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In the present paper, we address the Schrödinger-type eigenvalue prob-
lems for H = T +V , where a kinetic term T = Tm is a manifestly nonlocal
quasirelativistic energy operator Tm =

√
−~2c2∆+m2c4−mc2, where the

whole mass m ∈ (0,∞) range is admitted. We are primarily interested in a
simple confining enclosure where V (x) refers to a finite well of an arbitrary
depth. As a useful test model, preceding the finite well analysis, we con-
sider the case of the harmonic attraction. We analyze spectral solutions,
e.g. infer detailed eigenvalue and eigenfunction (shapes) data of the per-
tinent nonlocal quantum systems. We focus on their m-dependence and
specifically on their low mass regime, which can be directly compared with
existing m = 0 spectral solutions for the Cauchy oscillator and the infi-
nite Cauchy well. To this end, an efficient spectrum generating algorithm
is implemented. All computations are carried out directly in the configu-
ration space which entails a proper assessment and control of the spatial
nonlocality impact on simulation outcomes, e.g. explicit nonlocally induced
eigenvalues and eigenfunctions.
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1. Motivation

The present paper may be considered as an extension of the ideas of Refs.
[1, 2], where a justification for the usage of Lévy–Schrödinger semigroups in
the study of nonlocally induced random motions has been outlined. Our ma-
jor concern was the apparent trapping problem appearing in the context of
jump-type stochastic processes, where the spectral solution for the nonlocal
(Cauchy) motion generator in the interval has become a serious issue.

We are interested in solving the 1D Schrödinger-type eigenvalue problems
for Hamiltonians of the form H = T +V , where T may be a nonlocal energy
operator [3], while V is a locally defined confining potential. The latter

(949)



950 P. Garbaczewski, M. Żaba

we specify to be either harmonic or refer to a finite well of arbitrary depth.
Under these confining conditions, the Cauchy oscillator and Cauchy (in)finite
well were investigated [4].

In below, we pay a particular attention to the quasirelativistic operator
(natural units are adopted) Tm =

√
−∆+m2 −m and its m = 0 relative

T0 = (−∆)1/2 .
= |∇| known as the Cauchy operator. We shall consider

quasirelativistic Hamiltonians Tm with m ∈ (0,∞) as energy operators of
interest and compute a number of lowest nonlocally-induced bound states
in harmonic and finite well regimes.

Recently reported approximate quasirelativistic infinite well spectral so-
lution (m > 0 “particle in the box” problem [14]), together with that for the
Cauchy infinite well [4, 5] and known spectral solution for the Cauchy (mass-
less) harmonic oscillator [6, 7], provide verification tools for our quasirela-
tivistic spectral results, once we turn over to the m � 1 regime of the
corresponding quasirelativistic spectral problems. In the m � 1 extreme,
a direct comparison will prove possible with the standard nonrelativistic
spectral data. Below, we shall give more explicit meaning to those “small”
versus “large” mass regimes.

If an analytic solution of the “normal” Laplacian-based Schrödinger eigen-
value problem is not within the reach, a recourse to the imaginary time prop-
agation technique (to evolve the system in “imaginary time”, to employ “dif-
fusion algorithms”) is a standard routine [8–10]. There exists a plethora
of methods (mostly computer-assisted, on varied levels of sophistication
and approximation finesse) to address the spectral solution of local 1D–
3D Schrödinger operators in various areas of quantum physics and quantum
chemistry. Special emphasis is paid there to low-lying bound states, were
“low-lying” actually means that even few hundred of them are computable.

The major goal of the present paper is to generalize the above men-
tioned “diffusion algorithms” so that the resultant “jump-type algorithms”
would provide reliable high accuracy approximations to true spectral solu-
tions for the quasirelativistic Hamiltonian in the wide mass parameter range
m ∈ (0,∞). All computations are carried out in configuration space, thus
deliberately avoiding a customary usage of Fourier transforms which blur an
inherent spatial nonlocality of the problem. We keep under control the bal-
ance between the nonlocality impact and various (lower and upper) bounds
upon the integration volume and the space-time intervals partitioning fi-
nesse, that are unavoidable in numerical procedures.

We are very detailed about the (bottom) part of the spectrum, some-
what disregarding higher eigenvalues (except for a number of approximate
formulas). Some steps (like e.g. the choice of the Gram–Schmidt orhonor-
malization procedure) of the spectrum generating algorithm were tailored
specifically to this end.
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Compared with nonlocal spectral problems considered in the literature
so far, even though our computations are carried out for rescaled versions of
original models (thus devoid of explicit physical dimensions), we have kept
intact the mass (for all models) and the well width and depth dependence.
Moreover, albeit with dimensionless computation outcomes in hands, we can
fully recover all physically relevant characteristics of the considered models.
An extended Appendix gives details about how to eliminate and reintroduce
physical (dimensional) constants.

2. Spectrum-generating algorithm

To find eigenvalues and eigenfunctions of a self-adjoint non-negative op-
erator H, it is the “imaginary time propagation” i.e. the semigroup dy-
namics exp(−tH) with t > 0 which appears to be particularly well suited
to this end [8, 9]. That happens in view of obvious domain and conver-
gence/regularization properties which are implicit in the Euclidean (or sta-
tistical like e.g. the partition function evaluation) framework.

Let us consider the eigenvalue problem for a self-adjoint operator H of
the form H = T + V , assuming that (at least a part of) the spectrum is
strictly positive, discrete and nondegenerate 0 < E1 < E2 < E3 < . . . (the
latter restriction may be lifted, since it is known how to handle degenerate
spectral problems [8, 9])

H ψi(x) = Eiψi(x) , i = 1, 2, . . . , (1)

where T is not necessarily a local differential operator (like the negative of
the Laplacian), but a nonlocal (pseudo-differential) operator.

Below, we shall mostly refer to nonlocal operators T defined through
their action on suitable L2(R) functions in the domain of H

T ψ(x) = p.v.

∫
[ψ(x)− ψ(x+ z)] ν(dz) , (2)

where ν(dz) = ν(z)dz stands for the so-called Lévy measure and generically
the 1D integral in Eq. (2) is interpreted in terms of its Cauchy principal
value: p.v.

∫
f(z)ν(dz) = lim

ε→0

∫
R\(−ε,ε) f(z)ν(dz).

The choice of ν(z) = 1/(πz2) identifies the Cauchy operator T =(−∆)1/2

.
= |∇|, while that of

νm(z) =
m

π

K1(m|z|)
|z|

, (3)

whereK1 is a modified Bessel function of the third kind, defines the quasirel-
ativistic operator Tm =

√
−∆+m2 −m.
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To define the spectrum-generating algorithm, we first need to introduce
an approximation of the original semigroup dynamics exp(−tH)ψ of a suit-
able initial data vector ψ for arbitrary t > 0, by a composition of a large
number of consecutive small time “shifts”. To this end, a recourse to Trotter-
type formulas is necessary and the Strang splitting method produces a num-
ber of their approximations of varied orders.

In the present paper, we shall focus on the simplest second order Strang
approximation of the semigroup operator exp(−H∆t), where H = T + V
and ∆t � 1, that has been widely used in quantum physics and quantum
chemistry contexts. The splitting identity

e−H ∆t ≈ e−
∆t
2
V e−∆t T e−

∆t
2
V (4)

holds true up to terms of the order of O((∆t)3). Like in the standard
quantum mechanical perturbation theory, the interpretation of the O(t3)
term as “sufficiently small” remains somewhat obscure, unless specified with
reference to its action on functions in the domain of H.

A preferably long sequence of consecutive small time ∆t
.
= h “shifts”

of an initially given function ψ(x, 0) → ψ(x, kh) with k = 1, 2, . . . , mimics
the actual continuous evolution of ψ(x, t) in the time interval [0, kh]. For
sufficiently small times ∆t

.
= h, we may take one more approximations

step (keeping e.g. second and higher order terms of the Taylor series would
improve an approximation accuracy)

e−hH ≈ e−
h
2
V (1− hT ) e−

h
2
V .

= S(h) . (5)

The induced approximation error depends on the time step h value. If h
is small, the error is small as well but the number of iterations towards first
convergence symptoms is becoming large. Thus a proper balance between
the two goals, e.g. the accuracy level and the optimal convergence perfor-
mance, need to be established. (One more source of inaccuracies is rooted in
the nonlocality of involved operators and spatial cutoffs needed to evaluate
integrals. We shall discuss this issue later.)

We note that an optimal value of a “small” time shift ∆t = h appears to
be model-dependent. Subsequently, we shall refer to h = 0.001.

