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Information properties of co-processing model on communication net-
works are investigated in this paper. As one crucial factor to determine the
processing ability of nodes, the information flow with potential time lag is
modeled by co-processing diffusion which couples the continuous time pro-
cessing and the discrete diffusing dynamics. Exact results on master equa-
tion and stationary state are achieved to disclose the formation. Consider-
ing the influence of a node to the global dynamical behavior, co-processing
centrality is introduced for each node, which determines the relative im-
portance of nodes and exhibits the capability that a node communicates
information with its neighbor environment over the network in the diffusion
process. Furthermore, a new parameter, co-processing entropy, is proposed
to measure the interplay between co-processing centrality and diffusion dy-
namics. At last, the information function of the co-processing model is
investigated to deeply detect the properties of the diffusion process. The
experimental results on large-scale complex networks with Poisson distri-
bution confirm our analytical prediction.
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1. Introduction

In recent years, various topological and dynamical properties of networks
resulting from real systems have attracted many researchers in diverse fields
[1–5]. Rich behaviors in the dynamical processes of the physical systems
depending on the topological structure of networks result from the inherent
complexity of networks. For example, random walk [5–9] has been widely
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investigated to understand the essential dynamical properties of physical
systems in networks [10–12] and also has many practical applications to real
networks such as e.g. information searching in the Internet [13–16].

However, congestion often occurs in diffusion process, which is mainly
determined by the capability of nodes. Zero-range process (ZRP), as a pow-
erful technique to control the congestion by modulating the capability of
nodes, has been investigated deeply. While in the traffic flow [17–21], the
car may be jammed at a crossing for a long time before it travels to an-
other crossing. For the information flow in the networks, the information
packet may mass at one processor so that it cannot be transferred to the
destination in time. The traffic flow or the information packet is jammed
at nodes for that there is time consumed on nodes. Thus, the continuous
stochastic process with time consumed on nodes corresponds much more to
the practical situation in our usual life.

Based on the diffusion process on complex networks, evaluation of the
importance of nodes and edges is widely used in analysis of complex net-
works. To evaluate the importance, various centrality measures, e.g., degree
centrality, closeness centrality, and betweenness centrality, have been pro-
posed [22–24]. For example, betweenness centrality BC [25] is introduced
as a good approximation for the quantity of information passing through a
node in communication networks [26, 27].

Besides, entropy is a measure of the uncertainty about dynamical behav-
iors of the network. In a network with higher entropy, more information is
needed to describe its future behavior, and its effective complexity is higher
[28–31]. In the field of complex networks, entropy has been applied to char-
acterize the topological properties, such as the degree distribution [32], the
shortest paths between couples of nodes [33], and even more the dynamical
processes on complex networks. Recently, the entropy rate of a diffusion
process was introduced to characterize a diffusion process [34]. Combining
the maximum entropy principle, it is possible to design the optimal diffusion
processes. Furthermore, in Ref. [35], a new class of random walk processes
was introduced, the maximal entropy random walk (MERW), which induced
a surprising effect of localization in the presence of weak disorder.

In this paper, we investigate the information properties of the co-proc-
essing model on complex networks. The structure of this paper is as follows.
In Section 2, we review the co-processing model on complex networks, which
couples the continuous time processing and the discrete diffusing dynamics.
In Section 3, the co-processing centrality, which exhibits the capability that
a node communicates information with its neighbor environment over the
network in this diffusion process, is proposed. Furthermore, to measure the
interplay between co-processing centrality and diffusion process, a new pa-
rameter, co-processing entropy, is deeply investigated and the experimental
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results on large-scale complex networks with Poisson distribution are given.
In Section 4, we discuss the information function of the co-processing model
to deeply investigate the diffusion process of this model. In Section 5, the
conclusion is given and the prospect is deeply discussed.

2. Review of co-processing model in communication networks

To investigate the time-lag diffusion process, we consider a co-processing
model in a network with nodes set S = {1, 2, . . . , N}: after staying at the
initial node i0 for time t0, the particle hops to a neighbor node i1 at time t0
with probability ti0i1 ; it will hop to node i2 with probability ti1i2 at time t1,
with the sojourn time t1 − t0 at node i1, and so on, introduced in Ref. [36].

