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The static nucleus–nucleus potential and the energy-dependent nucleus–
nucleus potential are used to address the sub-barrier fusion reactions. The
static nucleus–nucleus potential systematically fails to recover the experi-
mental data of 32,36

16S+
90
40Zr systems. However, the energy-dependent

Woods–Saxon potential model (EDWSP model) in conjunction with the
one-dimen-sional Wong formula accurately addresses the sub-barrier fusion
enhancement of these systems. The role of the inelastic surface excitations
of collision partners in the fusion dynamics is entertained within the context
of coupled channel calculations performed by using coupled channel code
CCFULL. It is worth noting here that the energy dependence in nucleus–
nucleus potential simulates the effects of inelastic surface excitations of
colliding nuclei in the sub-barrier fusion enhancement of 32,36

16S+
90
40Zr sys-

tems.
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1. Introduction

Heavy ion fusion reactions represent a spectroscopic tool to explore the
role of nuclear structure and nuclear interaction between participating nu-
clei. These reactions are an intermediate step for the production of nuclei
away from the valley of stability and superheavy elements. The one of the
interesting aspects of the fusion reactions is the occurrence of substantially
large fusion enhancement at sub-barrier energies over the expectations of
one-dimensional barrier penetration model. This fusion enhancement can
be correlated with the coupling of relative motion of reactants to inelastic
surface excitations of projectile (target) or permanent deformations or nu-
cleon (multi-nucleon) transfer channels. Indeed, the coupling between the
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elastic channel and intrinsic degrees of freedom leads to anomalously large
sub-barrier fusion enhancement [1–6]. The impacts of static deformation and
inelastic surface vibrations in the fusion process are adequately addressed
by various theoretical approaches [1–8].

The nucleus–nucleus potential plays a central role in the exploration of
the reaction mechanism and the complete knowledge of nucleus–nucleus po-
tential is extremely desirable for good understanding of fusion dynamics.
The success of any theoretical approach critically depends upon the choice
of the optimum form of nucleus–nucleus potential. The presence of large
ambiguities in this potential limits the basic understanding of the nuclear
interactions. In this regard, different parameterizations of nuclear potential
were used to explain the different nuclear phenomena in connection with
heavy ion reactions. The various theoretical models employed the standard
Woods–Saxon potential for description of the dynamics of sub-barrier fusion
reactions [1–9]. The diffuseness parameter of static Woods–Saxon potential
is related to the slope of nuclear potential in the tail region of Coulomb bar-
rier. For heavy ion fusion reactions, a wide range of diffuseness parameter
ranging from a = 0.75 fm to a = 1.5 fm was used to reproduce the sub-
barrier fusion data. Surprisingly, such values are much larger than a value
a = 0.65 fm extracted from the elastic scattering data [10–12]. This diffuse-
ness anomaly, which might be an artifact of various static and dynamical
physical effects, reflects the systematic failure of static Woods–Saxon poten-
tial for simultaneous exploration of the elastic scattering data and the fusion
data [13–17]. The different kind of the channel coupling effects, which are
occurring in the surface region of nuclear potential or in the tail region of
Coulomb barrier is, in turn, responsible for modification in the value of the
parameters of nuclear potential and hence the clarifications of these facts re-
quire more extensive investigations in the theoretical as well as experimental
fronts.

Keeping this idea, the recent work undertook several efforts by analyz-
ing the large set of the experimental data within the framework of energy-
dependent Woods–Saxon potential model (EDWSP model) [18–29]. The
closely similar physical effects that arise due to the internal structure of
colliding pairs can be induced by entertaining the energy dependence in
real part of nucleus–nucleus potential in such a way that it becomes more
attractive at sub-barrier energies. This energy-dependent nucleus–nucleus
potential will effectively decrease the interaction barrier between fusing nu-
clei and hence predicts substantially larger sub-barrier fusion cross sections
with reference to the energy-independent one-dimensional barrier penetra-
tion model as evident from the earlier work (EDWSP model). The intro-
duction of the energy dependence in real part of nucleus–nucleus potential
is also evident from the nucleon–nucleon interactions as well as from the
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non-local quantum effects [18–29]. The fusion dynamics of 32,36
16S+