An outline of the algorithm that is appropriate for a numerical imple-
mentation and ultimately is capable of generating approximate eigenvalues
and eigenfunctions of H reads as follows:

(i) We choose a finite number n of trial state vectors (preferably linearly
independent) {Φ(0)

i , 1 6 i 6 n}, where n is correlated with an ultimate
number of eigenvectors of H to be obtained in the numerical proce-
dure; at the moment, we disregard an issue of their optimal (purpose-
dependent) choice.
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(ii) For all trial functions the time evolution beginning at t = 0 and ter-
minating at t = h, for all 1 6 i 6 n is mimicked by the time shift
operator S(h) of Eq. (5)

Ψ
(1)
i (x) = S(h)Φ

(0)
i (x) . (6)

(iii) The obtained set of linearly independent vectors {Ψ (1)
i } should be

made orthogonal (we shall use the familiar Gram–Schmidt procedure,
although there are many others, [9]) and normalized. The outcome
constitutes a new set of trial states {Φ(1)

i , i = 1, 2, . . . , n}.

(iv) Steps (ii) and (iii) are next repeated consecutively, giving rise to a tem-
porally ordered sequence of n-element orthonormal sets {Φ(k)

i (x), i =
1, 2, . . . , n} and the resultant set of linearly independent vectors

Ψ
(k+1)
i (x) = S(h)Φ

(k)
i (x) , i = 1, 2, . . . , n

at time tk+1 = (k+1)h. We main abstain from its orthonormalization
and stop the iteration procedure, if definite symptoms of convergence
are detected. A discussion of operational convergence criterions can
be found e.g. in Ref. [10].

(v) The temporally ordered sequence of Φ(k)
i (x), k > 1 for sufficiently

large k is expected to converge to an eigenvector of S(h), according to

S(h)Φ
(k)
i (x) = e−hE

(k)
i Φ

(k)
i (x) ≈ e−hEiψi(x) , (7)

where ψi actually stands for an eigenvector of H corresponding to the
eigenvalue Ei. Here

E
(k)
i (h) = −1

h
ln
(
Eki (h)

)
, (8)

where
Eki (h) =

〈
Φ

(k)
i

∣∣∣Ψ (k+1)
i

〉
=
〈
Φ

(k)
i

∣∣∣S(h)Φ
(k)
i

〉
is an expectation value of S(h) in the ith state Φ(k)

i .

It is the evaluation of Φ(k)
i (x) and E(k)

i (h) that is amenable to computing
routines and yields approximate eigenfunctions and eigenvalues of H. The
degree of approximation accuracy is set by the terminal time value tk = kh,
at which earlier detected symptoms of convergence ultimately stabilize, so
that the iteration (i)–(v) can be stopped.
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Technical notes: Even in the high-fidelity computation regime (c.f.
[8–10]), we never arrive at exact eigenfunctions and eigenvalues, but at their
more or less accurate approximations. Therefore, we should properly iden-
tify and keep under control various computation inaccuracies, coming from
different sources. A model-independent inaccuracy source lies in our choice
h = 0.001 of the “elementary” time shift (actually, a partition unit for any
time interval). It is a matter of a preparatory numerical “experimentation”
whether the h choice needs to be finer or not (e.g. 10−4 or 10−5). The price
paid is a significant computing time increase. Besides a low (second) or-
der of the Strang splitting of the semigroup operator, other inaccuracies of
numerical procedures are model-dependent and come from the spatial non-
locality of involved operators (2) that stays in conflict with cutoffs needed to
evaluate the integrals. In 1D, we need a priori to declare that x ∈ [−a, a],
a > 0. How wide the spatial interval should be to yield reliable simula-
tion outcomes, especially for eigenvalues (the eigenfunction computation is
less sensitive to the choice of a > 50), is again a matter of a numerical
experimentation. We set the spatial partition unit ∆x = 0.001. In view
of pre-selected [−a, a] integration boundary limits, irrespective of the initial
data choice {Φ(0)

i ∈ L2(R)}, the simulation outcome is automatically placed
in L2([−a, a]). For the quasirelativistic and Cauchy oscillators, true eigen-
functions extend over the whole real line. Therefore, a computer-assisted
spectral solution effectively provides an approximation of true eigenfunc-
tions by suitable approximating functions with a support in [−a, a]. Clearly,
the value of a cannot be too small. We have found a threshold value a = 50
to be an optimal choice (accuracy versus computation time, see also [4]).
This pertains as well to the computationally “dangerous” regime of small
masses m ∈ (0, 1]. Then e.g. the eigenfunctions falloff at infinity becomes
close to inverse polynomial (6 1/|x|4 in the Cauchy case). We note that one
can improve an accuracy of computations in the small mass regime. To this
end, a partitioning of the integration interval should be made finer than the
adopted one ∆x = 0.001 (like e.g. 0.0001).

3. Quasirelativistic harmonic oscillator

In Ref. [4], we have tested a predictive power of the just outlined com-
puter-assisted method of solution of the Schrödinger-type spectral problem
for a nonlocal operator H, through a comparison with an available analytic
solution of the 1D Cauchy oscillator problem [6, 7] (which can actually be
interpreted as the massless version of the quasirelativistic oscillator). That
was subsequently followed by an analysis of the Cauchy finite well problem
and an in-depth analysis of various inadequacies of hitherto proposed (would-
be) spectral solutions of the Cauchy infinite well problem.
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In contrast to the m = 0 regime, spectral data for the m > 0 quasirel-
ativistic harmonic oscillator (in 1D–3D) are scarce and not available in a
closed analytic form. That enforces a computer-assisted approach, where
the m-dependence needs to be optimally accounted for, in the whole range
m ∈ (0,∞). As far as we know the literature on the subject, neither the
quasirelativistic oscillator nor the quasirelativistic finite well problems were
ever addressed on a similar to [8–10] level of computational accuracy. In
fact, we can safely conjecture that the spectral solution in 1D and 2D is
nonexistent in the literature, while the available 3D data are rather limited,
[11–13].

We are aware of a long-term research on quasirelativistic bound states
(primarily in 3D) for various confining potentials, including that of the har-
monic oscillator [11, 12] and the radial version of the 3D Cauchy oscilla-
tor [13]. Interestingly, the high-fidelity computer algorithm we advocate,
has never been employed nor mentioned in those contexts. Moreover, we
quite intentionally carry out spatial computations only, while computations
of Refs. [12, 13] were performed directly in the Fourier (momentum) repre-
sentation, thus with no access to nonlocality-sensitive spatial diagnostics.

We are interested in spectral properties (eigenvalues and eigenfunctions)
of the quasirelativistic harmonic oscillator H=Tm+V =

√
−~2c2∆+m2c4−

mc2 + kx2/2. For computational simplicity and comparison with a number
of related references, we shall work with a rescaled form of that Hamilto-
nian where, except for m, other dimensional parameters (or constants) are
eliminated

H = Tm + V =
[√
−∆+m2 −m

]
+ x2 . (9)

The traditional coefficient k/2 in V (x) = kx2/2 has been scaled away and
the natural system of units ~ = 1 = c is implicit. In principle, one can scale
away m as well and replace it by 1 which is a standard practice in the math-
ematically oriented research. How to eliminate or reintroduce dimensional
constants and infer standard energy scales c.f. Appendix, see also [14].

The major preparatory guess, for an execution of the spectrum-gen-
erating algorithm, amounts to pre-selecting a suitable set (comprising one,
two or more elements, see e.g. [4] for more detailed discussion) of linearly
independent trial functions. There is a large freedom for that choice in
L2(R) and in Ref. [4], the nonrelativistic harmonic oscillator basis (Hermite
functions) has been employed.

We are motivated by the fact that whatever this trial set is and whatever
is its support (R or [−1, 1] ⊂ R), in view of the integration volume restriction
to [−a, a], simulation outcomes are unavoidably placed in L2([−a, a]) and
a = 50 is used throughout the paper. A computationally convenient choice
of trial functions appears to be the standard nonrelativistic infinite well
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(“Laplacian in the interval”) eigenbasis for [−1, 1] ⊂ R which can be trivially
extended to orthonormal L2(R) functions as follows:

Φ
(0)
n=2l−1(x) =

{
A cos

(
nπx

2

)
, |x| < 1 ,

0 , |x| > 1 ,

Φ
(0)
n=2l(x) =

{
A sin

(
nπx

2

)
, |x| < 1 ,

0 , |x| > 1 , l = 1, 2, . . .

