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1. Introduction

The O(3) nonlinear “sigma” model (called sometimes also as “O(3) non-
linear σ model”, “O(3) model”, “CP1 model” and so on) plays an important
role in physics. Its version in (2 + 0)-dimensions is integrable and describes
static field configurations in the Heisenberg ferromagnet (the dynamics of
the field configurations in planar ferromagnet has been studied in many pa-
pers, e.g. in [1, 2]). The Bogomolny equations for it have been found in [3].
In [4], the Bogomolny equations of nonlinear “sigma” model with a suitable
choice of the potential were derived and the interaction of their soliton solu-
tions was investigated in [5]. In [6, 7], some chiral σ-model in (3+1) has been
investigated. In [8], toroidal soliton solutions for O(3)N nonlinear “sigma”
model were obtained and investigated. Some hopfions in CPn model were
investigated in [9]. The baby Skyrme model appeared firstly as an analogon
(on plane) to the Skyrme model in three-dimensional space. The last one,
was introduced by Skyrme in [10–12]. It is being used for a description of
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the physics of strong interactions in the case of low energies [13]. The target
space of Skyrme model is SU(2) [10–13], and for baby Skyrme model, the
target space is S2. In these both models, the topological classification of
the static field configurations, by their winding numbers, can be done. Sim-
ilarly to the Skyrme model, the following terms appear in the baby Skyrme
model: the term of nonlinear O(3) “sigma” model, the quartic term — the
analogon of the Skyrme term and the potential. The potential, in baby
Skyrme model, must occur, for existence of static solutions with finite en-
ergy. However, the form of the potential is not restricted. Many different
forms of the potentials were investigated, for example in [14–18]. In [19],
noncommutative baby Skyrmions were investigated and in [20], exact BPS
bound for noncommutative baby Skyrme model has been obtained. The
problem of peakons and Q-balls in the baby Skyrme model was studied
in [21]. The Bogomolny bound and Bogomolny equations for gauged O(3)
“sigma” model, for some special form of the potential, were derived in [22].
In [23], the existence of soliton solutions of Bogomolny kind, in gauged
linear “sigma” model in (2 + 1)-dimensions, was proved. The Bogomolny
equations (Bogomol’nyi equations) for Abelian gauged O(3) “sigma” model
with some other specific form of the potential (and for generic nonminmi-
mal coupling constant) have been derived in [24]. The vortex solutions for
them have also been obtained there. The Bogomolny equations and their
vortex solutions for the gauged “sigma” model with Kähler domain have
been obtained in [25]. In [26], it was shown that the Bogomolny bound of
(1 + 1)-dimensional gauged “sigma” models can be written down by using
terms of two conserved charges, similarly to the Bogomolny bound of the
BPS dyons in (3 + 1)-dimensions. Some new Dirac–Born–Infeld extension
of BPS Skyrme model was done in [27]. Gauged version of the Faddeev–
Skyrme model in (3 + 1)-dimensions, with Maxwell term, was discussed
in [28]. In [29] BPS vortices in (1 + 1)-dimensional N = (2, 2) supersym-
metric gauged “sigma” model were studied. In [30], some soliton solutions
(in the case of V (Si) = 1 − ~n · ~S, (i= 1, 2, 3), ~n = [0, 0, 1]) for gauged full
baby Skyrme model were studied. The Lagrangian of the mentioned gauged
full baby Skyrme model in (2 + 1)-dimensions, with some specific form of
V , is the sum of [30, 31]: O(3)-like (“sigma”) term Dµ

~S ·Dµ~S, Skyrme term
(Dµ~S×Dν ~S)2, usual Maxwell term F 2

µν and the potential V (~S), where ~S is
three-component vector field, such that |~S |2 = 1, λ > 0 is a coupling con-
stant, Dµ

~S = ∂µ~S + Aµ(~n× ~S) is the covariant derivative of vector field ~S,
Fµν is field strength, called also as the curvature and ~n = [0, 0, 1] is an
unit vector and µ, ν = 0, 1, 2. The baby Skyrme model has simpler struc-
ture than three-dimensional Skyrme model and so owing to it, we have an
opportunity of better studying of the solutions of Skyrme model in (3 + 1)-
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dimensions. However, on the other hand, even in the ungauged version of
this model, it is still nonintegrable, topologically nontrivial and nonlinear
field theory, difficult for an exploration. These reasons cause that it is dif-
ficult to make analytical studies of this model and so, the investigations of
baby Skyrmions are very often numerical. Therefore, the simplification, but
of course, keeping us in the class of Skyrme-like models and simultaneously,
giving an opportunity for analytical calculations, is important. One may,
for example, simplify the problem of solving field equations, by deriving the
Bogomolny equations for the models mentioned above. All solutions of the
Bogomolny equations are also the solutions of the Euler–Lagrange equations
(their order is bigger than the order of Bogomolny equations). The Bogo-
molny equations for the ungauged restricted baby Skyrme model with the
special form of the potential V = V (S3) were derived in [17].

In [32], Bogomolny decompositions for both ungauged models: restricted
and full baby Skyrme one were derived. There was also showed that in the
case of ungauged restricted baby Skyrme model, Bogomolny decomposition
existed for arbitrary potential (in [18], the Bogomolny equations had been
obtained for the potential, which was a square of some non-negative function
with isolated zeroes, but by another way than used in [32]). Next, in [32], it
was also showed that for the case of ungauged full baby Skyrme model, the
set of the solutions of corresponding Bogomolny equations was some subset
of the set of the solutions of Bogomolny equations for ungauged restricted
baby Skyrme model.

The technique used in [31], for derivation of the Bogomolny equations
for gauged restricted baby Skyrme model in (2 + 0)-dimensions (in the case
of V (Si) = 1−~n · ~S, (i= 1, 2, 3)), was firstly applied by Bogomolny in [33],
among others, for the non-Abelian gauge theory. Independently, the results,
similar to some results obtained in [33], were obtained in [34] and [35] — in
the context of the Bogomolny equations, this last paper has been cited only
in [36]. This method is based on some proper separation of the terms in the
functional of energy. The solutions of Bogomolny equations, found in this
way, minimalize the energy functional and saturate Bogomolny bound (Bo-
gomolny bound is an inequality connecting energy functional and topological
charge).

