering that (22)
has a global SO(3)-invariance,

a' — 2" =Rual;  where RT =R7'. (43)
It implies the conservation of angular momentum

dL;
dt

Li = meypal it = =0. (44)

One may also look at the expression (25), which is invariant under time
translations

t—t =t+7. (45)
In this case, the corresponding conserved quantity is

m ca
B =2 gup(2)i®i? (46)
where E is considered as the energy of the particle. We now turn our at-

tention to the equation of motion (31). It is immediately decoupled if we
use (46)

o 28
B+ 5 g50i"d7 = 0= 4 2% =0, (47)

Thus, the solution of (47) can promptly be written

2mE
x(t) = A%sin(2t + ¢q) ; = mn; , (48)

where A% and ¢, are arbitrary constants of integration. Substitution of
solution (48) in (44) and (46) gives, respectively,

Ls

i —AtA? sin(y2 — ¢1) , (49)
1\2 22 _ 2 L:Qa
(A1) + (A7) = @+ o=, (50)

and (49) means that the angle between 2!(t) and 22(t) is po — 1. If we
assume that po — 1 = 7, then the general solution may be achieved by
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rotating the particular solution with this restriction. So, first if we substi-
tute (49) in (50), we have that

(A)* (4" o L
2 = A —aiA——W.

We have then a particular solution z
dicular

(A1) + (4%)" =a? + (51)

1

o __ e}

- 5 (t), where x

and xg are perpen-

asin(2t + ¢1)

zp (1) = ( —\/2L7?17ECOS(\QI§+QO1) > ' (52)

A final general solution can be obtained by rotating the particular solution
above in an active way,

! cosy  Sinyy zl
( 22 ) 7\ —sinps  cospso :cg ’ (53)

() = a cos o sin(2t + 1) — \/ifliE sin gy cos(2t + 1) (54)
“ | —asinposin(2t + 1) — \/QL%—E cos po cos(t + 1) |

that is,

As expected, we have four constants of integration: o192, E/ and L3. Equiv-
alence between the two solutions (42) and (54) is manifest if we write

w = 2,
1 = o1,
T
3 = 902-1-5,
L3
asinfy = . 55
2 2mE < )

In the next section, we will discuss a possible interpretation of the so-
lution of the equations of motion in terms of an effective central potential
induced by the space curvature.

5. Equivalence between a central force problem
and the particle over a 2-sphere

The movement of the particle over the 2-sphere was completely described
so far by the physical variables x®(t), a = 1,2, see (42) or (54). Since the
trajectory is an ellipse, one may think that it could be derived by a central
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field. So, the objective of this section is to show that the solution z%(t)
is equivalent to the one described by an isotropic harmonic oscillator. We
already know the time evolution of the particle. The idea is, instead of
solving a differential equation of motion, we would like to obtain it. For
that, we will use polar coordinates (z!,2%) « (r,0)

x! =rcosf r=/(z')? + (22) (56)

. 2

22 =rsinf f = arctan (i—l) .
For simplicity, we have used the solution (40). Let us construct the differ-
ential equations obeyed by the coordinates 6§ and r. We have that

xQ(t) sin A
6(t) = arctan <x1(t)> = arctan <SH102(IOSA> , (57)

r(t) = av/sin26;cos2 A + sin A, (58)

where we have used the shorthand notation A = wt + ;. First time deriva-
tive of (57) gives

wa? sin Oy L3
o(t) = = 59
(*) r2(t) mr2(t)’ (59)
since the angular momentum L3 is given by
Ly =m (#*z' — i'2?) = mwa®sin s . (60)

We turn our attention to the radial variable. It is a tedious but rather
direct calculation to obtain the second order time derivative of Eq. (58). We
have

B wa? sin 2A (1 — sin? 92)

(t) = 61

i(t) o (61)
The second time derivative reads

i w?a? cos 2A (1 — sin? 6;) B wa?sin2A (1 —sinfs) | (62)

r 272

Substituting 7(¢) into the expression above, one can find after rearranging
the terms,

w?a*

i::

3 [— (cos® Asin? 65 + sin? A)2 + sin® 0 (sin® A + cos® A) 2] , (63)
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which multiplied by the mass of the particle becomes

L2 - L2
ing = mit = —mw’r + m—?i,) . (64)

mit = —w’r +

Equations (59) and (64) are exactly the ones which rule the movement of
a particle in a central field [17]. Equation (64) may be seen as the second