Here A = ±1.
Anticipating further discussion, we need to mention that numerical out-

comes for simulated eigenvalues are a-sensitive in the small mass regime
m � 1. Here, small means e.g. m = 0.001, 0.01, albeit our subsequent
discussion will validate m = 0.5 or even m = 1 to be “sufficiently” small.
However, one needs to know that for m = 1 the choice of a = 20 gives
practically the same outcomes as those for a = 50 or a = 100, 200. (Our
previous Cauchy oscillator discussion [4] (see e.g. Figs. 1, 3 and 6) proved
that appreciable (detectable) differences between computed lowest eigenval-
ues decrease, but still persist, while a increases from a = 50 through a = 100,
up to a = 500.

To the contrary, approximate low energy eigenfunctions can be satisfac-
torily reproduced within relatively small spatial interval like e.g. [−3, 3] or
[−5, 5], beyond which these functions quickly decay. Their shape dependence
on the integration bound a > 50 is residual and for all practical purposes
(fapp) can be neglected.

Our numerical experimentation has shown definite stabilization/conver-
gence symptoms after about 1.500–2000 small h-time shifts (5)–(8), when
computed eigenvalues (and shapes of eigenfunctions) effectively stop
to change within the adopted error limits (that pertains to the eigenval-
ues evaluation up to four decimal digits). We have found k = 2500 to set
an optimal terminal stabilization “time” tk = k h at which our spectrum-
generating algorithm can be stopped and data stored. To get more accurate
data (up to the seven or eight decimal digits), the stabilization time should
be increased (to 4.000 or more h-time steps).

Since, for the quasirelativistic oscillator, we are interested in the
m-variability of eigenvalues and eigenfunctions of H, albeit unfortunately
with no analytic formulas at hand, spectral data need to be computed for a
number of explicit representative values of m ∈ (0,∞). We systematically
refer to m = 0.01, 0.5, 1, 3, 5, 10, with brief appearances of m = 0.001 and
m = 20, 50, 100, 200, if a deeper insight into m � 1 or m � 1 regimes is
necessary.
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Let us add that for low-lying part of the spectrum, the decay properties
of involved Bessel functions (3) get amplified by the mass parameter increase.
Thus e.g. in the case of m = 1, for |x| > 20 = a, tails of Bessel functions are
bounded from above by 10−21. For m = 5, the integration bound a = 15 or
a = 20 would give as good approximate results as that of a = 50. Even for
a relatively small mass m = 0.5, the integration bound a = 40 would suit
pragmatically oriented scholars (e.g. accepting some degree of robustness in
numerical calculations and the above mentioned fapp criterion).

In Fig. 1, the ground state function of H = Hm =
√
−∆+m2 −m+ x2

is depicted for mass parameter values m = 0.01, 0.5, 1 (regarded as “small”;
notice a conspicuous clustering of pertinent curves) and 5, 10 (tentatively
regarded as “large”). For small m values, curves stay in a close vicinity
of the Cauchy oscillator Hamiltonian (an ultrarelativistic m = 0 limit of
H = Hm). In the case of m = 0.01, within adopted graphical accuracy
limits, the corresponding curve 1 cannot be distinguished from the Cauchy
oscillator ground state (c.f. Fig. 1 in Ref. [4]).
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Fig. 1. Quasirelativistic oscillator ground state (n = 1) is depicted for masses
m = 0.01, 0.5, 1, 5, 10, labeled respectively by 1, 2, 3, 4, 5. A clear distinction is
seen between tentative “small” mass m 6 1 and “large” mass m > 5 regimes. The
m = 0.01 curve is fapp identical with the ground state of the Cauchy oscillator,
whose decay is known to be inverse polynomial ∼ C/x4, [4, 6].

Lowest excited states (n = 2, 3, 4, 5) are depicted in Fig. 2, for the same
masses and a as in Fig. 1. “Small” m curves 1, 2, 3 cluster in a close vicinity
of the Cauchy oscillator excited states. Those labeled by 1 are fapp identical
with their Cauchy relatives, see [4].
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Fig. 2. Quasirelativistic oscillator excited states (n = 2, 3, 4, 5) for m = 0.01, 0.5,
1, 5, 10, labeled respectively by 1, 2, 3, 4, 5, (parameter a = 50). We note a clus-
tering of curves in the “low” mass regime. Insets depict an enlarged vicinity of
the local minimum/maximum for curves 1, 2, 3, identifiable by respective (x, ψ(x))

coordinates.

As mentioned before, for the quasirelativistic oscilator, an accuracy with
which the eigenvalues in the “small” mass regime are computable, is a-sen-
sitive. This issue we shall discuss in the next subsection.

Interestingly, beginning from m > 1 this a-sensitivity practically disap-
pears, and our choice of a = 50 is definitely oversized. Since the computing
time drops down considerably for smaller values of a, we have positively
tested an adequacy of a < 50 integration bounds. Below, we list first five
numerically obtained eigenvalues, where for m = 1, 3, 5 integrations we use
a = 20, form = 10, 20 we have found a = 10 to be reliable, while form > 50,
the bound a = 5 proved to be sufficient.



Nonlocally Induced (Quasirelativistic) Bound States: Harmonic . . . 959

In Fig. 3, we display them-dependence (m ∈ [0.001, 10]) of first five com-
puted quasirelativistic oscillator eigenvalues, where the small mass behavior
clearly indicates a convergence towards the Cauchy oscillator spectrum. On
the other hand, the large mass extreme (here reaching merelym = 10) allows
us to anticipate an affinity with the spectral solution of the nonrelativistic
harmonic oscillator, to be analyzed subsequently.
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E

1
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4
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Fig. 3. The m dependence of the quasirelativistic oscillator eigenvalues with n =

1, 2, 3, 4, 5. Employed m > 0 values read: 0.001, 0.01, 0.1, 0.5, 1, 3, 5, 10. The
m = 0 energy values have been directly imported from the spectral solution of
the Cauchy oscillator [6, 7] and cannot be graphically distinguished from those for
m = 0.001.

In Table I, for reference, the m-dependence of five lowest eigenvalues is
presented in the mass range [1, 100]. We have relegated the detailed analysis
of the small mass regime to the separate subsection.

TABLE I

Quasirelativistic oscillator: m-dependence of lowest five eigenvalues.

V (x) = x2 m = 1 m = 3 m = 5 m = 10 m = 20 m = 50 m = 100

E1 0.6020 0.39043 0.30891 0.22112 0.15669 0.09936 0.06865
E2 1.6638 1.1408 0.91436 0.65998 0.46904 0.29639 0.20562
E3 2.5362 1.8385 1.4974 1.0939 0.77957 0.49125 0.34230
E4 3.3210 2.4971 2.0620 1.5252 1.0886 0.68591 0.47874
E5 4.0426 3.1253 2.6111 1.9540 1.3962 0.88136 0.61508
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3.1. m� 1 regime
3.1.1. Low mass eigenvalues

Small mass spectrum of the quasirelativistic oscillator, like that in the
Cauchy case [4], needs the integration interval bound a not to be small.
Actually, in the Cauchy case, we have found a = 500 to be reliable for
lowest eigenvalues, while a = 50 is predominantly employed in the present
paper. Therefore, it is essential to investigate the a-dependence of computed
eigenvalues for small mass values.

Our results are displayed in Figs. 4 and 5 for m = 0.001, 0.01, 0.1, where
a stabilization of the (k)-evolution (8) is clearly seen. A comparison of
Fig. 4 with Fig. 1 of Ref. [4] proves that the computed m = 0.001 ground
state eigenvalue for a = 200 is extremely close to that obtained in the
Cauchy case proper (m = 0). With the growth of m , the bottom spectral
value drops down. Moreover, the a-sensitivity quickly deteriorates. For
m = 0.1, a = 100 and a = 200, computation outcomes cannot be graphically
distinguished in the scale employed. Albeit our primary bound a = 50 still
can be (residually) distinguished under an amplified resolution, as seen in
the inset of Fig. 4, right panel. In the case of m = 1 (not displayed), there
would be no graphical differentiation at all between a = 50, a = 100 and
a = 200 computation outcomes.
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Fig. 4. (k)-time evolution of E(k)
1 (h) = − 1

h ln(Ek1 (h)) (8) and the stabilization
symptoms in the computation of the ground state value: m = 0.001 (left panel),
m = 0.01 (middle panel) and m = 0.1 (right panel), for a = 50, 100, 200. For
reference, we have depicted the energy level E1 = 1.018792 which is set by the
Cauchy oscillator bottom eigenvalue.