Denote P (t) = (pij(t))N×N as the probability transition matrix for this
process {X(t) ∈ S, t ≥ 0}, where pij(t) is the probability that the particle
reaches node j at time t with initial node i. We just consider that pij(t)
does not rely on the initial time, but the time interval t. Neglecting the time
lag at each node, the jumps can be recorded by a discrete random walk with
probability transition matrix T = (tij)N×N , where tij is the probability of
the jump from node i to node j.

By the knowledge of stochastic process, the transition matrix P (t) =
(pij(t))N×N of {X(t)} must satisfy the following properties:

(1) 0 ≤ pij(t) ≤ 1 , pij(0) = δij ,

(2) pij(t+ s) =
∑

k pik(t)pkj(s) ,

(3) limt→0+ pij(t) = pij(0) = δij .

For the properties above, we can derive that

lim
t→0+

pij(t)− δij
t

.
= rij ,

in which the limit rij does exist and rij <∞ for all i, j ∈ S.
For ∑

i 6=j

pij(t)

t
=

1− pii(t)
t

,

then ∑
i 6=j

rij = −rii
.
= ri .

{rij , i 6= j} reflects the rate of the transition probability from node i to j,
and R = (rij)N×N is the transition rate matrix of the process {X(t)}.



1070 Z. Zhang

By property (2)

pij(t+4t) =
∑
k∈S

pik(t)pkj(4t) ,

and then, themaster equation for this time-lag process {X(t)} can be derived

dpij(t)

dt
=
∑
k∈S

pik(t)rkj . (1)

In practice, it is difficult to determine the transition matrix P (t) =
(pij(t))N×N . However, the rate matrix R = (rij)N×N for this process con-
sists of the differential coefficient of {pij(t)} at t = 0, and it is easy to
measure {pij(t)} nearby t = 0. Usually, we get R = (rij)N×N at first, and
then deduce the probability transition matrix P (t) according to equation (1).

In the following, an interpretation of ri will be given to have a well
understanding of the transition rate matrix R. Denote τ as the time the
particle firstly departs from the initial node i, then

P{τ > t|X(0) = i} = P{X(u) = i, 0 < u < t|X(0) = i}
= lim

n→∞
P{X(kt/2n) = i, k = 1, 2, · · · , 2n|X(0) = i}

= lim
n→∞

[pii(t/2
n)]2

n

= lim
n→∞

exp

(
ln pii(t/2

n)

t/2n
t

2n
2n
)

= exp(−rit) .

This formula illustrates that the sojourn time at node i follows the expo-
nential distribution with parameter ri, which determines the transition rate
that the particle departs from node i.

Supposing that j and k are neighbors of node i, the relation between tij
and tik is

tij
tik

= lim
t→0+

pij(t)

pik(t)
=
rij
rik

and ri = −rii =
∑

i 6=j rij , then

tij =
rij
ri
.

At every jump, the particle hops to node j from node i with probability
tij =

rij
ri
.
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Therefore, this process X(t) is that the particle hops to node j from
node i with probability tij = rij/ri in discrete time series, and the time it
stays at the node i before hopping to node j follows the exponential distri-
bution with parameter ri.

2.1. The stationary distribution and mean first passage time
in the process

The stationary distribution, which reflects the importance for nodes,
is explored in the following. For the connected network, the stationary
distribution {µj = limt→∞ pij(t), ∀ j ∈ S} uniquely exists (not relying on
the initial state i [26]) and satisfies

(1) µP = µ , ∀ t ≥ 0 ,

(2)
∑
i
µi = 1 .

For
lim
t→0+

pij(t)− δij
t

= rij ,

µ satisfies
µR = 0

with the transition rate matrix R, and the stationary probability can be
derived.

The probability in the stationary distribution of the co-processing model
equals the number of times that the particle passes the node multiplied by
the mean sojourn time at the node. Then, the relation of the stationary
distribution between the process {µi}Ni=1 and the transition matrix T [21] is

µi ∝ P∞i ×
1

ri
=
P∞i
ri

, (2)

which reflects that the probability in the stationary state relies not only on
the times that the particle arrives at the node, but also the sojourn time
the particle stays at this node. This can be used against the attack of a
hacker, that is, we could adjust the sojourn time at some node to modify the
stationary distribution against the hacker capturing the secrete information.