In [31], the Bogomolny equations for the gauged restricted baby Skyrme
model, in (2 + 0)-dimensions, but for the potentials of the form V (S3),
have been derived and some nontrivial solutions of these equations have
been obtained. Independently, in [37], the Bogomolny decomposition for the
gauged restricted baby Skyrme model, for the potential V (S3) (written down
in stereographical variables), obtained by applying the so-called concept of
strong necessary conditions, has been presented. In [38], a novel BPS bound
for some gauged BPS submodel was investigated. Some topological duality
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between vortices and planar skyrmions in BPS theories with the so-called
APD symmetries (also for the case of the U(1) gauged versions of the models)
was established in [39].

In this paper, we derive the Bogomolny equations (we call them the Bo-
gomolny decomposition) for the gauged O(3) “sigma” model and for the both
gauged baby Skyrme models: restricted and full one, in (2 + 0)-dimensions,
for some general form of the potential. The gauged restricted baby Skyrme
model is characterized by absence of O(3)-like term (“sigma” term) in the
Lagrangian of gauged full baby Skyrme model. We investigate here the case
of the more general form of the potentials V (than these ones, investigated
in [31] and [37]), i.e. we look for: the Bogomolny decomposition and the
condition, which must be satisfied by the potential V , in order to existence
of the Bogomolny decomposition.

We derive Bogomolny decompositions, for the gauged models: O(3)
“sigma”, restricted baby Skyrme (this paper contains among others, some
generalization of the results presented in [37]) and full baby Skyrme model,
by applying (in contrary to [30, 31] and [38]) just the concept of strong neces-
sary conditions, firstly presented in [40] and extended in [41, 42]. We derive
also the condition, which must be satisfied by the potentials of the form V ,
for which the Bogomolny decomposition exists. The results, included in this
paper and concerning the gauged baby Skyrme models, have been included
in [37].

The procedure of deriving the Bogomolny decomposition, from the ex-
tended concept of strong necessary conditions, has been presented in [43, 44]
and developed in [45].

This paper is organized as follows. In the next subsections of this section,
we briefly describe the gauged models investigated in this paper. We assume
at the beginning, the dependency of their potentials V , on the gauge field
Ak, (k = 1, 2). Obviously, the Lagrangian needs to be gauge invariant,
however, we want to investigate, whether the conditions for the potentials
in these models, in the case of existing of Bogomolny decomposition, will
permit the dependency of the gauge field Ak, (k = 1, 2) and whether we
obtain some model similar to the Proca theory [46] (or to the theory of a
massive vector field [47]). In Subsection 1.3, the concept of strong necessary
conditions is presented. At the beginning of Section 2, we derive the most
general (in the case of the topology, appropriate for the models investigated
here) expressions (in stereographical variables or in their real and imaginary
part) of the density of the topological invariant, needed for our computations.
Next, we derive the Bogomolny decompositions for the gauged models: O(3)
“sigma”, restricted baby Skyrme and full baby Skyrme model, by using the
concept of strong necessary conditions. There are derived also the conditions
for the potentials of these gauged models, which must be satisfied, in the
case of Bogomolny decompositions. Section 3 contains a summary.
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1.1. Gauged O(3) “sigma” model

The Lagrangian of gauged O(3) “sigma” model has the form

L = Dµ
~S ·Dµ~S + F 2

µν + V , (1)

where ~S is the three-component vector, such that |~S |2 = 1 and Dµ
~S =

∂µ~S + Aµ(~n × ~S ) is covariant derivative of vector field ~S. The form of de-
pendency of the potential V , on the dependent variables, has not been spec-
ified, obviously, it depends on its arguments such that it is a real Lorentzian
scalar.

In this paper, we consider gauged O(3) “sigma” model in (2 + 0)-dimen-
sions, with the energy functional of the following form (cf. [22]):

H =
1

2

∫
d2x H =

1

2

∫
d2x

(
λ0Di

~S ·Di~S + F 2
kl + γ2V

)
, (2)

where x1 = x, x2 = y and i, k, l = 1, 2. We make the stereographic projec-
tion

~S =

[
ω + ω∗

1 + ωω∗
,
−i · (ω − ω∗)

1 + ωω∗
,
1− ωω∗

1 + ωω∗

]
, i .e. ω =

S1 + iS2
1 + S3

, (3)

where ω = ω(x, y) ∈ C, x, y ∈ R and ω(x, y) = u(x, y) + iv(x, y), u, v ∈ R.
After making the transformation (3), the density of the energy func-

tional (2) has the form

H = λ00

(
A2

1 +A2
2

)
·
(
u2 + v2

)
− 2A1 · (u,xv − uv,x)− 2A2 · (u,yv − uv,y)

(1 + u2 + v2)2

+λ00
u2,x + u2,y + v2,x + v2,y

(1 + u2 + v2)2
+ λ2 · (A2,x−A1,y)

2+V (u, v,A1, A2) , (4)

where after rescalling, the constants λ00 = 4λ0, λ2 have appeared, u,x ≡ ∂u
∂x

etc. The constant γ has been included in V and u(x, y)=<(ω(x, y)), v(x, y)=
=(ω(x, y)) ∈ R. The Euler–Lagrange equations for the gauged O(3) “sigma”
model have the form

d

dx

{
2λ00

−A1v + u,x

(1 + u2 + v2)2

}
+

d

dy

{
2λ00

−A2v + u,y

(1 + u2 + v2)2

}
−2λ00

[(
A2

1 +A2
2

)
u+A1v,x +A2v,y

]
(1 + u2 + v2)2

+4λ00u

(
A2

1 +A2
2

)
·
(
u2 + v2

)
− 2A1 · (u,xv − uv,x)− 2A2 · (u,yv − uv,y)

(1 + u2 + v2)3

+4λ00u
u2,x + u2,y + v2,x + v2,y

(1 + u2 + v2)3
− V,u = 0 ,
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the analogical equation, following from varying the energy functional with
respect to v,

−2λ2
d

dy
(A2,x−A1,y)− 2λ00

A1 ·
(
u2+v2

)
− (u,xv−uv,x)

(1 + u2 + v2)2
−V,A1 = 0 ,

2λ2
d

dx
(A2,x−A1,y)−2λ00

A2 ·
(
u2 + v2

)
−(u,yv − uv,y)

(1 + u2 + v2)2
− V,A2 = 0 , (5)

where V,u ≡ ∂V
∂u etc.