An analogous stabilization behavior can be seen in the (k)-evolution (8)
towards the first excited eigenvalue. The deterioration of a-sensitivity with
the growth of m is perfectly seen in the middle and right panels (see the
inset for details) of Fig. 5.
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Fig. 5. (k)-time evolution of E(k)
2 (h) = − 1

h ln(Ek2 (h)) (8). Computation of the first
excited eigenvalue for m = 0.001 (left panel), m = 0.01 (middle panel), m = 0.1

(right panel), for a = 50, 100, 200. E2 = 2.338107 is the first excited Cauchy
oscillator eigenvalue.

3.1.2. Spectral convergence to the Cauchy oscillator

For reference, we first display five lowest eigenvalues of the Cauchy oscil-
lator up to the sixth decimal digit [6, 7]. Altogether 18 lowest eigenvalues are
listed in Appendix. One should be aware that the finesse of explicit expres-
sions for Cauchy oscillator eigenvalues varies in the literature and happens
to extend to 14 or more decimal digits.

A comparison (Tables II to V) of quasirelativistic oscillator eigenvalues,
in the descending mass orderm = 0.1, 0.01, 0.001, with those for the Cauchy
oscillator clearly indicates the spectral convergence of the quasirelativistic
oscillator to the Cauchy one as m approaches 0.

TABLE II

Cauchy oscillator lowest eigenvalues.

m = 0 E1 E2 E3 E4 E5

[6, 7] 1.018792 2.338107 3.248197 4.087949 4.820099

TABLE III

Quasirelativistic oscillator: a-dependence of lowest eigenvalues for m = 0.001.

m = 0.001 E1 E2 E3 E4 E5

a = 50 1.00612 2.32596 3.23723 4.07956 4.81614
a = 100 1.01245 2.33229 3.24356 4.08590 4.82248
a = 200 1.01555 2.33540 3.24667 4.08901 4.82560
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TABLE IV

a-dependence for m = 0.01.

m = 0.01 E1 E2 E3 E4 E5

a = 50 1.00275 2.32235 3.23367 4.07593 4.81255
a = 100 1.00746 2.32707 3.23839 4.08066 4.81728
a = 200 1.00893 2.32854 3.23987 4.08213 4.81876

TABLE V

a-dependence for m = 0.1.

m = 0.1 E1 E2 E3 E4 E5

a = 50 0.935106 2.24274 3.15568 3.99499 4.73274
a = 100 0.935146 2.24278 3.15573 3.99503 4.73278
a = 200 0.935147 2.24278 3.15573 3.99503 4.73278

The clustering of “small” mass curves in Figs. 1 and 3, corresponding
to m ∈ (0, 1], gives support to the statement about the convergence of
quasirelativistic spectral data to ultrarelativistic ones, as m drops down
to 0. In Appendix, we give additional analytic hints to this conclusion.

Accordingly, for small masses, the Cauchy oscillator provides a reliable
spectral approximation of the quasirelativistic one in the whole spectral
range (i.e. for arbitrarily large n). Thence, it is of interest to recall asymp-
totic (“large” n) regularities of Cauchy oscillator eigenvalues. Those may be
adopted to approximate higher eigenvalues of the small mass quasirelativis-
tic system. These regularities are quantified by means of handy analytic
formulas [6, 7]. For odd labels n, we have

En=2k−1 ∼
(

3π

2

)2/3(
n+

3

4

)2/3

, (10)

while for even n, there holds

En=2k ∼
(

3π

2

)2/3(
n+

1

4

)2/3

(11)

with k = 1, 2, 3, . . . Concerning an approximation accuracy, we must de-
cide how large the label n needs to be. The approximation finesse clearly
depends on the a priori chosen robustness level and can be fine-tuned. In
the present discussion, we have found formulas (10) and (11) to give reliable
approximations for relatively low labels n > 6, see Appendix for detailed
data.
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3.2. m� 1 regime

The m-dependence of quasirelativistic oscillator eigenvalues for m ∈
(0, 10] depicted in Fig. 3, clearly indicates symptoms of m � 1 spectral
regularities which need to be verified more convincingly. See e.g. Appendix
for analytic hints to this end. Clearly, mass values should be picked out
well beyond the interval (0, 10]. In Fig. 6, a sequence of eight consecu-
tive (lowest) eigenvalues is depicted separately for each mass parameter
m = 10, 20, 50, 100. The dependence of En(m) on n indicates approximately
equal spacings between consecutive energy levels.

1 2 3 4 5 6 7 8

n

E
0

1
2
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−4 −2 0 2 4 6

−
2

−
1
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ln(2m)
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)

1
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Fig. 6. Quasirelativistic m � 1 regime. Left panel: eight consecutive eigenval-
ues En(m), for masses m = 10, 20, 50, 100, build an approximate straight line
En(m) = 1√

2m
(2n − 1), n > 1. The best result is obtained if fitting employs

m > 10. Right panel: doubly logarithmic scale gives access to a wider mass range:
m = 0.01, 0.1, 0.5, 1, 3, 5, 10, 20, 50, 100. Note that for m > 3.7 i.e. ln(2m) > 2,
straight line segments are mimicked by ln(En(m)) = − 1

2 ln(2m) + ln(2n− 1), n =

1, 2, 3, 4, 5, thus reproducing the nonrelativistic oscillator spectral pattern.

In the right-hand side panel of Fig. 6, the En(m) data have been dis-
played (in a doubly logarithmic scale) against 2m, for each fixed n separately.
That clearly identifies the m-dependence of the nth eigenvalue (n = 1, . . . , 8)
in a relatively wide mass range m ∈ (0, 100]. The equal spacing conjecture
receives even stronger support by fitting the numerically computed data to
approximating straight lines (that in Fig. 4) of the form

En(m) =
1√
2m

(2n− 1) , n = 1, 2, . . . , m� 1 , (12)

or equivalently (that in Fig. 5)

ln[En(m)] = −1
2 ln(2m) + ln(2n− 1) , n = 1, 2, . . . , m� 1 . (13)
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These formulas are approximately valid for sufficiently large m and the
En(m) dependence on n definitely appears to follow the nonrelativistic har-
monic oscillator spectral pattern. In fact, En = ~ω(n + 1

2), n = 0, 1, . . . ,
where ω =

√
k/m derives from H = −(~2/2m)∆ + kx2/2. By scaling

away k (set formally k = 2) and eliminating ~ = 1, we are left with

H = −(1/2m)∆+x2 whose spectral solution reads En =
√

2
m (n+ 1

2), n > 0.
By relabeling that spectrum according to n → n − 1, where the former
n = 0 is replaced by the new n = 1, we ultimately arrive at the formula
En =

√
2
m (n− 1

2) = 1√
2m

(2n− 1), n > 1, i.e. (12).
Concerning the fitting procedure, let us point out that in Fig. 6 we

encounter functions of the form ln(E(m,n) = f [ln(2m)]. For mass values
obeying ln(2m) > 2 (e.g. m > 3.7), we can approximate the resultant curves
by straight line segments of the form ln(E(m,n)) = a ln(2m) + b. There,
“ideally” we should have a = −1/2 and b = ln(2n− 1). Although an “ideal”
outcome is never the case, approximate values for a and b (retrieved form
computed data) quite well fit to the nonrelativistic oscillator picture.

For concreteness, we reproduce approximate values for a and b that de-
termine straight line segment fits in Fig. 7, for the first five eigenvalues.
Error bounds were evaluated by means of the least square deviation method
for computed spectral data. The fitting of straight lines has actually started
from m = 5 for n = 1, 2 and m = 10 for n > 2

n = 1 , (−0.501± 0.005) ln(2m)+(−0.012± 0.018) , n = (0.994± 0.009) ,

n = 2 , (−0.497± 0.006) ln(2m)+(1.069± 0.021) , n = (1.96± 0.03) ,

n = 3 , (−0.504± 0.005) ln(2m)+(1.606± 0.019) , n = (2.99± 0.05) ,

n = 4 , (−0.503± 0.005) ln(2m)+(1.936± 0.019) , n = (3.97± 0.07) ,

n = 5 , (−0.502± 0.005) ln(2m)+(2.18± 0.02) , n = (4.92± 0.09) .

Approximate values for the (right-hand side) parameter n were retrieved
directly from the computed “free” parameters b = ln(2n− 1). We note that
the parameter a has fapp a = −1/2 value (e.g. almost −1/2, within the
error bounds). We recall that the data employed in Figs. 3–6 have been
computed by means of the spectrum-generating algorithm which is not free
of a number of error-accumulating factors (like e.g. the lowest order Strang
approximation, the usage of Gram–Schmidt diagonalization procedure, finite
bounds for the integration intervals etc.).
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Fig. 7. Quasirelativistic finite well ground state for V0 = 5. Labels 1, 2, 3, 4 corre-
spond to m = 0.01, 1, 5, 10, respectively.