To reveal the impact of the time lag on the transition efficiency of the
process, we investigate the relationship between the mean first passage time
and the stationary distribution.

Denote σij as the first passage time from node i to node j, that is, the
first time the particle arrives at node j after departing from node i, and
denote 〈σij〉 as the mean first passage time (MFPT) from node i to node j.
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For i = j, 1/〈σii〉 is the mean time of the particle returning to node i
itself in unit time. For each arrival, the average time lag at node i is 1/ri,
thus there exists

µi =
1

ri〈σii〉
,

that is,

〈σii〉 =
1

riµi
.

For i 6= j, the MFPT from i to j is the sum of the mean time lag at node i
and the mean MFPT from the neighbors of i to j, so

〈σij〉 =
1

ri
+

∑
k 6=i,k 6=j

tik〈σkj〉 , i 6= j . (3)

With the expression of 〈σii〉, for each pair (i, j), 〈σij〉 can be calculated
accurately.

As an application in information security, a co-processing model on a
random graph, the degree distribution of which is p(k) = e−c c

k

k! with average
degree c can be introduced as follows: the particle at node i hops to its
neighbors with equal probability 1

ki
and the time it stays at node i follows

the exponential distribution with parameter ri = kαi , in which ki is the
degree of node i and α is a parameter reflecting the handling ability of the
nodes. If the graph is unconnected, we consider the random walk on each
connected component respectively, and then make a normalization over the
whole graph. The discrete diffusion process corresponds to the classical
unbiased random walk [26]. For that

tij =
Aij
ki

=
rij
ri

=
rij
kαi

,

then
rij = Aijk

α−1
i .

Thus, the transition rate matrix of this time-lag process is

R =


−kα1 A12k

α−1
1 · · · A1Nk

α−1
1

A21k
α−1
2 −kα2 · · · A2Nk

α−1
2

· · · · · · · · · · · ·
AN1k

α−1
N AN2k

α−1
N · · · −kαN

 .

For µR = 0, thus, the stationary distribution µ and the MFPT from node i
to itself 〈σii〉 are separately

µ =

 k1−α1∑
i
k1−αi

,
k1−α2∑
i
k1−αi

, · · · ,
k1−αN∑
i
k1−αi

 ,
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〈σii〉 =
1

µiri
=

∑
l

k1−αl

ki
.

For i 6= j, by equation (3)

〈σij〉 =
1

kαi
+

∑
k 6=i,k 6=j

Aik
ki
〈σkj〉 .

For α > 1, nodes with larger degree have weaker importance, and vice
versa, which is reflected by the stationary distribution. Against the attack of
hacker, we can adjust the handling ability of the node locally to strengthen
the robustness and optimize the function of the network.

3. The co-processing centrality and co-processing entropy

The time-lag dynamical process can be expressed by co-processing model,
we can investigate the information properties of the co-processing model to
study the properties of the time-lag dynamical process.

3.1. Co-processing centrality

In the co-processing model, µi reflects the probability that we can find
the particle at the steady state. For node i with degree k, that is, node i
has k neighbors, µki reflects the contribution of node i to its neighbors, thus
wi =

∑∞
k=1 p(k)µ

k
i is the mean contribution of node i for different degrees

to attract the random walker at the stationary state. Therefore, we define
the co-processing centrality of vertex i as follows

hi =
wi∑
l

wl
=

∞∑
k=1

p(k)µki∑
N

∞∑
k=1

p(k)µki

,

which is the normalized contribution of node i to attract the random walker.
As the application in Section 2, considering the co-processing model on
random networks with different α, the co-processing centrality of node i is

hi =
e

c

 k1−α
i∑

l
k1−α
l

−1


− e−c

N∑
i=1

e

c

 k1−α
i∑

l
k1−α
l

−1


−Ne−c

. (4)

For α = −2, 0, 2, the co-processing centrality h for the nodes with different
degrees is shown in figure 1.
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Fig. 1. The co-processing centrality h changes with the degree of node k when
α = −2, 0, 2.