1.2. Gauged baby Skyrme models

In this paper, we consider also the gauged baby Skyrme models: full
and restricted one. The Lagrangian of gauged full baby Skyrme model has
the form (in the Lagrangian of gauged restricted baby Skyrme model, the
O(3)-like term is absent), cf. [31, 37]

L = Dµ
~S ·Dµ~S +

λ2

4

(
Dµ

~S ×Dν
~S
)2

+ F 2
µν + V , (6)

where ~S is three-component vector such that |~S |2 = 1 and Dµ
~S = ∂µ~S +

Aµ(~n × ~S ) is covariant derivative of vector field ~S, and the form of depen-
dency of the potential V on the dependent variables has not been specified,
obviously, it depends on his arguments such that it is a real Lorentzian
scalar.

The gauged full baby Skyrme model (in (2 + 0)-dimensions), considered
in this paper, has the energy functional of the following form:

H=
1

2

∫
d2x H=

1

2

∫
d2x

(
λ0Di

~S ·Di~S+
λ21
4

(
εklDk

~S×Dl
~S
)2

+F 2
kl+γ

2V

)
,

(7)
where x1 = x, x2 = y and i, k, l = 1, 2. We make the stereographic projec-
tion

~S =

[
ω + ω∗

1 + ωω∗
,
−i · (ω − ω∗)

1 + ωω∗
,
1− ωω∗

1 + ωω∗

]
, i .e. ω =

S1 + iS2
1 + S3

, (8)

where ω = ω(x, y) ∈ C, x, y ∈ R and ω(x, y) = u(x, y) + iv(x, y), u, v ∈ R.
The density of energy functional (7), but without O(3) term (this is the

Hamiltonian of gauged restricted baby Skyrme model), has the following
form after the stereographic projection [37]

H = 4λ1

[
i ·
(
ω,xω

∗
,y − ω,yω∗,x

)
−A1 ·

(
ω,yω

∗ + ωω∗,y
)
+A2 ·

(
ω,xω

∗ + ωω∗,x
)]2

(1 + ωω∗)4

+λ2 · (A2,x −A1,y)
2 + V (ω, ω∗, A1, A2) , (9)
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where after rescalling, the constants λ1, λ2 have appeared instead of λ and
γ has been included in V and ω,x ≡ ∂ω

∂x , etc.
The Euler–Lagrange equations for this model are as follows [37]:

d

dx

[
N1 ·

(
iω∗,y+A2ω

∗)]+ d

dy

[
N1 ·

(
−iω∗,x −A1ω

∗)]+ 1

4λ1
N2

1ω
∗(1+ωω∗)3

−N1 ·
(
−A1ω

∗
,y +A2ω

∗
,x

)
− V,ω = 0 ,

c.c.

−2λ2
d

dy
(A2,x −A1,y) +N1 ·

(
ω,yω

∗ + ωω∗,y
)
− V,A1 = 0 ,

2λ2
d

dx
(A2,x −A1,y)−N1 ·

(
ω,xω

∗ + ωω∗,x
)
− V,A2 = 0 , (10)

where

N1 =
8λ1

(1 + ωω∗)4
[
i ·
(
ω,xω

∗
,y − ω,yω∗,x

)
−A1 ·

(
ω,yω

∗ + ωω∗,y
)

+A2 ·
(
ω,xω

∗ + ωω∗,x
) ]
.

After making the transformation (8), the density of the energy functional
(7) has the form (this is the Hamiltonian of gauged full baby Skyrme model
— it can be obtained, after adding the Skyrme term to the Hamiltonian of
gauged “sigma” model) [37]

H = λ00

(
A2

1 +A2
2

)
·
(
u2 + v2

)
− 2A1 · (u,xv − uv,x)− 2A2 · (u,yv − uv,y)

(1 + u2 + v2)2

+λ00
u2,x + u2,y + v2,x + v2,y

(1 + u2 + v2)2

+λ11
[(u,xv,y − u,yv,x)−A1 · (uu,y + vv,y) +A2 · (uu,x + vv,x)]

2

(1 + u2 + v2)4

+λ2 · (A2,x −A1,y)
2 + V (u, v,A1, A2) , (11)

where after rescalling, the constants λ00 = 4λ0, λ11 = 16λ1, λ2 have ap-
peared. The constant γ has been included in V and u(x, y) = <(ω(x, y)),
v(x, y) = =(ω(x, y)) ∈ R. Of course, in these both gauged baby Skyrme
models: restricted and full one, the potentials depend on their arguments
such that they are real Lorentzian scalars.

The Euler–Lagrange equations for the gauged full baby Skyrme model,
have the form [37]
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d

dx

{
2λ00

−A1v + u,x

(1 + u2 + v2)2
+N2 · (v,y +A2u)

}
+
d

dy

{
2λ00

−A2v + u,y

(1 + u2 + v2)2
+N2 · (−v,x −A1u)

}
−2λ00

[(
A2

1 +A2
2

)
u+A1v,x +A2v,y

]
(1 + u2 + v2)2

−N2 · (−A1u,y +A2u,x)

+
2

λ11
uN2

2 ·
(
1 + u2 + v2

)3
+4λ00u

(
A2

1 +A2
2

)
·
(
u2 + v2

)
− 2A1 · (u,xv − uv,x)− 2A2 · (u,yv − uv,y)

(1 + u2 + v2)3

+4λ00u
u2,x + u2,y + v2,x + v2,y

(1 + u2 + v2)3
− V,u = 0 ,

the analogical equation, following from varying the energy functional with
respect to v,

−2λ2
d

dy
(A2,x −A1,y)− 2λ00

A1 ·
(
u2 + v2

)
− (u,xv − uv,x)

(1 + u2 + v2)2

+N2 · (uu,y + vv,y)− V,A1 = 0 ,

2λ2
d

dx
(A2,x −A1,y)− 2λ00

A2 ·
(
u2 + v2

)
− (u,yv − uv,y)

(1 + u2 + v2)2

−N2 · (uu,x + vv,x)− V,A2 = 0 ,

where

N2=
2λ11

(1+u2+v2)4
[(u,xv,y−u,yv,x)−A1 · (uu,y+vv,y)+A2 · (uu,x+vv,x)] .