90
40Zr sys-

tems which are well studied in literature has been analyzed in the present
work [30, 31]. In the fusion of these systems, the effects of multi-phonon
vibrational state are dominant and coupling to such channels produce large
fusion enhancement at sub-barrier energies as compared with expectations of
the one-dimensional barrier penetration model. Theoretical calculations are
performed by using the energy-independent Woods–Saxon potential as well
as energy-dependent Woods–Saxon potential model in conjunction with the
one-dimensional Wong formula [32]. The role of inelastic surface vibrations
of colliding pairs is addressed within the coupled channel code CCFULL [33]
wherein the static Woods–Saxon potential is used. The static Woods–Saxon
potential in conjunction with one-dimensional Wong formula fails to explain
the complete description of fusion enhancement of 32,3616S+

90
40Zr systems which

reflects the inconsistency of static Woods–Saxon potential for explanation
of fusion dynamics of various projectile–target combinations. However, the
EDWSP model adequately explains the fusion enhancement of 32,36

16S+
90
40Zr

systems wherein the energy dependence in the Woods–Saxon potential sim-
ulates various channels coupling effects that arise due to internal structure
of colliding nuclei.

2. Theoretical formalism

2.1. One-dimensional Wong formula

The fusion cross section within partial wave analysis is given by the
following expression

σF =
π

k2

∞∑
`=0

(2`+ 1)TF
` . (1)

Hill and Wheeler proposed an expression for tunneling probability (TF
` )

which is based upon the parabolic approximation wherein the effective in-
teraction between the collision partners has been replaced by an inverted
parabola [34]

THW
` =

1

1 + exp
[

2π
~ω`

(V` − E)
] . (2)

This approximation was further simplified by Wong using the following as-
sumptions for the barrier position, barrier curvature and barrier height [32]

R` = R`=0 = RB ,

ω` = ω`=0 = ω ,

V` = VB +
~2

2µR2
B

[
`+

1

2

]2
. (3)
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By applying these assumptions and Eq. (2) into Eq. (1), the fusion cross
section can be written as

σF =
π

k2

∞∑
`=0

(2`+ 1)
1[

1 + exp 2π
~ω (V` − E)

] . (4)

Wong assumes that infinite number of partial waves contribute to the fusion
process, so changing the summation over ` into integral with respect to ` in
Eq. (4) and by solving the integral, one can obtain the following expression
of the Wong formula [32]

σF =
~ωR2

B

2E
ln

[
1 + exp

(
2π

~ω
(E − VB)

)]
. (5)

2.2. Energy-dependent Woods–Saxon potential model (EDWSP model)

The nucleus–nucleus potential is the fundamental characteristic of heavy
ion fusion reactions. The present work uses the static Woods–Saxon po-
tential and energy-dependent Woods–Saxon potential in conjunction with
the one-dimensional Wong formula for theoretical calculations of fusion dy-
namics of 32,36

16S+
90
40Zr systems [30, 31]. The form of static Woods–Saxon

potential is defined as

VN (r) =
−V0[

1 + exp
(
r−R0
a

)] (6)

with R0 = r0(A
1/3
P +A

1/3
P ). The quantity V0 is depth and a is the diffuseness

parameter of nuclear potential. In EDWSP model, the depth of real part of
the Woods–Saxon potential is defined as [18–29]

V0 =
[
A

2/3
P +A

2/3
T − (AP +AT)

2/3
]