Newton’s law for a particle in a isotropic harmonic oscillator. The term
2

% corresponds to the centrifugal force always present when one writes a
central force in polar coordinates. The first term, that has been associated
with the harmonic oscillator, may be considered as an effective force due to
the curved space the particle is constrained to. In fact, we construct the
scalar or total curvature of the surface

R = gaﬂ (67F7a/3 - (95[‘70[7 + F/YOCBFA)\'Y - Fvaklﬂ)\ﬁv> : (65)

Using the Christoffel symbols (32) and the inverse of the metric

a8
ga/8:§a/6+1: x

at (66)

one obtains

R=2. (67)

a2

It turns out that the constant force of Newton’s second law (64) is propor-
tional to the total curvature

2mE
k=mw?=m m

o = RE. (68)

Thus the movement of the free particle over a 2-sphere projected in z!'z2-
plane is equivalent to the movement described by a particle in a central
effective potential

RE L
Verr(r) = 1?4+ =

2"t o (69)

and both potentials, V(r) ~ 1 and V(r) ~ r? produce the same trajectory,
i.e., an ellipse.
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6. Hamiltonization of constrained systems: interpretation
of the Dirac brackets based on geometric grounds

Since our discussion on the dynamics of a constrained system has been
restricted to the Lagrangian formalism, the objective of this section is based
on the hamiltonization of the Lagrangian L. At the time when Dirac pro-
posed his formalism, it was not completely understood how to introduce
constraints into the Hamiltonian formalism [11], which is a solved problem
nowadays [13, 19-21|. Hamiltonization of L) leads to the so-called Dirac
brackets and we will provide its geometric interpretation. The construc-
tion of the Hamiltonian concerning (22) begins with the definition of the
conjugate momenta

oL
= 70
Y2\ an ( )
where we wrote collectively ¢ = (2%, \). According to the formalism, we can
use the expression of conjugate momenta to obtain the maximum number
of velocities as functions of momenta and configuration variables

oL pi= 2k o it = Lp,
=— m . 71
PA= 5¢a {png%imzo (7)

Let us define 77 = p) = 0 and call it as primary constraint. The complete
Hamiltonian is defined in extended phase space g4, pa, v

. 1 i\ 2
H=pag" — L+uvpy= %PZZ —A [(xl) - az} + Upx s (72)

where v is a Lagrange multiplier and all velocities enter into H according to
(71). Let us write the equations of motion via Poisson brackets again such
that

i = {¢"H} = = (73)
) )\ = )
pi = {pi, H} =2X\a". (74)
Since a constraint must be constant, one obtains the following chain of sec-
ondary constraints

. 2

Ty = pr={p\H} = To = (2')" —a® =0, (75)

Ty = Th={Tp,H} = Ty = 2'p; =0, (76)
. 1 .

Ti = Ty = (T3, H} = Ty = —p] +2) (%)% (77)
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Finally, the evolution in time of T} allows us to find the Lagrange multiplier v
v=0. (78)

The matrix Ty, = {Ta, Tp}; a,b = 1,2,3,4 is invertible, then according to
the Dirac terminology, the constraints are called second class (actually, the
existence of 7! is the reason why all multipliers have been found [13]). The
Dirac brackets are

{A,B}Y = {A, B} — {A,T,}T,,'{Ty,, B} . (79)

So, the equations of motion are defined over the constraint surface and one
may forget about the equations T, = 0. They read

Y = {Y,Hy}*, (80)

where Y = (2, p;) since the sector (A, px) may be omitted and Hy = H —vpy.
The basic Dirac brackets for the (z*, p;)-sector have the form

{xi,xj}* =0, (81)

{af, P} = o - m;fj, (82)

Y = —— (@ — a7y | (83)
a

Since the equations of motion described via Lagrangian formalism give the
proper time evolution of the particle over the surface as well as the La-
grangian and Hamiltonian formulations are equivalent [19], one expects a
relation between Christoffel symbols and the Dirac bracket. To see this, first
we decouple the equation for z°

mi' = p' = mi' = 2\’ (84)

With the help of the constraints T, Ty and (73), we obtain that

.\ 2
m (&
A=— 2(a2) (85)
Then,
@)
&' =—gat (86)

On the other hand, we may write

, 1 .
it = —{p', Ho}" |, (87)
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where | denotes substitution of p; in terms of position and velocity variables,
see (71). The a-sector (o = 1,2) of equation (86) coincides with equations
of motion (31) of the Lagrangian formalism. Comparing it with (87), one
finds

{Ho,p"}*| = mI® 5,337 = —5% . (88)

This calculation that compares equations of motion in both Lagrangian and
Hamiltonian formalisms shows the intrinsic relation between Christoffel sym-
bols and Dirac brackets, as these structures are the ones responsible for the
time evolution of the particle in each formalism.