As we have mentioned in Introduction, it is obvious that the Lagrangians
of these models need to be gauge invariant, however, we have assumed at the
beginning, the dependency of their potentials V , on the gauge field Ak, (k =
1, 2). This is because we want to investigate, whether the conditions for the
potentials in the models investigated in this paper, in the case of existing of
the Bogomolny decomposition for any of these models, will permit presence
(in the Lagrangian) of the terms of the kind AkAk, k = 1, 2 (the Lagrangian
must be real Lorentzian scalar), so, whether we obtain some model similar
to the Proca theory [46] or to the theory of a massive vector field [47].
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1.3. The concept of strong necessary conditions

The idea of the concept of strong necessary conditions is such that instead
of considering of the Euler–Lagrange equations,

F,u −
d

dx
F,u,x −

d

dt
F,u,t = 0 , (12)

following from the extremum principle applied to the functional,

Φ[u] =

∫
E2

F (u, u,x, u,t) dxdt , (13)

we consider strong necessary conditions [40–42],

F,u = 0 , (14)
F,u,t = 0 , (15)
F,u,x = 0 , (16)

where F,u ≡ ∂F
∂u , etc.

Obviously, all solutions of the system of equations (14)–(16) satisfy the
Euler–Lagrange equation (12). However, these solutions, if they exist, are
very often trivial. So, in order to avoid such situation, we make gauge
transformation of the functional (13)

Φ→ Φ+ Inv , (17)

where Inv is such functional that its local variation with respect to u(x, t)
vanishes: δ Inv ≡ 0.

By virtue of this feature, we have the equivalence of: the Euler–Lagrange
equations (12) and the Euler–Lagrange equations resulting from requiring
of the extremum of Φ + Inv. On the other hand, there is not the invari-
ance of the strong necessary conditions (14)–(16), with respect to the gauge
transformation (17) and so, we may expect to obtain nontrivial solutions.
As one can notice, the strong necessary conditions (14)–(16) constitute the
system of the partial differential equations of the order less than the order
of Euler–Lagrange equations (12).

We will use, among others, the so-called divergent invariants [41, 42]:
d
dxf ,

d
dyg, where f = f(u, v,A1, A2), g = g(u, v,A1, A2) are some functions,

which are to be determined later. Let us notice here that by using the La-
grangian gauged on among others divergent invariants, we can obtain the
same Euler–Lagrange equations, as these ones obtained by using Lagrangian
ungauged on these invariants, even in that case, when the divergent invari-
ants are not invariant under gauge transformations of the field Ak, k = 1, 2.
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2. Bogomolny decompositions for gauged models: O(3) “sigma”,
restricted baby Skyrme and full baby Syrme

2.1. Derivation of the general expressions for the density
of the topological invariant

The important step is to construct the general form of the density of
the topological invariant for the case of the topology of this model. Some
construction of the density of this topological invariant has been given in
[22, 48]

I1 = ~S ·D1
~S ×D2

~S + F12 ·
(
1− ~n · ~S

)
, (18)

where Di
~S = ∂i~S+Ai~n× ~S, (i = 1, 2) is covariant derivative of vector field ~S

and F12 = ∂1A2 − ∂2A1 is magnetic field.
After making the stereographic projection (8), we have

I1 =
1

(1 + ωω∗)2

[
2
(
i ·
(
ω,xω

∗
,y − ω,yω∗,x

)
−A1 ·

(
ω,yω

∗ + ωω∗,y
)

+A2 ·
(
ω,xω

∗ + ωω∗,x
) )]

+
2ωω∗

1 + ωω∗
(A2,x −A1,y) . (19)

It is useful to generalize the above expression such that there we place
some real functions (differentiable at least once) Rj = Rj(ω, ω

∗, A1, A2),
(j = 1, 2)

I1 = λ3 ·
{
R1 (ω, ω

∗, A1, A2) ·
[
i ·
(
ω,xω

∗
,y − ω,yω∗,x

)
−A1 ·

(
ω,yω

∗ + ωω∗,y
)

+A2 ·
(
ω,xω

∗ + ωω∗,x
) ]

+R2 (ω, ω
∗, A1, A2) · (A2,x −A1,y)

}
. (20)

We make the functions Rj (j = 1, 2), as dependent not only on ω, ω∗,
but also on Ak (k = 1, 2), in order to get the most general form of I1, as it is
possible. Next, we look for such conditions for the functions Rj (j = 1, 2),
that the expression (20) is the density of the topological invariant i.e. its
variations with respect to ω, ω∗, Ak (k = 1, 2) always vanish.

As it turns out, R1 = G′1 and R2 = G1, hence, above expression has the
following form [37]:

I1 = λ3 ·
{
G′1 ·

[
i ·
(
ω,xω

∗
,y − ω,yω∗,x

)
−A1 ·

(
ω,yω

∗ + ωω∗,y
)

+A2 ·
(
ω,xω

∗ + ωω∗,x
) ]

+G1 · (A2,x −A1,y)
}
, (21)

where λ3 = const. G1 = G1(ωω
∗) ∈ R is some arbitrary function dif-

ferentiable at least twice. G′1 denotes the derivative of the function G1
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with respect to its argument: ωω∗. As we see, here is the generalization in
comparison with [37], where G1 = G1(

2ωω∗

1+ωω∗ ). This generalization makes
possible deriving of the Bogomolny decomposition for more wide class of the
potentials.

When we need to express (21) in real functions u = <(ω), v = =(ω),
then [37]

I1 = λ3 ·
{
G′1 ·

[
(u,xv,y − u,yv,x)−A1 · (uu,y + vv,y)

+A2 · (uu,x + vv,x)
]
+ 1

2G1 · (A2,x −A1,y)
}
, (22)

where λ3 = const. G1 = G1(u
2 + v2) ∈ R is some arbitrary function

differentiable at least twice. G′1 denotes here the derivative of the function
G1 with respect to its argument: u2 + v2.