×

2.38 + 6.8(1 + IP + IT)
A

1/3
P A

1/3
T(

A
1/3
P +A

1/3
T

)
 MeV , (7)

where
IP =

(
NP − ZP

AP

)
and IT =

(
NT − ZT

AT

)
are the isospin asymmetry of collision partners. The present parameteriza-
tion of depth is based upon the reproduction of fusion excitation function
data of wide range of projectile–target combinations ranging from ZPZT =
84 to ZPZT = 1640 [18–29]. The first term in the square bracket of Eq. (7)
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is directly proportional to the surface energy of nucleus and hence strongly
depends on the collective motion of all the nucleons inside the nucleus. The
various channel coupling effects, which are responsible for fusion enhance-
ment at sub-barrier energies, are the surfacial effects which, in turn, modify
the surface diffuseness as well as the surface energy of collision partners. For
instance, the colliding nuclei overlap in the neck region wherein the densities
of collision partners get fluctuated. These kinds of fluctuation in densities are
dynamical physical effects which are responsible for modification of diffuse-
ness parameter and hence bring the necessity of larger value of diffuseness
parameter ranging from a = 0.75 fm to a = 1.5 fm for reproduction of fusion
excitation function data [13–17]. The first term inside the square bracket
of Eq. (7) accommodates all such physical effects. The second term inside
the square bracket of Eq. (7) is directly related to the isospin asymmetry
effects of colliding nuclei. The isospin asymmetry is different for different
isotopes of a particular element and hence isotopic effects are also included
in the nucleus–nucleus potential via this term. In literature, an abnormally
large value of diffuseness parameter ranging from a = 0.75 fm to a = 1.5 fm
has been used to account the fusion dynamics of wide range of projectile–
target combinations. This abnormally large diffuseness might be an artifact
of various kinds of static and dynamical physical effects such as fluctuation
of densities and surface energy of colliding pairs. In this regard, the energy
dependence in the Woods–Saxon potential is introduced via its diffuseness
parameter and hence given by the following expression [18–29]

a(E) = 0.85

1 + r0

13.75
(
A
−1/3
P +A

−1/3
T

)(
1+exp

(
E

VB0
−0.96

0.03

))
 fm . (8)

In the above expression, the range parameter (r0) is treated as free pa-
rameter and varied to reproduce the fusion data. The value of range pa-
rameter strongly depends upon the nature of fusing systems under consid-
eration. In EDWSP model calculations, the above expression provides a
wide range of diffuseness depending upon the value of r0 and the bombard-
ing energy of collision partners. The coupled channel calculations using
the static Woods–Saxon potential with large diffuseness parameter ranging
from a = 0.75 fm to a = 1.5 fm has an effect that is closely similar to that
of shallow M3Y+repulsion potential in low energy region [35–41]. Ghodsi
et al. [41] have showed that the M3Y+repulsion and static Woods–Saxon
potential with large diffuseness parameter adequately reproduce the fusion
dynamics of various heavy ion fusion reactions and M3Y+repulsion can be
accurately reproduced in sub-barrier energy region by the static Woods–
Saxon potential with large diffuseness parameter. In the present work, it
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was found that the predictions of energy-dependent Woods–Saxon potential
have the close resemblance with that of static Woods–Saxon potential with
large diffuseness. Furthermore, one can easily noticed that the theoretical
calculations based on static Woods–Saxon potential (CCFULL calculations)
must include the couplings to inelastic surface excitations of colliding nuclei
or other static and dynamical effects to explain the fusion data. However,
the energy dependence in the nucleus–nucleus potential introduces similar
kind of channel coupling effects that arise due to intrinsic degrees of freedom
of colliding nuclei and hence, reasonably reproduces the experimental data
of 32,36

16S+
90
40Zr systems.