7. Application: spinning particle

The complete understanding of electron spin was accomplished in the
realm of quantum electrodynamics. If we consider the Dirac equation

ihoWw = HY:  H = ca'p; + mc2p (89)

as one-particle equation in Relativistic Quantum Mechanics then, in the
Heisenberg picture, the position operators experience a quivering motion [22]

. . . . 2% H
' =a"+bp't+ c'exp {—th} (90)

that may be considered a superposition of a rectilinear movement with an
2mc?

harmonic one, with high frequency % ~ . This harmonic oscillation
was named Zitterbewegung by Schrodinger [12]|. In recent literature, it has
been proposed a model with commuting variables that produces the Dirac
equation through quantization [23]. Analysis of the classical counterpart of
the model leads to the so-called Zitterbewegung, also experienced by spin
variables. In order to provide space-time interpretation for the evolution of
the classical position and spin coordinates, they were combined to produce
configuration coordinates whose dynamics is given by (see details in [24])
(2

F(t) = :Ui+cz%t, (91)

Ji(t) (A’ coswt — B'sinwt) | (92)

2|p|

with A%, B, p* being some constants, |p| = v/ —pup” and w has the same
order of magnitude as the Compton frequency. They evolve similarly to the
center-of-mass and relative position of two-body problem in a central field.
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The potential turns out to be V(J) ~ J?; J = |J!|. Assuming that (91) and
(92) are the position variables for the electron, then J* describes an ellipse
with restricted size (a particular feature of the model restricts the magnitude
of A and B' as well as their direction, since p;A* = p;B* = 0, center-of-
mass moves perpendicularly to the plane of oscillations). According to the
previous sections, we interpret J° as the physical variables for the motion
over a 2-sphere. This may explain the physical origin of the Zitterbewegung
if we assume that the electron has an internal structure [25]. It seems that
Dirac himself believed that the electron was not an elementary particle,
see [26]. The formalization of the idea developed in this section is in progress.

The idea of a composed electron goes back to the seminal paper by
Dirac on the unitary irreducible particle representations of the anti-de Sitter
group [27]. Actually, in his work, he found two remarkable representations
of SO(2,3), the isometry group of anti-de Sitter space AdSy. Those repre-
sentations do not have a counterpart in Poincaré group; they are typical of
SO(2,3). This means that, whenever the (Riemann) curvature of AdS, goes
to zero, these two representations may be combined in order to construct one
of the unitary irreducible representations of the Poincaré group in terms of
one-particle states. He called these representations singletons. These days,
singleton physics is an active research area [28]. Moreover, preons appear as
“point-like” particles and are conceived as being subcomponents of quarks
and leptons. This term was coined by Pati and Salam in their 1974 pa-
per [29]. Preon models set out as an attempt to describe particle physics in
a more fundamental level than the Standard Model [30]. In these preonic
models, one postulates a set of fewer fundamental particles than those of
the Standard Model, together with the interactions governing the dynam-
ics of these fundamental particles. Based on these laws, preon models try
to explain some physics beyond the Standard Model, often producing new
particles and a number of phenomena which do not belong to the Standard
Model.

8. Noncommutative classical mechanics in a curved phase-space

The discussion of noncommutative (NC) theories has attracted the lights
of the theoretical physics over the last few years since the work of Seiberg and
Witten [3], where the algebra of string theory embedded in a magnetic back-
ground has shown NC features. Since then the study of NC spaces brought
interesting results [4]. One of the motivations to study noncommutativity
(NCY) is the belief that in some theories, including gravity, the framework
of space-time must change at short distances. We can mention, for example,
besides string theory, the quantum Hall effect, which presents NCY in the
canonical coordinates and momenta [31].
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The NC idea is that, in order to describe a NC space, we would have the
commutation relations obeyed by their coordinate operators such as

(2, #7] =i0Y;  [#',p;] =id0;  [Bi D] =0, (93)

where we are using that & = 1 and the #%s are c-numbers with the dimen-
sionality of (length)?. Let us assume that this so-called NC parameter is
within the Planck’s area order, i.e., l123 = hG/c3, so we have that the tensor
0% must be of the G/c® order. Hence, in the classical limit, the symplectic
framework will not have % [6]. This result agrees with this kind of limit. At
the classical level, the quantum mechanical commutator is substituted by
the Poisson bracket via

[/1, E} —i{A, B} (94)
and consequently, the classical limit of (93) is
{«', 27} =075 {a',p;} =6 A{pip} =0, (95)

and the Poisson bracket must have the same properties as the quantum me-
chanical commutator (bilinear, antisymmetric, Leibniz rules, Jacobi iden-
tity). In this section, we will assume a symplectic structure given by (95) in
order to obtain the corresponding equations of motion. It is important to say
that there are NC formulations where the momenta commutator (Poisson
bracket) is not zero. But we will not analyze it here.

