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This paper focuses on a new coupled (2 + 1)-dimensional Burgers equa-
tions. The shock wave solution is obtained by the aid of Ansatz method.
There are several constraint conditions which guarantee the existence of
the derived solutions. Subsequently, the simplified Hirota bilinear method,
established by Hereman, is applied to construct soliton solutions to the
equation. Finally, the classic Lie symmetry analysis is employed to gener-
ate a class of new solutions to the equation based on the solutions obtained
earlier by Ansatz and simplified Hirota bilinear methods.
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1. Introduction

Nonlinear phenomena come up in a variety of scientific fields, such as
solid-state physics, plasma physics, fluid dynamics, mathematical biology,
chemical kinetics, etc. Nonlinear evolution equations can model nonlinear
phenomena that appear in nature quite frequently. Therefore, searching for
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exact solutions of these equations is of paramount importance. A great deal
of literature concerning these equations and methods to obtain solutions is
available in the text. Amongst the several methods which are in use to han-
dle these equations, the well known are: the inverse scattering method, the
Baklund transformation method, Darboux transformation, Painleve analysis
method, Exp-function method, the Hirota bilinear method, simplified Hirota
bilinear method, Lie group method and, solitary wave Ansatz method. In
addition, the computer symbolic systems, such as Maple and Mathematica,
help us to deal with complicated and tedious calculations [1–10].

It is well known that traveling waves appear in solitary waves theory
in distinct features such as solitons, kinks, etc. The soliton theory is an
important part of the nonlinear science. Soliton-like particles can travel
over long-distances without attenuation and changes of wave shapes due to
the balance of the interplay between dispersion and nonlinearity ([11] and
papers cited therein).

It is generally known that the Burgers equation describes the coupling
between diffusion uxx and the convection process uux. The Burger’s types of
equations have been applied to various physical phenomena, such as: fluid
dynamics, gas dynamics, traffic flow, etc. The Burgers equation (BE) is
one of the fundamental model equations that is in existence for a very long
time. Many researchers have been investigated these types of equations with
different configurations [12–21].

In this work, our aim is to investigate a new coupled (2 + 1)-dimensional
Burgers equations given through

ut − 2uux − uyv − uvy − uxx − uyy = 0 ,

vt − 2vvy − uxv − uvx − vxx − vyy = 0 , (1)

where a mixed partial derivative terms uvy and uxv are added to generalize
coupled (2 + 1)-dimensional Burgers equations to a more common situation.
The two additional terms, one in each equation, represent divergences with
respect to y and x, respectively. Thus, it is expected that the symmetry
group and the conservation laws would take different forms.

Here, we will study Eq. (1) via Ansatz method, simplified Hirota bilinear
method and Lie symmetry analysis. The layout of the paper is as follows.
In Section 2, the Ansatz method is applied to get the topological soliton
solutions of Eq. (1). In Section 3, Eq. (1) will be studied using simplified
Hirota bilinear method. In Section 4, we perform Lie symmetry analysis on
Eq. (1), whereas last section is for conclusions.
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2. Ansatz method

In this section, we will investigate the new coupled BE given by Eq. (1)
using the Ansatz approach. The shock wave solutions that are also known
as topological solitons in theoretical physics are derived. In order to get the
shock wave solution, we first give the following hypothesis [10, 19, 22, 23]

u(x, y, t) = A1 tanhp1 τ (2)

and

v(x, y, t) = A2 tanhp2 τ , (3)

where

τ = B1x+B2y − ct , (4)

and Aj , Bj for j = 1, 2 are free parameters and c is the speed of the shock
wave. Meanwhile, the unknown exponent p1 and p2 will be further fixed.
Thus, substituting (2) and (3) into (1) yields the following equations:

p1A1c
(
tanhp1+1 τ − tanhp1−1 τ

)
− 2p1A

2
1B1

(
tanh2p1−1 τ − tanh2p1+1 τ

)
−(p1 + p2)A1A2B2

(
tanhp1+p2−1 τ − tanhp1+p2+1 τ

)
−A1p1

(
B2

1 +B2
2

)
×
{

(p1 − 1) tanhp1−2 τ − 2p1 tanhp1 τ + (p1 + 1) tanhp1+2 τ
}

= 0 , (5)

and

p2A2c
(
tanhp2+1 τ − tanhp2−1 τ

)
− 2p2A

2
2B2

(
tanh2p2−1 τ − tanh2p2+1 τ

)
−(p1 + p2)A1A2B2

(
tanhp1+p2−1 τ − tanhp1+p2+1 τ

)
−A2p2

(
B2

1 +B2
2

)
×
{

(p2 − 1) tanhp2−2 τ − 2p2 tanhp2 τ + (p2 + 1) tanhp2+2 τ
}

= 0 . (6)

From (5), based on balancing principle, one can get

2p1 − 1 = p1 + p2 − 1 = p1 , (7)

in other words,

p1 = p2 = 1 . (8)

Also, from (6), one can get the same conclusion as in (8). Now, from (5)
and (6), assuming that the coefficients of the linearly independent functions
pj and pj+2, for j = 1, 2, equal to zero, one can arrive at

c = 0 , (9)
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and

A1B1 +A2B2 = B2
1 +B2

2 . (10)

This implies that the shock wave solution of the equation is a stationary
shock wave, which is given by

u(x, y, t) = A1 tanh (B1x+B2y) , (11)

and
v(x, y, t) = A2 tanh (B1x+B2y) , (12)

where A1, A2 and B1, B2 are given by (10).
Remark 1: It is worth noting that the terms uvy and uxv are added,

the obtained results are the same as in [19].

3. The simplified Hereman–Nuseir method

In this section, we will deal with (1) by using the simplified Hereman–
Nuseir method. The main steps of this method can be found in [7, 8, 11, 12].
Here, we adopt the procedure outlined in [12]. Since the calculations are
straightforward, therefore by omitting the details of the calculations, we
directly write the N -kink solutions for equation (1) as

u =

∑N
i=1kie

ki(x+y)+2k2i t

1 +
∑N

i=1e
ki(x+y)+2k2i t

,

v =

∑N
i=1kie

ki(x+y)+2k2i t

1 +
∑N

i=1e
ki(x+y)+2k2i t

. (13)

Similarly, the N -singular kink solutions are

u = −
∑N

i=1kie
ki(x+y)+2k2i t

1−
∑N

i=1e
ki(x+y)+2k2i t

,

v = −
∑N

i=1kie
ki(x+y)+2k2i t

1−
∑N

i=1e
ki(x+y)+2k2i t

. (14)

For the details of calculations, the reader is referred to [12].
Remark 2: It should be noted that uvy and uxv are added, but the

obtained results are the same as in [12].
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4. Lie symmetry analysis of (1)

In this section, we will handle Eq. (1) using Lie symmetry analysis.
On the basis of Lie group theory, a one-parameter Lie group of point

transformations are given by [19]:

t∗ = t+ ετ(x, y, t, u, v) +O
(
ε2
)
, x∗ = x+ εξ(x, y, t, u, v) +O

(
ε2
)
,

y∗ = y + εη(x, y, t, u, v) +O
(
ε2
)
, u∗ = u+ εφ(x, y, t, u, v) +O

(
ε2
)
,

v∗ = v + εψ(x, y, t, u, v) +O
(
ε2
)
, (15)

the associated vector field is of the form

V = τ(x, y, t, u, v)
∂

∂t
+ ξ(x, y, t, u, v)

∂

∂x
+ η(x, y, t, u, v)

∂

∂y

+φ(x, y, t, u, v)
∂

∂u
+ ψ(x, y, t, u, v)

∂

∂v
. (16)

Here, the coefficient functions τ(x, y, t, u, v), ξ(x, y, t, u, v), η(x, y, t, u, v),
φ(x, y, t, u, v), and ψ(x, y, t, u, v) are to be further fixed.