2.3. Coupled channel model

Theoretically, the coupled channel calculations can be used to address
the effects of coupling between relative motion and nuclear structure degrees
of freedom. In this section, a brief review of the coupled channel model is
presented [33, 42]. Therefore, the set of coupled channel equation can be
written as[

−~2

2µ

d2

dr2
+
J(J + 1)~2

2µr2
+ VN (r) +

ZPZTe
2

r
+ εn − Ecm

]
Ψn(r)

+
∑
m

Vnm(r)Ψm(r) = 0 . (9)

Here, ~r is the radial coordinate for the relative motion between fusing nuclei,
µ is defined as the reduced mass of the projectile and target system. The
quantities Ecm and εn represent the bombarding energy in the centre-of-mass
frame and the excitation energy of the nth channel respectively. The Vnm
is the matrix elements of the coupling Hamiltonian, which in the collective
model consists of Coulomb and nuclear components. For the coupled channel
calculations, the code CCFULL [33], wherein the coupled channel equations
are solved numerically, has been used. The set of coupled channel equations
is solved by using two basic approximations. The first approximation is no
Coriolis or rotating frame approximation that has been used for reducing
the number of the coupled channel equations [33, 42]. In the condition of no
transfer of the angular momentum from relative motion between reactants to
their intrinsic motion, the total orbital angular momentum quantum num-
ber L can be replaced by the total angular momentum quantum number J .
The ingoing wave boundary conditions (IWBC), which are well applicable
for heavy ion reactions, are another approximations used to solve the cou-
pled channel equations. According to IWBC, there are only incoming waves
at r = rmin, which is taken as the minimum position of the Coulomb pocket
inside the barrier and there are only outgoing waves at infinity for all chan-
nels except the entrance channel (n = 0) [33, 42]. The code CCFULL [33]
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makes the use of static Woods–Saxon potential for addressing the role of
internal structure degrees of freedom of colliding pairs such as inelastic sur-
face vibrations, rotational states and multi-nucleon transfer channels. By
including all the relevant channels, the fusion cross section can be written as

σF(E) =
∑
J

σJ(E) =
π

k20

∑
J

(2J + 1)PJ(E) , (10)

where PJ(E) is the total transmission coefficient corresponding to the an-
gular momentum J .

3. Results and discussion

Recently, the EDWSP model was successfully used to describe the dy-
namics of heavy ion fusion reactions. The present work is motivated to
address the relative importance of the static Woods–Saxon potential and
energy-dependent Woods–Saxon potential by analyzing the fusion dynam-
ics of 32,36

16S+
90
40Zr systems. The colliding nuclei are spherical in shape and

possessing the low-lying surface vibrational states only. The values of defor-
mation parameter and the corresponding excitation energy of low-lying 2+

and 3− vibrational states of all nuclei are listed in Table I. In Table II, the
values of potential parameters as required in the EDWSP model calculations
for 32,36

16S+
90
40Zr systems are listed.

TABLE I

The deformation parameter (βλ) and the corresponding excitation energy (Eλ) of
the low lying quadrupole and octupole vibrational states of colliding nuclei.

Nucleus β2 E2 [MeV] β3 E3 [MeV] Reference
32
16S 0.32 2.230 0.40 5.006 [30]
36
16S 0.16 3.291 0.38 4.192 [31]
90
40Zr 0.09 2.186 0.22 2.748 [30, 31]

TABLE II

Range, depth and diffuseness of Woods–Saxon potential used in the EDWSP model
calculations for various systems [18–29].

System r0 [fm] V0 [MeV] aPresent

Energy range

[
fm

MeV

]
32
16S+90

40Zr 1.120 91.36 0.97 to 0.85
65 to 100

36
16S+90

40Zr 1.105 106.40 0.97 to 0.85
65 to 100
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Since the collision partners are spherical nuclei and involves a common
doubly magic target, the fusion mechanism is expected to be very simple.
These nuclei have well known vibrational spectra and inelastic surface vi-
brations of colliding pairs are dominating in the enhancement of sub-barrier
fusion cross sections over the expectations of one-dimensional barrier pene-
tration model. Furthermore, these fusing systems are well studied so they
are chosen for the present analysis. Since the target is common to both
projectiles, the distinguishable features of sub-barrier fusion cross section
data of 32,36