When we investigate gauged restricted baby Skyrme model, we will use
(21) as the form of the density of the topological invariant, and when we
investigate gauged O(3) “sigma” model and gauged full baby Skyrme model,
we will use (22). In the next subsections, the symbol “·” will be neglected,
for simplicity.

2.2. Bogomolny decomposition for gauged O(3) “sigma” model

We make (according to Subsection 1.3) gauge transformation of (4) by
using the sum of the invariants

∑3
k=1 Ik: H → H̃

H̃ = λ00

(
A2

1 +A2
2

) (
u2 + v2

)
− 2A1 (u,xv − uv,x)− 2A2 (u,yv − uv,y)
(1 + u2 + v2)2

+λ00
u2,x + u2,y + v2,x + v2,y

(1 + u2 + v2)2
+ λ2 (A2,x −A1,y)

2 + V (u, v,A1, A2)

+λ3
{
G′1 [(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)]

+1
2G1 (A2,x −A1,y)

}
+DxG3 +DyG4 , (23)

where I1 is topological invariant of the form (22), I2 = DxG2(u, v,A1, A2),
I3 = DyG3(u, v,A1, A2), Dx ≡ d

dx , Dy ≡ d
dy . The functionsG1 = G1(u

2+v2)

and Gn+1 = Gn+1(u, v,A1, A2), (n = 1, 2) are differentiable at least twice
and they are to be determined later. G′1 means the derivative of G1 with
respect to its argument: (u2 + v2).
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The strong necessary conditions for (23) have the form

H̃,u : λ00

[
2
(
A2

1 +A2
2

)
u+ 2A1v,x + 2A2v,y

]
(1 + u2 + v2)2

−4λ00u
(
A2

1 +A2
2

) (
u2 + v2

)
− 2A1 (u,xv − uv,x)− 2A2 (u,yv − uv,y)
(1 + u2 + v2)3

−4λ00u
u2,x + u2,y + v2,x + v2,y

(1 + u2 + v2)3

+V,u + λ3
{
G′1,u [(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)]

+G′1 (−A1u,y+A2u,x)+
1
2G1,u(A2,x−A1,y

)}
+DxG3,u+DyG4,u=0 , (24)

H̃,v : λ00
[
2
(
A2

1 +A2
2

)
v − 2A1u,x − 2A2u,y

]
(1 + u2 + v2)2

−4λ00v
(
A2

1 +A2
2

) (
u2 + v2

)
− 2A1 (u,xv − uv,x)− 2A2 (u,yv − uv,y)
(1 + u2 + v2)3

−4λ00v
u2,x + u2,y + v2,x + v2,y

(1 + u2 + v2)3

+V,v + λ3
{
G′1,v [(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)]

+G′1 (−A1v,y+A2v,x)+
1
2G1,v (A2,x−A1,y)

}
+DxG3,v+DyG4,v=0 , (25)

H̃,A1 : λ00
2A1

(
u2 + v2

)
− 2 (u,xv − uv,x)

(1 + u2 + v2)2
+ V,A1

−λ3G′1 (uu,y + vv,y) +DxG3,A1 +DyG4,A1 = 0 , (26)

H̃,A2 : λ00
2A2

(
u2 + v2

)
− 2 (u,yv − uv,y)

(1 + u2 + v2)2
+ V,A2

+λ3G
′
1 (uu,x + vv,x) +DxG3,A2 +DyG4,A2 = 0 , (27)

H̃,ux : 2λ00
−A1v + u,x

(1 + u2 + v2)2
+ λ3

{
G′1 [v,y +A2u]

}
+G3,u = 0 , (28)

H̃,uy : 2λ00
−A2v + u,y

(1 + u2 + v2)2
+ λ3

{
G′1 [−v,x −A1u]

}
+G4,u = 0 , (29)

H̃,vx : 2λ00
A1u+ v,x

(1 + u2 + v2)2
+ λ3

{
G′1 [−u,y +A2v]

}
+G3,v = 0 , (30)

H̃,vy : 2λ00
A2u+ v,y

(1 + u2 + v2)2
+ λ3

{
G′1 [u,x −A1v]

}
+G4,v = 0 , (31)
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H̃,A1,x : G3,A1 = 0 , (32)

H̃,A1,y : −2λ2 (A2,x −A1,y)−
λ3
2
G1 +G4,A1 = 0 , (33)

H̃,A2,x : 2λ2 (A2,x −A1,y) +
λ3
2
G1 +G3,A2 = 0 , (34)

H̃,A2,y : G4,A2 = 0 . (35)

Now we need to make equations (24)–(35) self-consistent. In this order,
we need to reduce the number of independent equations by a proper choice
of the functions Gk, (k = 1, 2, 3). Very often such Änsatze exist only for
some special forms of V and very often it is impossible to reduce the system
of corresponding dual equations to the Bogomolny equations. However, even
if we cannot make the reduction mentioned above, such system can be used
to derive at least some set of solutions of Euler–Lagrange equations.

At first we put

u,x + v,y = −
(
1 + u2 + v2

)2
2λ00

G3,u +A1v −A2u , (36)

u,y − v,x =

(
1 + u2 + v2

)2
2λ00

G3,v +A1u+A2v , (37)

A2,x −A1,y = − 1

2λ2

(
λ3
2
G1 +G3,A2

)
, (38)

G′1 =
2λ00

λ3 (1 + u2 + v2)2
, G3,uA1 = 0 , G4,uA2 = 0 , (39)

where G′1 denotes the derivative of the function G1, with respect to its
argument: 1 + u2 + v2.