If the vector field (16) has to generate a symmetry of the Eq. (1), then
V need to satisfy the following condition

pr(2)V (∆1, ∆2)|∆1=0,∆2=0 = 0 . (17)

Here, ∆1 = ut − 2uux − uyv− uvy − uxx − uyy, and ∆2 = vt − 2vvy − uxv−
uvx− vxx− vyy and pr(2)V is the second prolongation of the vector field. In
other words,

φt − 2uxφ− 2uφx − φyv − uyψ − uφy − φvy − φxx − φyy = 0 ,

ψt − 2vyψ − 2vψy − vxφ− uψx − φxv − uxψ − ψxx − ψyy = 0 . (18)

In (18), we only solve the following coefficients functions [19]:

φt = Dt(φ)− uxDt(ξ)− uyDt(η)− utDt(τ) ,

φx = Dx(φ)− uxDx(ξ)− uyDx(η)− utDx(τ) ,

φy = Dy(φ)− uxDy(ξ)− uyDy(η)− utDy(τ) ,

ψt = Dt(ψ)− vxDt(ξ)− vyDt(η)− vtDt(τ) ,

ψx = Dx(ψ)− vxDx(ξ)− vyDx(η)− vtDx(τ) ,

ψy = Dy(ψ)− vxDy(ξ)− vyDy(η)− vtDy(τ) ,

φxx = Dx(φx)− uxtDx(τ)− uxxDx(ξ)− uxyDx(η) ,

φyy = Dy(φ
y)− uytDy(τ)− uxyDy(ξ)− uyyDy(η) ,

ψxx = Dx(ψx)− vxtDx(τ)− vxxDx(ξ)− vxyDx(η) ,

ψyy = Dy(ψ
y)− vytDy(τ)− vxyDy(ξ)− vyyDy(η) . (19)
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Here, Di denotes the operators of total differentiation with respect to x, y
and t, respectively

Di =
∂

∂xi
+ upi

∂

∂u
+ upij

∂

∂uj
+ . . . , i = 1, 2, 3 , p = 1, 2 , (20)

and (x1, x2, x3) = (t, x, y), (u1, u2) = (u, v).
Then, considering the Lie symmetry analysis method, one can obtain

ξ = 1
2c1x− c3y + c5 , τ = c1t+ c2 , η = 1

2c1y + c3x+ c4 ,

φ = −1
2c1u− c3v , ψ = c3u− 1

2c1v , (21)

where ci(i = 1, 2 . . . 5) are arbitrary constants. Thus, the five vector fields
are given by

V1 =
∂

∂x
, V2 =

∂

∂y
, V3 =

∂

∂t
,

V4 = x
∂

∂x
+ 2t

∂

∂t
+ y

∂

∂y
− u ∂

∂u
− v ∂

∂v
,

V5 = −y ∂
∂x

+ x
∂

∂y
− v ∂

∂u
+ u

∂

∂v
. (22)

Remark 3: It is clear that the vector fields are narrower than the vector
fields in [19], the reason is that added terms affect the properties.

It is to be noted that the symmetry generators found in (22) form a
closed and five-dimensional Lie algebra. Here, they are omitted for the sake
of brevity. In order to obtain the Lie symmetry group, the following initial
problems need to be considered

d

dε
(x̄, ȳ, t̄, ū, v̄) = σ (x̄, ȳ, t̄, ū, v̄) , (x̄, ȳ, t̄, ū, v̄) |ε=0 = (x, y, t, u, v) , (23)

here, ε is a parameter and

σ = ξux + τut + ηuy + φu+ ψv . (24)

Therefore, we can get the following Lie symmetry group:

g : (x, y, t, u, v)→ (x̄, ȳ, t̄, ū, v̄) . (25)

Thus, one can get the following group:

g1 : (x+ ε, y, t, u, v) ,

g2 : (x, y + ε, t, u, v) ,

g3 : (x, y, t+ ε, u, v) ,

g4 : (eεx, eεy, e2εt, e−εu, e−εv) ,

g5 : (x cos ε− y sin ε, x sin ε+ y cos ε, t, v cos ε− u sin ε, v sin ε+ u cos ε) .