We will assume a symplectic structure for the classical mechanics of a
particle in a curved phase-space. The target geometry is the 2-sphere de-
scribed above. We will demonstrate that there is a correction term added to
Newton’s second law thanks to the curved configuration of the phase-space,
which shows that the space configuration alone can bring consequences to
the result. On the other hand, we will see that in a flat space, what causes
a NC correction is the potential function, which is a standard result in NC
classical mechanics. In the 2-sphere curved space, we will see that there is
a NC correction without the existence of a potential effect over the particle.
This result is coherent with the one obtained here that established analogy
between the curvatura of a 2-sphere and a central field.

Let us begin by describing the origin of the NC contribution in general-
ized (without a specific potential) Newton’s second law [5, 6, 32]. We can
define a theory as being formulated by a set of canonical variables £%, where
a=1,...,2n combined with a symplectic structure {£?, §b}. This structure
can be extended in order to accommodate arbitrary function of £ such as

OF oG
o5 &

{F.G}={e¢} (96)



898 E.M.C. ABREU ET AL.

where repeated indices are summed from now on. Equation (96) can be
used, of course, in classical mechanical systems [5, 6, 32] as the one we will
analyze in this work.

In Hamiltonian systems, we can use the structure given in (96) to write
the equations of motion for a Hamiltonian given by H = H (£*) such that

g = (¢ H} (97)
and for a generalized function F' defined in this space, we can write that
F={FH}. (98)

In our case, we will consider a phase-space given by the physical variables
x and y and so, £ = (2, ps,y,py). The algebra between these coordinates
are

{l"y} =0, {xvpx} = {yypy} =1, {p:papy} =0, (99)

where 6, as we said before, must have dimension of area. Let us consider two
arbitrary functions F' and G, defined on the phase-space. Using Egs. (96)
and (99), we have that

oF 0G ~ O0F 0G  OF 0G

F,G} = 09 —— - —— 100
{F.G} oxt zJ + ox' p; Op; ¢’ (100)
where 4,7 = z,y. For example, if we have a Hamiltonian of the standard
form with £ = (2, p;) such that
pip'
H = \% 101
P} V() (101)
using (98) and (100), we have the equations of motion given by
< < 0OH O0H .t OV
i i g\ — L A gl
z {a:, } B, + O x . + B
and analogously
) ov
=g (102)

Notice from these both equations that an obvious conclusion is that if V =0
(free particle) we have p; = constant and z° is a linear function of time.
Hence, the second term of &° is connected to V, an external field. We can
understand that the dynamics of the framework is ruled by the perturbation
caused by this external field in the NC phase-space. Newton’s second law
can be obtained analogously (from Eq. (98)) and the result is

ov 0%V

mit = + mo"

- 8.7}1

- Tl . 1
0xI0xy, Tk (103)
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This result was used to investigate several models in physics [33]. Here, we
want to verify how the phase-space curvature affects the NC contribution.
We can see that this new force can be understood, analogously to (102), as
the result of a perturbation in the classical phase-space as a consequence of
an external field.

In our case, we want to discuss the NC approach for the free particle in
a flat 3D space which has the Lagrangian given by

m cor s
Loy = ggaﬁxamﬂ7 (104)

where gqp is given in (26). From (104), we have that

mx(xx + yy)
aZ — 22 42’

o my(eE +yy)
py—my+ 2_x2_y25

px:mi'f'

; (105)

where we have used that x; = x and z2 = y. From Egs. (104) and (105),
the Hamiltonian is given by

1

= gma? [(a® = 2) pz + (a = ¥*) py — 2pzpyay] (106)

and our set of symplectic variables is given by & = (z,y, pz,py), as we said
before. Using Eqgs. (98)-(100) and the Hamiltonian in (106), we have the
NC equations of motion

. 1
1
i = o (@ =) pe —ayps =0 (o + ypery)]
o
Pz = 5 (fU +pzpyy)
) 1
Py = a2 (P + Papyz) - (107)

Notice that when # = 0, we have the standard commutative phase-space
equations of motion. Secondly, from (76), we can see the effect of a curved
phase-space. For a free particle, we must have p, = p, = 0, and this is the
result of a free particle in a flat phase-space. However, before the calculation
of p; or py, we can see the curvature effect already in & and . In other words,
we do not need the values of p, and p, to know that the curvature plays a
kind of potential in order to perturb the NC calculations.
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It is important to say that if we have NCY in the momentum bracket of
Egs. (95) and (98), we would have a f-term in the momentum dynamics of
(107).