16S+
90
40Zr reactions arise because of different nuclear structure and

different collective properties of projectiles. The lighter projectile (3216S) is ex-
pected to possess a strong quadrupole vibration and therefore coupling of 2+
vibrational state displays more pronounced effects in the sub-barrier fusion
enhancement of 3216S+90

40Zr reaction with respect to 36
16S+90

40Zr reaction [30, 31].
Before discussing the details of coupled channel calculations, the fusion

dynamics of 32,36
16S+

90
40Zr reactions is discussed within the context of the

energy-independent and energy-dependent Woods–Saxon potential model
in conjunction with the one-dimensional Wong formula. The experimental
data of 32,36

16S+
90
40Zr reactions are substantially larger than the calculations

based upon static Woods–Saxon potential in the Wong formalism. The fail-
ure of static Woods–Saxon potential to give the adequate explanation of
fusion data suggests the modifications in the values of potential parame-
ters and hence mirror the significance of introducing the energy dependence
in Woods–Saxon potential. In EDWSP model, the energy-dependent dif-
fuseness parameter produces a spectrum of barrier of varying heights. The
barriers whose heights are lower than that of uncoupled classical barrier are
responsible for the maximum flux lost from elastic channel to fusion chan-
nel. This ultimately brings the larger sub-barrier fusion cross section data
over the predictions of energy-independent one-dimensional Wong formula as
evident from Fig. 1. In EDWSP model, the fluctuation of diffuseness param-
eter is effectively equivalent to the increase of capture radii of colliding nuclei
which, in turn, suggests that the fusion process starts at much larger inter-
nuclear separation between the collision partners [20]. The similar kinds of
static and dynamical physical effects are evident from the coupled channel
analysis of these systems which will be discussed in Fig. 2. In the coupled
channel calculations, the fusion data are substantially larger than no cou-
pling calculations based on the static Woods–Saxon potential obtained by
using the coupled channel code CCFULL (see Fig. 2). This unambiguously
reflects the inconsistency of static Woods–Saxon potential for description of
the fusion dynamics of 32,36

16S+
90
40Zr systems.

In the fusion dynamics of 32,36
16S+

90
40Zr systems, no coupling calculations

wherein both colliding systems are taken as inert are significantly smaller
than those of experimental data. In the fusion of 3216S+90

40Zr system, the inclu-
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Fig. 1. The fusion excitation functions of 32,36
16S+

90
40Zr systems obtained by using

the static Woods–Saxon potential model and energy-dependent Woods–Saxon po-
tential model (EDWSP model) [18–29]. The results are compared with available
experimental data (*) taken from Ref. [30, 31].

sion of single-phonon or two-phonon or three-phonon 3− vibrational states
alone in target is unable to reproduce the sub-barrier fusion data. This
suggested that more intrinsic degrees of freedom play a significant role in
the fusion dynamics of this system. The lighter projectile exhibits strong
quadrupole vibrations and its effects are expected to be more pronounced.
The coupling to one-phonon 2+ and 3− vibrational states of target along
with their mutual couplings in projectile and two-phonon 3− vibrational
states in target adequately account the sub-barrier fusion enhancement of
32
16S+90

40Zr system (Fig. 2 (left)). For 36
16S+90

40Zr system (Fig. 2 (right)), if col-
liding nuclei are considered as inert, the experimental data are substantially
larger than the theoretical predictions. The coupling to one-phonon 2+

vibrational state in projectile as well as one-phonon 2+ and 3− vibrational
states of target along with their mutual couplings strongly enhance the fusion
cross section as compared to no coupling calculations but fail to account the
experimental data in whole range of energy. The addition of higher phonon
states of target like two-phonon 3− vibrational states improves the coupled
channel predictions but still there remain large discrepancies between theo-
retical calculations and experimental data. The inclusion of one-phonon 2+

vibrational state in projectile, one-phonon 2+ vibrational state and three-
phonon 3− vibrational states of target along with the mutual excitations
such as (3−)3, (2+⊗ (3−)2) states produce the close agreement between cou-
pled channel calculations and fusion data (Fig. 2 (right)). For 32,36