Nonetheless, an affinity with the nonrelativistic harmonic oscillator spec-
trum is clearly seen in the large mass regime. In our derivations, m = 10 has
been found to set a “sufficiently large” threshold value such that for m > 10
the quasirelativistic harmonic oscillator spectrum effectively displays (ap-
proximates, becomes very close) the nonrelativistic oscillator spectral regu-
larity ∆E = Ei+1 − Ei ∼

√
2/m, for all i = 1, 2, . . .

4. Quasirelativistic finite well

Let us consider the eigenvalue problem for H = T +V , where T = Tm =√
−∆+m2 −m is the quasirelativistic generator and

V (x) =

{
0 , |x| < 1 ,
V0 , |x| > 1 , (14)

with V0 > 0. We use the natural system of units ~ = 1 = c from the start,
see Appendix for a description of involved scalings.

We shall discuss both shallow and very deep wells of the size [−1, 1]. In
the previous paper [4], we have demonstrated that a sufficiently deep finite
Cauchy well is “spectrally close” to the infinite Cauchy well. A number of
eigenvalues and eigenfunctions has been computed for the low-lying part of
the spectrum.
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In the present section, we shall demonstrate that the finite quasirelativis-
tic well, in the small mass regime, becomes “spectrally close” to the finite
Cauchy well (compare e.g. Cauchy versus quasirelativistic oscillator discus-
sion of Section 3). For another extreme of large masses, we shall demonstrate
that the quasirelativistic well becomes “spectrally close” to the familiar non-
relativistic finite well. Analytic arguments provided in Appendix give sup-
port to the conjecture that those extremal behaviors might be generic for a
wider class of confining quasirelativistic problems.

Our numerical procedures are based on the spectrum-generating algo-
rithm of Section 2, including all mentioned there cutoff choices and the
algorithm — related error accumulation reservations. We use a = 50 for
the integration interval bound. The set of trial functions is chosen to be the
same as that in the discussion of Section 3.

4.1. Shallow well

In a finite 1D (and 2D) nonrelativistic well, one normally expects at least
one bound state to exist. The well known exception is the 3D case, when for
too shallow wells (irrespective of their width) bound states may not exist at
all. No general statements of that kind are known for nonlocal finite well
problems.

We know the Cauchy well whose depth is set by V0 = 5 has three bound
states [4]. However, we have not explored before how low V0 need to be to
admit one bound state only. In the present paper, this issue will be addressed
on the level of a quasirelativistic finite well. An extension to finite Cauchy
well will actually come out in the regime of small masses.

For concreteness and a direct comparison with results of Ref. [4], let us
begin our discussion from the finite V0 = 5 quasirelativistic well. We have
extended the stabilization time up to 5000 small time steps. (Anticipating
further discussion of the large m regime when the Bessel functions become
strongly localized, having very narrow peaks about their maxima and min-
ima, a spatial partitioning has been made finer ∆x = 0.001→ ∆x = 0.0005.)

If m drops down to a close vicinity of 0, quasirelativistic eigenvalues and
eigenfunctions appear to converge to those of the finite Cauchy well. To
exemplify this observation on the level of eigenvalues, let us provide explicit
quasirelativistic ground state energy values in the V0 = 5 well and set them
against the respective m = 0 value.

We have E1 = 0.9501 for m = 0.01, 0.9522 for m = 0.001 and 0.9538 for
the finite Cauchy well (m = 0). Respective eigenfunctions are graphically
indistinguishable in the adopted scale.

In Fig. 7, we depict quasirelativistic V0 = 5 well eigenfunctions for graph-
ically distinguishable cases of m = 0.01, 1, 5, 10. With the growth of m the
ground state maximum increases. Clearly, the eigenfunctions have tails ex-
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tending beyond the well boundaries (e.g. the interval [−1, 1]), but they decay
rapidly with the growth of |x|. For large m, we detect a fairly close affinity
with the standard (text-book) nonrelativistic finite well quantum problem
(c.f. Appendix for relevant data).

In accordance with the folklore wisdom about the nonrelativistic finite
well, in 1D at least one bound state is always in existence. However, the
maximal number N of bound states in the well of a fixed depth V0 is corre-
lated with the massm value (we bypass the well width impact, in view of our
[−1, 1] choice). Indeed, the number of bound states N ∈ N is constrained
by inequalities

π2

8V0
(N − 1)2 6 m 6

π2

8V0
N2 . (15)

Physically more familiar inequalities in addition to dimensional constants
explicitly involve the width parameter b (the well interior is enclosed by
[−b, b]). We display, for reference, the pertinent formula: π2~2(N − 1)2 6
8mV0b

2 6 π2~2N2. Our considerations employ b = 1 and ~ = c = 1. (In
passing, we note that in 1D and 2D well at least one bound state always
exists. The bound state may not be granted to exist in 3D for too shallow
wells.)

The above formula allows to deduce the number of bound states for a
fixed well depth V0 but different mass values. Thus e.g. for all m 6 π2/8V0,
only one bound state is in existence. Accordingly, the bound m < 1.23/V0

tells that for V0 = 5 one bound state only is secured for masses m < 0.246.
For comparison, maximal numbers of bound states of the V0 = 5 well for

various mass values are displayed in a compact Table VI. In the quasirela-
tivistic case, those were deduced by means of the spectrum-generating algo-
rithm. In the nonrelativistic case (denoted “standard”), these numbers were
deduced from the formula (15). With the mass parameter increase, maximal
numbers of bound states show a definite tendency to equalize for both local
and nonlocal cases.

TABLE VI

V0 = 5 well: maximal number N of bound states for various masses in quasirela-
tivistic and nonrelativistic cases.

Mass Quasirelativistic N Standard N

0.1 3 1
0.5 4 2
1 4 3
3 5 4
5 6 5
10 7 7
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With the growth of m, both eigenvalues and eigenfunctions for the non-
local and local finite well models “become close” to each other. To see this
spectral affinity, let us compare respective eigenvalues in the well V0 = 5,
for various masses (for m = 10, only 7 eigenvalues are in existence). See e.g.
Table VII.

TABLE VII

Quasirelativistic (quasi) versus nonrelativistic (standard) V0 = 5 well: m-depen-
dence of eigenvalues.

Mass Finite well n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

m=10
Quasi 0.09951 0.39217 0.86271 1.48933 2.24605 3.10483 4.03221 —

Standard 0.10190 0.40679 0.91211 1.61267 2.49846 3.54752 4.68404 —

m=20
Quasi 0.05312 0.21154 0.47264 0.83227 1.28482 1.82341 2.43999 3.12481

Standard 0.05379 0.21502 0.48318 0.85739 1.33616 1.91714 2.59636 3.36634

m=50
Quasi 0.02227 0.08892 0.19968 0.35423 0.55213 0.79272 1.07522 1.39867

Standard 0.02261 0.09040 0.20334 0.36132 0.56421 0.81181 1.10385 1.43998

m=100
Quasi 0.01126 0.04499 0.10113 0.17961 0.28037 0.40334 0.54842 0.71546

Standard 0.01159 0.04636 0.10431 0.18540 0.28964 0.41695 0.56733 0.74070

The resultant eigenvalues in the case of n > 5, even for large masses
still differ by few percent. However, we recall that our spectrum-generating
algorithm accuracy has not been fined tuned to the available extent. A
proper balance between cutoffs, partition units and the computations time
was more important for us than the highest possible accuracy level (dimin-
ishing an accumulation of systematic errors) and that hampers computation
results for n > 5. C.f. also our comments concluding Sections 2 and 3.2.

The eigenfunction computation is less sensitive to algorithm generated
systematic errors. In Fig. 8, the ground state function of the quasirelativistic
finite well is displayed (label 2) and compared with that for the nonrelativis-
tic well (label 1) for masses m = 5,m = 10,m = 20. We clearly see that
m = 20, albeit still too small, may be tentatively considered as the mass
threshold above which the concept of “spectral closeness” of the quasirela-
tivistic and nonrelativistic finite wells receives quantitative support.

A collection of excited eigenfunctions that are parametrized by the mass
parametr m is displayed in Fig. 9. The mass range m = 0.01, 1, 5, 10 is the
same as in the ground state Fig. 7.