As shown in figure 1, when α < 0, nodes with higher degree have weaker
handling ability, which results that the sojourn time at such nodes is longer.
Besides, the random walker tends to stay at nodes with higher degree, and
then the co-processing centrality of higher nodes is relatively larger than
that of the nodes with lower degree. When α = 0, there is no difference
between the handling ability of nodes, but as nodes with higher degree have
stronger connectedness, the co-processing centrality is decided directly by
the degree. However, the higher the degree, the more important the node,
i.e., the co-processing centrality is decided by the degree directly. In contrast
to the case of α < 0, when α > 0, nodes with higher degree have stronger
handling ability, the random walker tends to stay at nodes with low degree,
which perform more importance than those with higher degree.

Generally, different cases of α result in different handling ability of nodes.
The stationary distribution depends not only on the degree, but also on the
handling ability of nodes. Thus, α can be modulated to distinguish the
different important nodes in the co-processing model.

3.2. Co-processing entropy

Entropy is a measure of randomness and confusion. To measure the
interplay between co-processing centrality and diffusion dynamics, the in-
formation properties can be accounted by co-processing entropy which is
defined as follows

CE = −
N∑
i=1

hi ln(hi) , (5)

where hi is the co-processing centrality of node i. For hi reflects the impor-
tance of node i attracting the random walker, CE measures the confusion
state of the walker at the stationary state.
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For random graph and different α,

hi =
e

c

 k1−α
i∑

l
k1−α
l

−1


− e−c

N∑
i=1

e

c

 k1−α
i∑

l
k1−α
l

−1


−Ne−c

. (6)

Applying equation (6) into equation (5), experimental results of the co-
processing entropy for α = 0, 1, 2 and the average trend for CE along with
average degree c in detail are shown in figure 2.
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Fig. 2. The co-processing entropy CE as a function of the average degree c of the
random graph with N = 103 and α = 0, 1, 2 is in the main graph, and the subgraph
is the average co-processing entropy as a function of c.

As the average degree c increases, the random walker can arrive at more
and more nodes, and the final state is more and more jumbled, which in-
duce the increase of the co-processing entropy CE. As the scale of the giant
component increases slowly when c > 1 [37], the co-processing entropy CE
performs little increase. According to the Maximum Entropy Principle [38],
to investigate dynamical process on the network globally, we can add edges
into the network until the giant cluster appears.

To show the detailed difference of the CE among different parameter α,
numerical verifications are carried out at c = 3, 4, 5 and the average trend
for CE along with the parameter α is described, which is shown in fig-
ure 3. When α increases, nodes with higher degree have stronger handling
ability. The nodes with large co-processing centrality concentrate on fewer
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low-degree nodes as α increases, and the walker is more inclined to such
more dynamical important nodes, which cause decrease of the level of the
confusion and the co-processing entropy CE decreases, too.
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Fig. 3. The co-processing entropy CE as a function of the parameter α of random
graph with N = 103 and c = 3, 4, 5 is in the main graph, and the subgraph is the
average co-processing entropy as a function of α.

To measure the co-processing centrality on the complex networks, we
consider the co-processing model on networks with 1000 nodes and the av-
erage degree c = 5, and remove either (i) the most co-processing important
nodes, (ii) the nodes with highest degree ki, (iii) random nodes. After
removing m nodes, we recalculate the co-processing entropy CE(m). In fig-
ure 4, CE(m)/CE(0) is shown as a function of m. When α > 1, the nodes
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Fig. 4. For different parameter α = 0, 1, 2 of random walk, the co-processing en-
tropy changes with the number of vertices taken off, for different cases: by the
co-processing centrality (CE), degree, and random.
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with high degree have stronger handling ability and contribute more in the
co-processing model. On the contrary, the nodes with low degree contribute
more when α < 1, and the degree centrality is just a special situation of the
co-processing centrality when α < 1, which is reflected in figure 6. All these
numerical figures show that the co-processing centrality has great influence
on the dynamical process on the complex networks.