16S+
90
40Zr

systems, the ground stateQ-values are negative for all neutron transfer chan-
nels which suggest that the effects of neutron transfer channel seem to be
undesirable. Therefore, the relative fusion enhancement of sub-barrier fu-
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sion cross section data with respect to one-dimensional barrier penetration
model can be attributed to the presence of multi-phonon vibrational states
as evident from Fig. 2.
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Fig. 2. The fusion excitation functions of 32,3616S+
90
40Zr systems obtained by using the

EDWSP model and the coupled channel code CCFULL. The results are compared
with available experimental data (*) taken from Ref. [30, 31].

It is well known fact that the couplings between the relative motion of
colliding nuclei and the internal structure degrees of freedom of fusing nuclei
result in a distribution of barriers of varying heights and the passage through
the barriers whose heights are smaller than that of the uncoupled fusion bar-
rier is more probable. This distribution of barriers is a direct manifestation
of enhancement of sub-barrier fusion cross section data by several orders of
magnitude over the expectations of the one-dimensional barrier penetration
model. In the same analogy, the EDWSP model produces a spectrum of bar-
riers of varying heights and reasonably addresses the fusion enhancement at
sub-barrier energies as already discussed in Fig. 1. In EDWSP model calcu-
lations, a = 0.97 fm is the largest value of diffuseness parameter resulting in
the lowest fusion barrier. This lowest fusion barrier can cause the maximum
flux lost from the elastic channel to fusion channel. As the incident energy in-
creases, the value of diffuseness parameter decreases resulting in an increase
of the height of the corresponding fusion barrier. In the above barrier energy
regions, wherein the fusion cross section is almost independent of different
channel coupling effects (internal structure of colliding nuclei), the value of
diffuseness parameter gets saturated to its minimum value (a = 0.85 fm).
At this diffuseness parameter, the corresponding fusion barrier is highest.
Furthermore, the energy dependence in Woods–Saxon potential simulates
the effects of internal structure degrees of freedom and consequently raises
number of questions on the validity of static Woods–Saxon potential for de-
scription of fusion process. Therefore, the various kind of channel coupling
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effects with regard to the sub-barrier fusion enhancement whether mirrors
the true picture of fusion process or simply mocks up the inconsistency of
static Woods–Saxon potential are still not clear and hence more intensive
investigations are required on theoretical as well as experimental fronts.

4. Conclusions

The present work is motivated to track the limitations of static Woods–
Saxon potential model and the applicability of the EDWSP model for com-
plete description of fusion dynamics by considering the fusion of 32,36

16S+
90
40Zr

systems. The couplings to inelastic surface excitations of colliding nuclei
are found to be dominating in the fusion enhancement of these systems
and the coupled channel calculations including the effects of multi-phonon
vibrational state of colliding pairs reasonably account the sub-barrier fu-
sion data. The static Woods–Saxon potential in conjunction with one-
dimensional Wong formula systematically fails to reproduce the sub-barrier
fusion data of 32,36

16S+
90
40Zr systems. However, the energy-dependent Woods–

Saxon potential model (EDWSP model) in conjunction with the one-dimen-
sional Wong formula accurately describes the fusion dynamics of these sys-
tems. The close resemblance of the predictions of EDWSP model and cou-
pled channel model for the fusion of 32,36

16S+
90
40Zr systems unambiguously

suggested that energy dependence in the Woods–Saxon potential mimics
the effects of dominant internal structure degrees of freedom of collision
partners. In the EDWSP model calculations, a wide range of diffuseness pa-
rameter ranging from a = 0.85 fm to a = 0.97 fm is required for reproduction
of the fusion enhancement of various heavy ion fusion reactions.

This work was supported by Dr. D.S. Kothari Post-Doctoral Fellowship
Scheme sponsored by the University Grants Commission (UGC), New Delhi,
India.
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