In Figs. 10 and 11, we compare nonrelativistic and quasirelativistic finite
(V0 = 5) well eigenfunctions for n = 2, 3 (n = 4, 5 follow the same pattern)
and masses m = 5, 10, 20. We get there a convincing support to the previous
tentative statement that m = 20 is an optimal threshold value. For m > 20,
with a good fidelity, we can state that quasirelativistic and nonrelativistic
finite wells are “spectrally close”.
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Fig. 8. A comparison of ground states in the case of V0 = 5 for the nonrelativistic
(label 1) and quasirelativistic well (label 2): m = 5 (left panel), m = 10 (middle
panel), m = 20 (right panel).
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Fig. 9. Second, third and fourth quasirelativistic V0 = 5 well eigenfunctions. Masses
m = 0.01, 1, 5, 10 are labeled respectively by 1, 2, 3, 4.
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Fig. 11. A comparison of the third eigenfunction in the V0 = 5 well for nonrelativis-
tic (label 1) and quasirelativistic (label 2) cases. Here, m = 5 (left panel), m = 10

(middle panel), m = 20 (right panel).

4.2. Deep well versus infinite well

Let us consider a relatively deep well V0 = 500 (in Ref. [4], we have
investigated the well as deep as V0 = 5000). Like in the Cauchy finite well
case, a quasirelativistic deep well is expected to stay in spectral affinity with
its infinitely deep partner. That is to be valid at least in relation to the low
part of the spectrum.

For small values of the mass parameter m, convergence symptoms to-
wards m = 0 spectral solution are clearly seen in a sequence of ground state
energies for the finite V0 = 500 well: E1 = 1.1373 for m = 0.01, 1.1391 for
m = 0.001, while E1 = 1.1408 in the m = 0 Cauchy case.

Eigenfunctions for small mass values are fapp graphically indistinguish-
able from their Cauchy relatives [4]. In Fig. 12, we have displayed quasirel-
ativistic V0 = 500 well ground state for masses m = 0.01, 1, 5, 10, where
m = 5, 10 definitely stay beyond the “smallness” range. For comparison,
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Fig. 12. Quasirelativistic V0 = 500 ground state. Labels 1, 2, 3, 4 refer to masses
m = 0.01, 1, 5, 10. Label 5 refers to the nonrelativistic infinite well ground state
cos(πx/2). Right panel: an enlargment of the vicinity of the maxium.
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the nonrelativistic infinite well ground state cos(πx/2) has been depicted.
It is clear that all curves stay in a close vicinity of cos(πx/2), albeit upon
enlargement they show subtle differences.

We note that in the case of V0 = 500, for small m, respective ground
states stay in a close vicinity of the infinite Cauchy well [4]. To the contrary,
if m is sufficiently large, respective ground states converge to cos(πx/2)
which is a nonrelativistic ground state for an infinite well. The same pattern
of behavior is detectable for excited states displayed in Figs. 13, 14 and 15.
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of maximum.
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Fig. 15. Fourth eigenfunctions for V0 = 500. Labels 1, 2, 3, 4, 5 refer to m = 0.01,
1, 5, 10, 50, label 6 to the curve sin(2πx). Right panel: enlargement of the vicinity
of the maximum.

The large m regime locates excited states respectively in the vicinity of
− sin(πx) (Fig. 13), − cos(3πx/2) (Fig. 14) and sin(2πx) (Fig. 15). Due to
the presence of m = 0.01 curves we have, in fact, a transparent interpolation
between the infinite Cauchy and nonrelativistic infinite well approximations
of the deep quasirelativistic well. The convergence may not be uniform, see
Fig. 15.

In the left panel of Fig. 16, the m-dependence of first five deep well
(V0 = 500) eigenvalues has been displayed. For a direct comparison, the
corresponding Cauchy well (V0 = 500, m = 0) eigenvalues were depicted
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Fig. 16. V0 = 500 quasirelativistic well. Left panel: En dependence on m, n = 1,
2, 3, 4, 5. Right panel: computed eigenvalues are depicted against n = 1, 2, 3, 4, 5.
For each mass value (m = 10, 20, 50, 100), we depict a curve which is an optimal
fit to the data.
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as well. In the right panel, the n-dependence of computed eigenvalues is
displayed for masses m = 10, 20, 50, 100. The convergence towards Cauchy
well data, while m drops down to 0, is clearly seen. To the contrary, for
large m, an approach towards the corresponding nonrelativistic well spectral
data can be directly read out from the figures. We shall validate the latter
statement by a more detailed data analysis.

On the basis of simulation data, we may fairly accurately deduce best
fitting analytic forms for curves associated with masses m = 10, 20, 50, 100
(depicted in Fig. 16) and m = 200 (not depicted so far). Since we expect
a convergence (with the growth of m) to nonrelativistic well spectral data,
let us consider as a useful reference an approximate formula for the nonrel-
ativistic deep well spectra [16]

EV0
n ≈ E∞n

(
1− 4

π
√
V0

)
=
π2n2

8m

(
1− 4

π
√
V0

)
. (16)

We note that 4
π
√
V0
< 0.06 for V0 = 500.

For each mass parameter in the right panel of Fig. 16, the fitted curve
actually can be described by means of an approximate analytic formula
(derived directly from the data). For direct comparison, the ground state
energy Est

1 has been evaluated by means of a nonrelativistic formula (16).
The spectral affinity of the quasirelativistic well with the nonrelativistic well
for large mass values appears to be validated with no trace of doubt

m = 10 , (0.1191± 0.0049)n1.8929 , Est
1 ∼ 0.1163 ,

m = 20 , (0.0596± 0.0025)n1.9643 , Est
1 ∼ 0.0582 ,

m = 50 , (0.0236± 0.0013)n1.9937 , Est
1 ∼ 0.0233 ,

m = 100 , (0.0117± 0.0007)n1.9983 , Est
1 ∼ 0.0116 ,

m = 200 , (0.0058± 0.0004)n1.9996 , Est
1 ∼ 0.0058 .

We note that an approximate formula (16) has the form Est
n ∼ α

m n2. It
is a convergence β → 2 of the exponents β = 1.8928, 1.9643, 1.9937, 1.9996
in the above nβ entries, which is most indicative.

4.3. Infinite well regularities

Let us introduce for a while fully (SI) dimensional operators H = Tm+V

and Tm =
√
−~2c2∆+m2c4−mc2. The infinite quasirelativistic well (sized

[−b, b]) eigenvalues En can be approximated as follows [14]

mc2

√(
(n− 1)π

2

~
mcb

)2

+ 1 < En +mc2 6 mc2

√(
nπ

2

~
mcb

)2

+ 1 . (17)
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Adopting the ~ = 1 = c system of units (c.f. Appendix) and setting
b = 1, we arrive at√

[(n− 1)π/2]2 +m2 < En +m 6
√

(nπ/2)2 +m2 , (18)

provided En stands for the nth eigenvalue of H = T + V , with T = Tm =√
−∆+m2 −m and the infinite well is supported on [−1, 1]. Accordingly,

En + m stands for an eigenvalue of H =
√
−∆+m2 + V , [14]. The es-

timate (17) for En + m is at the moment the sharpest one, available in
the literature. To better grasp its virtues, we present in Table VIII values
that correspond to the right-hand side of Eq. (17), i.e. the upper bound for
En + m, and set them against (additively corrected by m) finite V0 = 500
well eigenvalues as given by Eq. (16). We depict the data for n = 1, 2, 3, 4, 5
eigenvalues. Accordingly, the lower bound for each En+m with n = 2, 3, 4, 5
can be directly read out from the Table VIII. The robustness of the estimate
for low eigenvalues is clearly seen.