(26)
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Consequently, many new solutions can be derived by applying the above
groups gi(i = 1, . . . 5):

u1 = f1(x− ε, y, t) , v1 = h1(x− ε, y, t) ,
u2 = f2(x, y − ε, t) , v2 = h2(x, y − ε, t) ,
u3 = f3(x, y, t− ε) , v3 = h3(x, y, t− ε) ,
u4 = e−εf4

(
e−εx, e−εy, e−2εt

)
, v4 = e−εh4

(
e−εx, e−εy, e−2εt

)
,

u5 = f5 (x cos ε− y sin ε, x sin ε+ y cos ε, t, v cos ε− u sin ε) ,

v5 = h5 (x cos ε− y sin ε, x sin ε+ y cos ε, t, v sin ε+ u cos ε) , (27)

where ε is an arbitrary constant.
If taking the shock wave solution of Eq. (1) given through (11) and (12),

one can get new exact solutions of Eq. (1) by applying the scaling symmetry
group g4 as follows:

u = e−εA1 tanh
(
B1e

−εx+B2e
−εy
)
,

v = e−εA2 tanh
(
B1e

−εx+B2e
−εy
)
. (28)

Also, from (13) and (14), one can get new explicit solutions of Eq. (1) by
applying the scaling symmetry group g4 as follows:

u = e−ε
∑N

i=1kie
kie
−ε(x+y)+2k2i e

−2εt

1 +
∑N

i=1e
kie−ε(x+y)+2k2i e

−2εt
,

v = e−ε
∑N

i=1kie
kie
−ε(x+y)+2k2i e

−2εt

1 +
∑N

i=1e
kie−ε(x+y)+2k2i e

−2εt
, (29)

u = −e−ε
∑N

i=1kie
kie
−ε(x+y)+2k2i e

−2εt

1−
∑N

i=1e
kie−ε(x+y)+2k2i e

−2εt
,

v = −e−ε
∑N

i=1kie
kie
−ε(x+y)+2k2i e

−2εt

1−
∑N

i=1e
kie−ε(x+y)+2k2i e

−2εt
. (30)

Remark 4: A class of new invariant solutions can be found by utilizing
the different groups of Eq. (1).

5. Conclusions

This paper addresses a new coupled (2 + 1)-dimensional Burgers equa-
tions. By using the Ansatz method, the topological 1-soliton solution is
derived for this equation for the first time. It is also shown that the shock
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wave solution of the coupled BE is a stationary shock wave. Then, the
equation was investigated for multiple-soliton solutions and multiple singu-
lar soliton solutions. The simplified form of the Hirota’s method is used to
obtain these solutions. At last, the Lie symmetry analysis have been applied
to give an additional display of solutions. These solutions may be useful to
further investigate the complicated nonlinear physical phenomena.

The authors are thankful for the referee’s useful suggestions, which have
generally improved the manuscript.

REFERENCES

[1] M.J. Ablowitz, H. Segur, Solitons and Inverse Scattering Transform, SIAM,
Philadelphia 1981.