After a long algebra the NC Newton’s second law for our particle on the
2-sphere is

L1 0
mi = ——— [z (a® = %) i = 20%ypapy — @ (a*+ ¥°) Py = ——5 (Pz+P})) Py
(108)
and
) 1 0
mij = = — [y ("= v*) o — 209"papy — y (" + ) L]~ —— (p§+p(§) p“;
109

and curiously we saw that in (103) the NC correction depends on the back-
ground space through the 6% parameter and also on the variations of the
potential. This result could lead us to think that for our free particle, the
NC corrections would be zero, as the expression obtained in [6] (Eq. (103))
could indicate. However, we can see in (108)—(109) that the curvature of
the space originates a NC correction as well, in spite of a zero potential. In
other words, we understand Eqgs. (108) and (109) as a new NC Newton’s
second law. At the final terms of Eqgs. (108) and (109), we can realize the
correction due to the NC rule. This correction term relies on the background
space through the NC #-parameter. However, we can see the 2-sphere term
represented by a, which is an expected result.

9. Conclusions and perspectives

To investigate some ingredients of the formalism that can lead us to work
in the Planck energy scale means to discuss the physics of the early Universe,
for instance, where quantum mechanics and general relativity were combined
and quantum gravity is formed. This is one of the main motivations to study
mechanisms that introduces Planck scale parameters in classical systems.
And this is one of the main motivations to use NCY in order to introduce
this so-called Planck scale parameter. In this work, we have analyzed the free
movement of a particle upon a 2-sphere considering NC classical mechanics
approach. In this scenario, we can consider a semi-classical approach where
the Planck constant was substituted by the NC parameter.

The NC Newton’s second law have shown us that the curvature of the
space acted the same way as if there was a potential since the particle flat
space acceleration has the NC contribution given by the potential, namely,
the NC contribution would be zero but it is not. In the 2-sphere free particle
dynamics, the NC additional term is different from zero, which means that
its origin is the curvature of the system.
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The introduction of the NC contribution make us also ask what would be
the nature of the potential effect caused by the curvature. In other words,
since in a free particle flat space system the NC contribution is connected
with a potential such that if V' = 0, we have no contribution, and in the
curved space this effect does not happen, what is the physical meaning of this
potential-type effect brought by the curvature? And in the case of curved
space and V # 07 Where would the NC contribution appear?

Furthermore, we have also introduced some basic ideas of classical me-
chanics and differential geometry. We started by formulating the procedure
of introducing constraints into the Lagrangian formalism: they were inserted
via Lagrange multipliers and we have demonstrated that this procedure leads
to the same number of degrees of freedom and equations of motion if we have
obtained one of the variables of the known constraint and substitute it in the
free Lagrangian. After that, we have given a detailed analysis of a particle
constrained over a 2-sphere.

Basic notions of differential geometry, such as the metric and Christoffel
symbols, appear as a consequence of the description of a constrained La-
grangian system and its corresponding principle of least action. A solution
of the equations of motion was given based on geometric grounds and with
the help of the Noether theorem. It was also shown that physical position
variables of the model evolve over an ellipse. We have proposed a central
force problem whose solution for position variables are the same as those
of the particle over a 2-sphere. One can be led to interpret the curvature
of the space where the particle lives as an origin of an effective potential.
This example may be a starting point for studying general relativity. We
have also naively discussed the relation between both the Dirac brackets and
Christoffel symbols, since both of them are supposed to describe the correct
evolution of a particle constrained to a surface.

Finally, as an example, we have treated the so-called Zitterbewegung of
the Dirac electron. It may be seen as the effective motion of a particle over
a 2-sphere, assuming that the electron bears an internal structure.

E.M.C.A. thanks CNPq (Conselho Nacional de Desenvolvimento Cienti-
fico e Tecnologico), a Brazilian scientific support federal agency, for partial
financial support.
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