TABLE VIII

We compare eigenvalues En + m of the V0 = 500 quasirelativistic well computed
by two different approximation methods. We use a nonrelativistic approximation
formula (16) for the finite but very deep well and set the computed values against
the upper bound for the infinite quasirelativistic well, according to (17).

n m=0.01 m=0.1 m=0.5 m=1 m=3 m=5 m=10 m=20 m=50 m=100

1 Nonrelat. V0 = 500 1.2160 1.2287 1.3677 1.6698 3.3408 5.2254 10.1188 20.0611 50.0245 100.0122

Infinite quasi (17) 1.5708 1.5740 1.6484 1.8621 3.3864 5.2409 10.1226 20.0616 50.0247 100.0123

2 Nonrelat. V0 = 500 2.9055 2.9089 2.9417 3.0760 4.2393 5.8600 10.4680 20.2435 50.0979 100.0486

Infinite quasi (17) 3.1416 3.1432 3.1811 3.2969 4.3439 5.9050 10.4819 20.2452 50.0986 100.0493

3 Nonrelat. V0 = 500 4.5596 4.5623 4.5746 4.6500 5.4697 6.8085 11.0283 20.5443 50.2200 100.1093

Infinite quasi (17) 4.7124 4.7134 4.7388 4.8173 5.5863 6.8707 11.0547 20.5477 50.2216 100.1110

4 Nonrelat. V0 = 500 6.2290 6.2308 6.2298 6.2734 6.8743 7.9735 11.7730 20.9585 50.3905 100.1943

Infinite quasi (17) 6.2832 6.2840 6.3030 6.3623 6.9626 8.0298 11.8101 20.9637 50.3932 100.1972

5 Nonrelat. V0 = 500 7.8344 7.8365 7.8331 7.8633 8.3321 9.2502 12.6725 21.4803 50.6090 100.3033

Infinite quasi (17) 7.8540 7.8546 7.8699 7.9174 8.4074 9.3105 12.7155 21.4869 50.6131 100.3080

On the other hand, one may try to infer some simple-minded regularities
of the quasirelativistic infinite well spectrum by paying more attention to
suitable parameters regimes. For example, if we presume m to be very small
or even (set blindly) equal zero, a natural expectation is that En ∼ nπ/2.
Actually, a rigorous estimate found for the m = 0 has slightly more refined
form |E − n− (nπ/2) + (π/8)| 6 (1/n), [5], and is valid for all n > 1.
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In the massive case proper, if we set λ = ~/mc and consider λ/b suffi-
ciently large, En+mc2 ∼ (nπ/2)(~c/b) would seem to look persuasive. How-
ever, a rigorous approach of [14] enforces En+mc2 ∼ [(nπ/2)−(π/8)](~c/b)+
mc2O(1/n) instead of the previous oversimplified guess.

Let us add that for sufficiently large (albeit finite) m-values, a nonrel-
ativistic spectral expression follows directly: En ∼ (nπ/2b)2(~2/2m), com-
pare e.g. [14]. That stays in conformity with our previous observations
concerning the large m regime in the quasirelativistic case.

5. Outlook

We have investigated in some detail spectral properties (eigenvalues and
eigenfunctions shapes) of nonlocal confining quantummodels associated with
the quasirelativistic generator. Harmonic and finite well potentials were con-
sidered. Computation accuracy is very high in the low part of the spectrum
and specifically eigenfunctions shapes can be reproduced with a fidelity level
that was never reached before in the nonlocal context, c.f. also Ref. [6].

For example, it was known that both the infinite Cauchy well and the
infinite quasirelativistic well have eigenfunctions whose shapes are similiar
to those of trigonometric functions (e.g. eigenfunctions of the corresponding
infinite nonrelativistic well). This similarity, albeit appealing, is merely elu-
sive. Our computer-assisted results, both in the present paper and in Ref. [6],
confirm that true shapes considerably differ from nonrelativistic ones.

Obviously, one may set a suitable acceptance (robustness) level within
which these differences become immaterial. However, the modern view on
quantum phenomena proves that even extremely subtle discrepancies might
be observable, ultimately acquiring a profound meaning, with an impact
upon the development or refinements of the existing theory and experiment
as well.

The mass range m ∈ (0,∞) has been explored and the spectral affin-
ity (“closeness”) with (i) m = 0 ultrarelativistic (Cauchy) case for m � 1
and (ii) standard nonrelativistic quantum eigenvalue problem for m � 1
has been established. This spectral affinity might be a generic property of
all confining quasirelativistic models, irrespective of the number of space
dimensions.

Appendix A

Lowest eigenvalues of the Cauchy oscillator and their approximate values

Approximate formulas (10) and (11) for Cauchy oscillator eigenvalues
reflect the fact that these eigenvalues are normally divided into two sub-
classes. The approximate eigenvalues Eappr

n=2k−1 = (3π/2)2/3(n + 3/4)2/3,
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that are numbered by k = 1, 2, 3, . . . and thence refer to odd n labels,
n = 1, 3, 5, . . . , actually correspond to even eigenfunctions. The eigenvalue
stands for the minus zero of the Airy function derivative. A complementary
formula Eappr

n=2k = (3π/2)2/3(n + 1/4)2/3 refers to even label n = 2, 4, 6, . . .
and odd eigenfunctions. The eigenvalue stands for the minus zero of the
Airy function. See e.g. [6, 7].

We note that formulas (10), (11) can be written in a compact form
encompassing all consecutive n-labels

Eappr
n =

(
3π

8

)2/3

[8n+ (−1)n]2/3 .

Our robustness threshold will be the fourth or fifth decimal digit in
presented results. We point out that while evaluating Airy function zeroes
(we term them “exact”), one can use an arbitrarily large number of decimal
digits, like 14 or more, see e.g. [7].

It turns out that approximate formulas (10) and (11) give a fairly good
approximation for Cauchy oscillator eigenvalues not necessarily for large n
only, but actually beginning from the bottom one n = 1. Indeed, for En=2k

eigenvalues, we have

Eexact
2 = 2.3381 , Eappr

2 = 2.32025 ,

Eexact
4 = 4.0879 , Eappr

4 = 4.08181 ,

Eexact
6 = 5.5206 , Eappr

6 = 5.51716 ,

Eexact
8 = 6.7867 , Eappr

8 = 6.78445 ,

Eexact
10 = 7.9440 , Eappr

10 = 7.94248 ,

Eexact
12 = 9.0226 , Eappr

12 = 9.02137 ,

Eexact
14 = 10.0402 , Eappr

14 = 10.03914 ,

Eexact
16 = 11.0085 , Eappr

16 = 11.00776 ,

Eexact
18 = 11.9360 , Eappr

18 = 11.93532 . (19)
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For En=2k−1 eigenvalues, a comparison of exact and approximate out-
comes goes as follows:

Eexact
1 = 1.0188 , Eappr

1 = 1.11546 ,

Eexact
3 = 3.2482 , Eappr

3 = 3.26163 ,

Eexact
5 = 4.8201 , Eappr

5 = 4.82632 ,

Eexact
7 = 6.1633 , Eappr

7 = 6.16712 ,

Eexact
9 = 7.3721 , Eappr

9 = 7.37485 ,

Eexact
11 = 8.4884 , Eappr

11 = 8.49050 ,

Eexact
13 = 9.5354 , Eappr

13 = 9.53705 ,

Eexact
15 = 10.5276 , Eappr

15 = 10.52897 ,

Eexact
17 = 11.4751 , Eappr

17 = 11.4762 ,

Eexact
19 = 12.3848 , Eappr

19 = 12.3857 . (20)

Appendix B

Eliminating and reintroducing dimensional constants
Oscillators

(i) Quasirelativistic oscillator. The dimensional version of the Hamilto-
nian reads Hdim =

√
−~2c2∆+m2c4 − mc2 + kx2/2, while we have been

computing the spectral solution for H =
√
−∆+m2 −m + x2. The rela-

tionship between Edim
n and En needs to be settled. The scaling procedure

is entirely equivalent to the choice of natural units accompanied by getting
rid of k/2.

Let us consider scaling transformations inspired by the following form
of Hdim

Hdim = c2

[√
−~2

c2
∆+m2 −m+

k

2c2
x2

]
= c2

[√
−∆̃+m2 −m+ κx̃2

]
,

where we denote x̃ = cx/~ and κ = k~2/2c4. One more scaling transforma-
tion can be executed by means of a substitution: x̃ = x̌/κ1/3, followed by
Ẽn = κ1/3Ěn, m = κ1/3m̌. Clearly, we arrive at

Hdim = c2κ1/3
[√
−∆̌+ m̌2 − m̌+ x̌2

]
= c2κ1/3Ȟ = ~c

(
k

2~c

)1/3

Ȟ ,

where Ȟ has a canonical form employed in computational routines of Sec-
tion 3, compare e.g. Eq. (9).
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If we denote f(x) = f̌(x̌), then there holds

Hdimf(x) = c2κ1/3Ȟf̌(x̌) ,

where x̌ = (κ1/3c/~)x = (k/2~c)1/3x, m = κ1/3m̌ and Edim
n = c2κ1/3Ěn.

Eigenfunctions of Ȟ are by construction normalized (c.f. Section 3), hence to
extend this property to eigenfunctions of Hdim, we need to compensate the
change of integration variable from x̌ back to x (we recall that f(x) = f̌(x̌)).