Then, it turns out that

G3,u = G4,v , G3,v = −G4,u , G4,A1 = −G3,A2 . (40)

Hence, from (32) and (35)

G3 = f(u, v)+c2A2 , G4 = f(u, v)−c2A1 , c2 = const , f,uu+f,vv = 0 (41)

and equations (28)–(35) become the tautologies.
Equations (26), (27), after taking into account (32)–(35), (36)–(39), (41)

and the fact that the potential V should be a Lorentzian scalar, implicate
that V,Ak

= 0, (k = 1, 2). Hence, after eliminating all expressions including
the derivatives of the fields u, v,A1, A2, from equations (24)–(27), by using
(36)–(39) (after taking into account (41)), we obtain some system of the
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partial differential equations for V (u, v) and f(u, v). The solutions of this
system are: f(u, v) = const and the condition for the potential has the
following form

V (u, v) =
1

2

2c1λ2
(
1 + u2 + v2

)2 − λ00 (c2 (1 + u2 + v2
)
− λ00

2

)
λ2 (1 + u2 + v2)2

, (42)

where c1 = const, c2 = const.
Hence, the Bogomolny decomposition for gauged O(3) “sigma” model in

(2 + 0)-dimensions, has the form

u,x + v,y = A1v −A2u ,

u,y − v,x = A1u+A2v ,

A2,x −A1,y =
1

2λ2

(
λ00

1 + u2 + v2
− c2

)
, (43)

where the potential V (u, v) needs to satisfy the conditon (42). As we see,
this is some generalization of the result (Bogomolny equations obtained for
the potential V = (1− ~n · ~S)2, where ~n = [0, 0, 1]) included in [22].

2.3. The Bogomolny decomposition for gauged restricted baby Skyrme model

Now, we start to investigate gauged restricted baby Skyrme model.
We make the following gauge transformation of H, on the sum of the

invariants
∑3

n=1 In [37]:

H−→H̃=4λ1

[
i
(
ω,xω

∗
,y−ω,yω∗,x

)
−A1

(
ω,yω

∗+ωω∗,y
)
+A2

(
ω,xω

∗+ωω∗,x
)]2

(1 + ωω∗)4

+λ2 (A2,x −A1,y)
2 + V (ω, ω∗, A1, A2) + λ3

{
G′1
[(
i
(
ω,xω

∗
,y − ω,yω∗,x

)
−A1

(
ω,yω

∗+ωω∗,y
)
+A2

(
ω,xω

∗+ωω∗,x
))]

+G1(A2,x−A1,y)
}

+DxG2+DyG3 , (44)

where I1 is given by (21), I2=DxG2(ω, ω
∗, A1, A2), I3=DyG3(ω, ω

∗, A1, A2),
Dx ≡ d

dx , Dy ≡ d
dy . G1 = G1(ωω

∗) and Gk+1 = Gk+1(ω, ω
∗, A1, A2),

(k = 1, 2) are some functions (differentiable at least twice), which are to be
determinated later.
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After applying the concept of strong necessary conditions to (44), we
obtain the so-called dual equations [37]

H̃,ω : −16λ1

[
i
(
ω,xω

∗
,y−ω,yω∗,x

)
−A1

(
ω,yω

∗+ωω∗,y
)
+A2

(
ω,xω

∗+ωω∗,x
)]2

ω∗

(1+ωω∗)5

+
8λ1

[
i
(
ω,xω

∗
,y − ω,yω∗,x

)
−A1

(
ω,yω

∗ + ωω∗,y
)
+A2

(
ω,xω

∗ + ωω∗,x
)]

(1 + ωω∗)4

×
(
−A1ω

∗
,y +A2ω

∗
,x

)
+ V,ω + λ3

{
G′′1ω

∗ [i (ω,xω∗,y − ω,yω∗,x)
−A1(ω,yω

∗ + ωω∗,y) +A2

(
ω,xω

∗ + ωω∗,x
)]

+G′1
(
−A1ω

∗
,y +A2ω

∗
,x

)
+G′1ω

∗(A2,x −A1,y)
}
+DxG2,ω +DyG3,ω = 0 , (45)

H̃,ω∗ : −16λ1

[
i
(
ω,xω

∗
,y−ω,yω∗,x

)
−A1

(
ω,yω

∗+ωω∗,y
)
+A2(ω,xω

∗+ωω∗,x)
]2
ω

(1+ωω∗)5

+
8λ1

[
i
(
ω,xω

∗
,y − ω,yω∗,x

)
−A1

(
ω,yω

∗ + ωω∗,y
)
+A2

(
ω,xω

∗ + ωω∗,x
)]

(1 + ωω∗)4

× (−A1ω,y +A2ω,x) + V,ω∗ + λ3
{
G′′1ω

[
i
(
ω,xω

∗
,y − ω,yω∗,x

)
−A1

(
ω,yω

∗ + ωω∗,y
)
+A2

(
ω,xω

∗ + ωω∗,x
)]

+G′1 (−A1ω,y +A2ω,x)

+G′1ω (A2,x −A1,y)
}
+DxG2,ω∗ +DyG3,ω∗ = 0 , (46)

H̃,A1 : N3

(
−ω,yω∗ − ωω∗,y

)
+V,A1 + λ3G

′
1

(
−ω,yω∗ − ωω∗,y

)
+DxG2,A1 +DyG3,A1 = 0 , (47)

H̃,A2 : N3

(
ω,xω

∗ + ωω∗,x
)

+V,A2 + λ3G
′
1

(
ω,xω

∗ + ωω∗,x
)
+DxG2,A2 +DyG3,A2 = 0 , (48)

H̃,ω,x : N3

(
iω∗,y +A2ω

∗)+ λ3G
′
1

(
iω∗,y +A2ω

∗)+G2,ω = 0 , (49)

H̃,ω,y : N3

(
−iω∗,x −A1ω

∗)+ λ3G
′
1

(
−iω∗,x −A1ω

∗)+G3,ω = 0 , (50)

H̃,ω∗
,x
: N3 (−iω,y +A2ω) + λ3G

′
1 (−iω,y +A2ω) +G2,ω∗ = 0 , (51)

H̃,ω∗
,y
: N3 (iω,x −A1ω) + λ3G

′
1 (iω,x −A1ω) +G3,ω∗ = 0 , (52)

H̃,A1,x : G2,A1 = 0 , (53)

H̃,A1,y : −2λ2 (A2,x −A1,y)− λ3G1 +G3,A1 = 0 , (54)

H̃,A2,x : 2λ2 (A2,x −A1,y) + λ3G1 +G2,A2 = 0 , (55)

H̃,A2,y : G3,A2 = 0 , (56)
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where

N3 =
8λ1

[
i
(
ω,xω

∗
,y − ω,yω∗,x

)
−A1

(
ω,yω

∗ + ωω∗,y
)
+A2

(
ω,xω

∗ + ωω∗,x
)]

(1 + ωω∗)4

and G′1, G
′′
1 denote the derivatives of the function G1 with respect to its

argument: ωω∗.
Now, we consider ω, ω∗, Ai, (i = 1, 2), Gk, (k = 1, 2, 3) as equivalent

dependent variables governed by the system of equations (45)–(56). We
make two operations (similar operations were made firstly in [32], in the
cases of ungauged baby Skyrme models: full and restricted one).