[2] B. Fuchssteiner, A.S. Fokas, Physica D: Nonlinear Phenomena 4, 47 (1981).
[3] R. Hirota, The Direct Method in Soliton Theory, Cambridge University

Press, Cambridge 2004.
[4] P.J. Olver, Application of Lie Group to Differential Equation, Springer, New

York 1986.
[5] A.M. Wazwaz, H. Triki, Commun. Nonlinear Sci. Numer. Simul. 16, 1122

(2011).
[6] B. Boubir, H. Triki, A.M. Wazwaz, Appl. Math. Model. 37, 420 (2013).
[7] A.M. Wazwaz, Appl. Math. Lett. 25, 2354 (2012).
[8] A.M. Wazwaz, Appl. Math. Lett. 26, 1094 (2013).
[9] G.W. Wang, T.Z. Xu, S. Johnson, A. Biswas, Astrophys. Space. Sci. 349,

317 (2014).
[10] G.W. Wang et al., Acta. Phys. Pol. A 126, 1221 (2014).
[11] A.M. Wazwaz, Phys. Scr. 86, 035007 (2012).
[12] A.M. Wazwaz, Appl. Math. Comput. 204, 817 (2008).
[13] M.A. Abdoua, A.A. Soliman, Appl. Math. Lett. 25, 2052 (2012).
[14] A.M. Wazwaz, J. Franklin. I. 347, 618 (2010).
[15] P.L. Sachdev, C. Srinivasa Rao, Appl. Math. Lett. 13, 1 (2000).
[16] A.M. Wazwaz, Appl. Math. Comput. 219, 9057 (2013).
[17] A. Biswas, H. Triki, T. Hayat, O.M. Aldossary, Appl. Math. Comput. 217,

10289 (2011).
[18] A.J.M. Jawad, M.D. Petkovic, A. Biswas, Appl. Math. Comput. 216, 3370

(2010).
[19] G.W. Wang, T.Z. Xu, A. Biswas, Rom. Rep. Phys. 66, 274 (2014).
[20] J.D. Fletcher, Int. J. Numer. Meth. Fluids 3, 213 (1983).
[21] S.E. Esipov, Phys. Rev. E52, 3711 (1995).
[22] A. Biswas, A.H. Kara, A.H. Bokhari, F.D. Zaman, Nonlinear Dyn. 73, 2191

(2013).
[23] G.W. Wang et al., Nonlinear Dyn. 76, 1059 (2013).

http://dx.doi.org/10.1016/0167-2789(81)90004-X
http://dx.doi.org/10.1016/j.cnsns.2010.06.024
http://dx.doi.org/10.1016/j.cnsns.2010.06.024
http://dx.doi.org/10.1016/j.apm.2012.03.012
http://dx.doi.org/10.1016/j.aml.2012.07.001
http://dx.doi.org/10.1016/j.aml.2013.06.008
http://dx.doi.org/10.1007/s10509-013-1659-z
http://dx.doi.org/10.1007/s10509-013-1659-z
http://dx.doi.org/10.12693/APhysPolA.126.1221
http://dx.doi.org/10.1088/0031-8949/86/03/035007
http://dx.doi.org/10.1016/j.amc.2008.07.025
http://dx.doi.org/10.1016/j.aml.2012.04.017
http://dx.doi.org/10.1016/j.jfranklin.2010.01.003
http://dx.doi.org/10.1016/S0893-9659(99)00199-8
http://dx.doi.org/10.1016/j.amc.2013.03.093
http://dx.doi.org/10.1016/j.amc.2011.05.031
http://dx.doi.org/10.1016/j.amc.2011.05.031
http://dx.doi.org/10.1016/j.amc.2010.04.066
http://dx.doi.org/10.1016/j.amc.2010.04.066
http://dx.doi.org/10.1002/fld.1650030302
http://dx.doi.org/10.1103/PhysRevE.52.3711
http://dx.doi.org/10.1007/s11071-013-0933-5
http://dx.doi.org/10.1007/s11071-013-0933-5
http://dx.doi.org/10.1007/s11071-013-1189-9

	1 Introduction
	2 Ansatz method
	3 The simplified Hereman–Nuseir method
	4 Lie symmetry analysis of (1)
	5 Conclusions