Since dx̌ = (κ1/3c/~) dx, the L2(R)-normalized eigenfunction f̌(x̌) of Ȟ
gives rise to the L2(R)-normalized eigenfunction ψ(x) of Hdim, according to

f̌(x̌)→
(
κ1/3c/~

)1/2
f(x) = (k/2~c)1/3f(x) = ψ(x) .

All that modifies an integration interval from [−ǎ, ǎ] on the Ȟ level to [−a, a],
with a = (2~c/k)1/3ǎ on the level of Hdim.

(ii) Cauchy oscillator. In the derivation of the spectral solution [6], we
have used a scaling transformation which connects the eigenvalues Edim

n of
Hdim = ~c|∇|+kx2/2 with those (e.g. En) for Ȟ = |∇|+x2. Obviously, it is
a special m = 0 version of the previous m 6= 0 derivation. Namely, we have
Edim
n = (k~2c2/2)1/3Ěn. Accordingly, we have [−a, a] with a = (2~c/k)1/3ǎ.

Wells

(i) Infinite Cauchy well. The dimensional energy operator reads Hdim =
~c|∇|, while Dirichlet boundary conditions impose the “infinite well con-
straint” at boundaries [−b, b] of the well. By setting x = bx̌, we introduce
a dimensionless “space” label x̌. Hence, Hdim = (~c/b)Ȟ, where Ȟ = |∇̌|.
The Dirichlet boundary conditions for Ȟ now refer to another (dimension-
less) interval [−1, 1], that in view of b̌ = 1. We note that the dimensionless
“energy” unit for Ě equals 1, which translates to an energy unit (~c/b) in the
case of Edim. The integration interval [−ǎ, ǎ] is mapped into [−a, a] with
a = bǎ.

(ii) Finite Cauchy well. We have Hdim = ~c|∇|+V b
0 (x), where V b

0 (x) =
V0 > 0 for |x| > b and vanishes in the interval (−b, b). By setting x = bx̌, we
get Hdim = (~c/b)Ȟ, where Ȟ = |∇̌| + V̌ b̌

0 and V̌ b̌
0 = (b/~c)V0 for |x| > 1,

while being equal 0 in [−1, 1]. Obviously, V̌ b̌
0 is a dimensionless quantity,

“measured” in units 1, 2, 3, . . . , while V b
0 in units (~c/b). Like before, [−ǎ, ǎ]

goes over to [−a, a] with a = bǎ.
(iii) Quasirelativistic finite well. As before, we take ε = (~c/b) to set an

energy scale. Accordingly, Hdim =
(~c
b

)
Ȟ, where

Ȟ =
√
−∆̌+ m̌2 − m̌+ V̌ b̌

0 ,
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and V̌ b̌
0 = (b/~c)V0 for |x| > 1, while being equal to 0 in [−1, 1]. The

“mass” parameter m̌ = b/λC is dimensionless. Here, λC = ~/mc is the
familiar reduced Compton wavelength associated with a quantum particle
of mass m. Again [−ǎ, ǎ] gets replaced by [−a, a] with a = bǎ.

Length and energy scales

It seems useful to comment on the role of the omnipresent factor ~c which
contributes to ultimate (dimensional) energy scales. In conjunction with b,
it appears as an energy scaling factor ε = ~c/b. Since ~c = 1.975 GeV×fm =
1.975× 10−6 eV×m, then e.g. b = 1 nm = 10−9 m results in ε = 1.975 keV,
b = 10−8 m gives rise to ε = 197.5 eV, while b = 1 µm to 1.975 eV.

In the previous subsection, m̌ = b/λC with λC = ~/mc has been dimen-
sionless. Thus, given concrete m̌ ∈ (0,∞) value, the related λC sets the
length scale and in reverse (given b). To have an idea what is a meaning
of “low”, “moderate” or “large” value of λC, we note that for the electron
λC = 0.00386 Å is a fairly small proportionality factor. Then b = 10−10 m
implies m̌ ∼ 2.6. On the other hand, presuming e.g. m̌ = 26 and the elec-
tronic λC, we end up with b = 10−9 m.

Concerning the dimensional mass m choice, we have a number of other
physical examples. Thus e.g. accepting the electron mass value me ∼ 0.511
MeV/c2, we can easily recompute λC to refer to some other elementary par-
ticles. Thus e.g. for the proton mp ∼ 938 MeV/c2 we have mp/me ∼ 1836.
Analogous proportionality factors can be introduced e.g. for the electron
neutrino mν ∼ 2.2 eV/c2, muon neutrino mµ ∼ 170 keV/c2, neutral pion
mπ ∼ 140 MeV/c2, kaon mK ∼ 494 MeV/c2. Since for the exemplary case
of the electron neutrino, we have me/mν ∼ 232.3 × 103, the corresponding
reduced Compton wavelength reads λνC = 232.3× 103λC ∼ 896.7 Å.

Ultrarelativistic (m� 1) and nonrelativistic (m� 1) mass extremes
of the quasirelativistic kinetic energy operator Tm

An analytic approach tom� 1 andm� 1 regimes ofH = Tm+V is best
exemplified by resorting to the quasirelativistic operator Tm=

√
∆+m2 −m.

The standard reasoning employs the Fourier representation.
Reintroducing the physical constants (one may keep ~ = 1 = c intact as

well), the quasirelativistic operator Tm is presumed to act upon functions in
the domain of H = Tm + V

(
Tm +mc2

)
φ(x) =

√
m2c4 − ~2c2

∂2

∂x2
φ(x) . (21)
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Denoting f̃(k) = (2π)−1/2
∫∞
−∞ f(x)e−ikxdx, f(x) = (2π)−1/2

∫∞
−∞ f̃(k)eikxdk

and interpreting the action of the square root operator in terms of the series
expansion, we readily arrive at the following formal Fourier representation

(
Tm +mc2

)
φ(x) =

mc2

√
2π

∞∫
−∞

φ̃(k)dk

√
1− ~2

m2c2

∂2

∂x2
eikx

=
mc2

√
2π

∞∫
−∞

φ̃(k)dk

[
1− ~2

m2c2

1

2

∂2

∂x2
−
(

~2

m2c2

)2
1

8

∂2

∂x2
− . . .

]
eikx

=
mc2

√
2π

∞∫
−∞

φ̃(k)dk

√
1 +

p2

m2c2
eikx

=
1

~
√

2π

∞∫
−∞

dp
√
m2c4 + p2c2 eipx/~φ̃(p) . (22)

We note an explicit presence of ~/mc = λC and p = ~k.
All our derivations and the previous discussion of the “spectral affinity”

(closeness) of various systems (like e.g. this of the quasirelativistic and non-
relativistic oscillators in the large m regime) crucially rely of the presence of
confining potentials. Then only, we can expect that the Taylor series with
respect to p2/m2c2 = k2λ2

C may be terminated after the first order term

mc2

√
2π

∞∫
−∞

φ̃(k)dk

√
1 + k2λ2

C eikx ∼ mc2

√
2π

∞∫
−∞

φ̃(k)dk
[
1 + (1/2)k2λ2

C

]
eikx

= mc2φ(x)− ~2

2m
∆φ(x) . (23)

This property can be granted only if the function φ̃(k) gives substantial
contributions only from k obeying k2λ2

C � 1, vanishing rapidly otherwise.
That is inseparably linked with the previously considered nonrelativistic
(m� 1) regimes, where physical constants ~ and c are kept fixed, while m
is being varied.

Although we have anticipated the existence of the mass m = 0 limit in
the quasirelativistic confining contexts, our tacit presumption of the nonrela-
tivistic regime p2 � m2c2 has directly led to an expansion of
mc2

√
1 + (p2/m2c2) into Taylor series with respect to ∼ p2/m2c2 and evi-

dently we are left with no room for m→ 0 therein.
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Nonetheless, we can safely put m = 0, after the series of resummation
— in the last entry of the formula (22) — so arriving at the correct form
of the Fourier image of |∇|. To justify the latter option, we should consider
the ultrarelativistic regime with p2 � m2c2 which is granted only if the
function φ̃(k) gives substantial contributions only from k obeying k2λ2

C � 1,
vanishing rapidly otherwise. Then, we may expand |p|c

√
1 + (m2c2/p2)

with respect to m2c2/p2 = (k2λ2
C)−1. Keeping the leading term of the series

only, we arrive at the required m� 1 outcome

mc2

√
2π

∞∫
−∞

φ̃(k)dk

√
1 + k2λ2

C eikx

=
~c√
2π

∞∫
−∞

φ̃(k)dk |k|
√

1 +
(
k2λ2

C

)−1
eikx ∼ ~c|∇|φ(x) . (24)
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