Namely, as we see, after putting [37]

G′1 = −
8λ1

[
i
(
ω,xω

∗
,y−ω,yω∗,x

)
−A1

(
ω,yω

∗+ωω∗,y
)
+A2

(
ω,xω

∗+ωω∗,x
)]

λ3 (1 + ωω∗)4
,

(57)

A2,x −A1,y = −
1

2λ2
(λ3G1 +G2,A2) , (58)

G3,A1 = −G2,A2 , G2 = c2A2 , G3 = −c2A1 , c2 = const , (59)

equations (49)–(56) become the tautologies and the candidate for the Bogo-
molny decomposition is [37]

8λ1
[
i
(
ω,xω

∗
,y−ω,yω∗,x

)
−A1

(
ω,yω

∗+ωω∗,y
)
+A2

(
ω,xω

∗+ωω∗,x
)]

λ3 (1 + ωω∗)4
=−G′1 ,

2λ2(A2,x −A1,y) + λ3G1 + c2 = 0 . (60)

Now, the next step is checking, when equations (45)–(48) are satisfied,
if (60) hold. Thus, we insert (59) and (60), into (45)–(48). From (47)–(48),
we obtain that V,Ak

= 0, (k = 1, 2). Hence, we get some system of partial
differential equations for V (ω, ω∗) and the solution of it is [37]

V (ω, ω∗) =
λ3

8λ1λ2

∫ (
λ2λ3(1+ωω

∗)4G′′1+2λ2λ3(1+ωω
∗)3G′1+4λ1(λ3G1

+c2)
)
G′1ω

∗dω +
λ3

8λ1λ2

∫ (
λ2λ3(1 + ωω∗)4G′′1 + 2λ2λ3(1 + ωω∗)3G′1

+4λ1(λ3G1 + c2)
)
G′1ωdω

∗ +

∫
1

8λ1λ2

[
λ3

(
−
(∫ (

λ3(8λ2(ωω
∗)3

+18λ2(ωω
∗)2+4(λ1+3λ2)ωω

∗+2λ2)G
′2
1 +(λ2(9ωω

∗+1)(ωω∗+1)3λ3G
′′
1

+ωω∗λ2λ3(ωω
∗+1)4G′′′1 +4λ1(λ3G1+c2))G

′
1+G

′′
1ω
∗(λ2λ3(ωω

∗ + 1)4G′′1

+4λ1(λ3G1 + c2))ω

)
dω

))]
dω∗ . (61)
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So, equations (60) are the Bogomolny decomposition for gauged re-
stricted baby Skyrme model in (2+0)-dimensions, for the potential V (ω, ω∗),
satisfying (61), whereG1 = G1(ωω

∗) ∈ C3 andG′1, G′′1, G′′′1 denote the deriva-
tives of the function G1 with respect to its argument ωω∗.

2.4. The Bogomolny decomposition for gauged full baby Skyrme model

Wemake gauge transformation of (11) by using two topological invariants
of the form (22) on the sum of the invariants

∑4
n=1 In [37] H → H̃

H̃ = λ00

(
A2

1 +A2
2

) (
u2 + v2

)
− 2A1 (u,xv − uv,x)− 2A2 (u,yv − uv,y)
(1 + u2 + v2)2

+λ00
u2,x + u2,y + v2,x + v2,y

(1 + u2 + v2)2

+λ11
[(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)]

2

(1 + u2 + v2)4

+λ2 (A2,x −A1,y)
2 + V (u, v,A1, A2)

+λ3
{
F ′1 [(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)]

+1
2F1 (A2,x −A1,y)

}
+ λ4{F ′2 [(u,xv,y − u,yv,x)−A1 (uu,y + vv,y)

+A2 (uu,x + vv,x)] +
1
2F2 (A2,x −A1,y)}+DxG3 +DyG4 , (62)

where: Ik (k = 1, 2) are topological invariants of the form (22), I3 =
DxG3(u, v,A1, A2), I4 = DyG4(u, v,A1, A2), Dx ≡ d

dx , Dy ≡ d
dy . Fk =

Fk(u
2 + v2), (k = 1, 2) and Gn+1 = Gn+1(u, v,A1, A2), (n = 2, 3), are some

functions (differentiable at least twice), which are to be determined later
and F ′k means the derivative of Fk, with respect to its argument: (u2 + v2).
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The strong necessary conditions for (62) have the form [37]

H̃,u : λ00

[
2
(
A2

1 +A2
2

)
u+ 2A1v,x + 2A2v,y

]
(1 + u2 + v2)2

−4λ00u
(
A2

1 +A2
2

) (
u2 + v2

)
− 2A1 (u,xv − uv,x)− 2A2 (u,yv − uv,y)
(1 + u2 + v2)3

−4λ00u
u2,x + u2,y + v2,x + v2,y

(1 + u2 + v2)3

+2λ11
[(u,xv,y−u,yv,x)−A1(uu,y+vv,y)+A2(uu,x+vv,x)](−A1u,y+A2u,x)

(1+u2+v2)4

−8λ11u
[(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)]

2

(1 + u2 + v2)5
+ V,u

+λ3
{
F ′1,u [(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)]

+F ′1 (−A1u,y +A2u,x) +
1
2F1,u (A2,x −A1,y)

}
+λ4

{
F ′2,u [(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)]

+F ′2 (−A1u,y +A2u,x)+
1
2F2,u (A2,x−A1,y)

}
+DxG3,u+DyG4,u = 0 , (63)