4. Information function of co-processing model

Since the time-lag dynamical process can be expressed by co-processing
model, we define the information function of the diffusion process as

H =
N∑
i=1

∞∑
k=1

p(k)µki =
N∑
i=1

wi , (7)

where wi =
∑∞

k=1 p(k)µ
k
i . The information function H is the co-information

measure of the co-processing model on the complex networks.
As an application, we analyze the co-processing model on a random

graph, the degree distribution of which is p(k) = e−c c
k

k! with average degree c.
For each α,

µi =
k1−αi∑
l

k1−αl

,

the average contribution of node i is

wi =

N∑
k=1

e−c
ck

k!

 k1−αi∑
l

k1−αl


k

= e

c

 k1−α
i∑

l
k1−α
l

−1


− e−c , (8)

and the relative information function is

H =

N∑
i=1

e

c

 k1−α
i∑

l
k1−α
l

−1


−Ne−c . (9)

For α = 0,

H =

N∑
i=1

e
c

(
ki∑
l
kl
−1
)
−Ne−c . (10)
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To get the average degree c at which the information function reaches
the maximum value, let

∂H

∂c
=

N∑
i=1

e
c

(
ki∑
l
kl
−1
) ki∑

l

kl
− 1

+Nec = 0 . (11)

We apply the mean field approximation to equation (11), then

∑
k

p(k)e
c

(
k∑
l
kl
−1
) k∑

l

kl
− 1

+ec =
∑
k

p(k)ec(
k
Nc
−1)
(
k

Nc
− 1

)
+ec = 0 ,

where p(k) is the degree distribution. Thus,

c = ln

(
1 +

1

N − 1

)N
. (12)

From equation (12), we obtain that the information function achieves
the maximum value at c = 1 when N →∞.

For random graphs with N = 103 but different average degrees, we
simulate the information function H for different α = 0, 1, 2 and show the
corresponding results in figure 5 which agree with our analysis perfectly.
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Fig. 5. The information functionH changes with the average degree c of the random
graph with N = 103 and α = 0, 1, 2.

It reveals that the giant component appears when the average degree c
gets over 1 [37]. Once c < 1, the largest component increases quickly along
with the increase of the average degree c, and the amount of information
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received by the random walker also increases. As c > 1, the increasing speed
of the giant component size slows down [37], and the amount of information
gotten by the random walker continues increasing. However, the increasing
rate is lower than that of the time consumed, which induces that the average
efficient information H decreases along with the increase of c. In the inset
in figure 5, we can see that the information function decreases along with
the increase of the parameter α for α < 1 and increases with the increase of
α for α > 1. We verify it as follows.

When α < 0, nodes with lower degree have stronger handling ability,
thus the random walker stays at these nodes with shorter time, besides,
nodes with larger degree have stronger connectedness, which makes the total
amount of information small. While 0 < α < 1, nodes with higher degree
have better connectedness, which is balanced by out their stronger handling
ability, thus, the information of the diffusion decreases with the increase
of α. When the parameter α > 1 increases, nodes with higher degree have
stronger handling ability, thus the random walker stays at these nodes with
shorter time, in addition with their stronger connectedness, which leads to
the increase of value of information along with the increase of parameter
α > 1. The information function H on the random graph for different
adjustment parameter α is shown in figure 6, which fits our analysis very
well.
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Fig. 6. The information function H changes with the parameter α of the random
graph with N = 103 and c = 1, 2, 3.

5. Conclusion

In summary, we have investigated in detail the information properties of
the co-processing model on complex networks, in which the information flow
with potential time lag couples the continuous time processing and the dis-
crete diffusing dynamics. Furthermore, the information function of process is
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discussed to explore the coupled properties. For various centrality measures
which have been discussed mainly based on diffusion process without time
lag, the co-processing centrality of nodes, which exhibits the capability that
a node communicates information with its neighbor environment over the
network in the co-processing model, is introduced and employed to evaluate
the average contribution of node during the process. Furthermore, a new
parameter, co-processing entropy, is proposed to measure the interplay be-
tween co-processing centrality and diffusion dynamics, which can measure
the confusion at the stationary state. Experimental results on large-scale
complex networks confirm our analytical prediction.

In this paper, the node handling ability parameter α is considered as a
constant all over the process, but in the diffusion process of realistic self-
adaptive networks, e.g. traffic network and World Wide Web, it has to reg-
ulate itself in the diffusion process to optimize the transmission capability
over the network. That is, when there are some nodes overloaded, we should
modulate α to mitigate the transmission loads to others. In the future work,
dynamical self-adaptive parameter α(t) will be considered to realize the net-
work optimization.

This work is supported by the National Natural Foundation of China
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