H̃,v : λ00
[
2
(
A2

1 +A2
2

)
v − 2A1u,x − 2A2u,y

]
(1 + u2 + v2)2

−4λ00v
(
A2

1 +A2
2

) (
u2 + v2

)
− 2A1 (u,xv − uv,x)− 2A2 (u,yv − uv,y)
(1 + u2 + v2)3

−4λ00v
u2,x + u2,y + v2,x + v2,y

(1 + u2 + v2)3

+2λ11
[(u,xv,y−u,yv,x)−A1(uu,y+vv,y)+A2(uu,x+vv,x)](−A1v,y+A2v,x)

(1+u2+v2)4

−8λ11v
[(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)]

2

(1 + u2 + v2)5
+ V,v

+λ3
{
F ′1,v [(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)]

+F ′1 (−A1v,y +A2v,x) +
1
2F1,v (A2,x −A1,y)

}
+λ4

{
F ′2,v [(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)]

+F ′2 (−A1v,y +A2v,x)+
1
2F2,v (A2,x−A1,y)

}
+DxG3,v+DyG4,v = 0 , (64)
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H̃,A1 : λ00
2A1

(
u2 + v2

)
− 2 (u,xv − uv,x)

(1 + u2 + v2)2

−2λ11
[(u,xv,y − u,yv,x)−A1 (uu,y + vv,y)+A2 (uu,x + vv,x)] (uu,y + vv,y)

(1 + u2 + v2)4

+V,A1−λ3F ′1 (uu,y + vv,y)−λ4F ′2 (uu,y + vv,y)+DxG3,A1 +DyG4,A1 = 0 ,

(65)

H̃,A2 : λ00
2A2

(
u2 + v2

)
− 2 (u,yv − uv,y)

(1 + u2 + v2)2

+2λ11
[(u,xv,y − u,yv,x)−A1 (uu,y + vv,y)+A2 (uu,x + vv,x)] (uu,x + vv,x)

(1 + u2 + v2)4

+V,A2 + λ3F
′
1 (uu,x + vv,x)+λ4F

′
2 (uu,x + vv,x)+DxG3,A2+DyG4,A2 = 0 ,

(66)

H̃,ux : 2λ00
−A1v + u,x

(1 + u2 + v2)2

+2λ11
[(u,xv,y − u,yv,x)−A1 (uu,y + vv,y)+A2 (uu,x + vv,x)] (v,y +A2u)

(1 + u2 + v2)4

+λ3
{
F ′1 [v,y +A2u]

}
+ λ4

{
F ′2 [v,y +A2u]

}
+G3,u = 0 , (67)

H̃,uy : 2λ00
−A2v + u,y

(1 + u2 + v2)2

+2λ11
[(u,xv,y − u,yv,x)−A1 (uu,y+vv,y)+A2 (uu,x + vv,x)] (−v,x−A1u)

(1 + u2 + v2)4

+λ3
{
F ′1 [−v,x −A1u]

}
+ λ4

{
F ′2 [−v,x −A1u]

}
+G4,u = 0 , (68)

H̃,vx : 2λ00
A1u+ v,x

(1 + u2 + v2)2

+2λ11
[(u,xv,y − u,yv,x)−A1 (uu,y+vv,y)+A2 (uu,x + vv,x)] (−u,y+A2v)

(1 + u2 + v2)4

+λ3
{
F ′1 [−u,y +A2v]

}
+ λ4

{
F ′2 [−u,y +A2v]

}
+G3,v = 0 , (69)

H̃,vy : 2λ00
A2u+ v,y

(1 + u2 + v2)2

+2λ11
[(u,xv,y − u,yv,x)−A1 (uu,y + vv,y) +A2 (uu,x + vv,x)] (u,x −A1v)

(1 + u2 + v2)4

+λ3
{
F ′1 [u,x −A1v]

}
+ λ4

{
F ′2 [u,x −A1v]

}
+G4,v = 0 , (70)
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H̃,A1,x : G3,A1 = 0 , (71)

H̃,A1,y : −2λ2 (A2,x −A1,y)−
λ3
2
F1 −

λ4
2
F2 +G4,A1 = 0 , (72)

H̃,A2,x : 2λ2 (A2,x −A1,y) +
λ3
2
F1 +

λ4
2
F2 +G3,A2 = 0 , (73)

H̃,A2,y : G4,A2 = 0 . (74)

Now, we need to make equations (63)–(74) self-consistent. In this order,
at first we put [37]

u,x + v,y = −
(
1 + u2 + v2

)2
2λ00

G3,u +A1v −A2u , (75)

u,y − v,x =

(
1 + u2 + v2

)2
2λ00

G3,v +A1u+A2v , (76)

u,xv,y−u,yv,x−A1 (uu,y+vv,y)+A2 (uu,x+vv,x)=−
λ4
2λ11

(
1+u2+v2

)4
F ′2 ,

(77)

A2,x −A1,y = −
1

2λ2

(
λ3
2
F1 +

λ4
2
F2 +G3,A2

)
, (78)

F ′1 =
2λ00

λ3 (1 + u2 + v2)2
, G3,uA1 = 0 , G4,uA2 = 0 , (79)

where F ′1 denotes the derivative of the function F1, with respect to its ar-
gument: 1 + u2 + v2 and F ′2 denotes the derivative of the function F2, with
respect to its argument: u2 + v2.

Then it has turned out that

G3,u = G4,v , G3,v = −G4,u , G4,A1 = −G3,A2 . (80)

Hence, from (71) and (74)

G3 = f(u, v) + c2A2 , G4 = f(u, v)− c2A1 , c2 = const, f,uu + f,vv = 0
(81)

and equations (67)–(74) become the tautologies.
Equations (65)–(66), after taking into account (71)–(74), (75)–(79), (81)

and the fact that the potential V should be a Lorentzian scalar, implicate
that V,Ak

= 0, (k = 1, 2). Hence, after eliminating all expressions including
the derivatives of the fields u, v,A1, A2, from equations (63)–(66), by using
(75)–(79) (after taking into account (81)), we obtain the system of the partial
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differential equations for V (u, v) and f(u, v). The solutions of this system
are: f(u, v) = const and the condition for the potential [37],

V (u, v) =

∫
1

λ11λ2 (1 + u2 + v2)3

((
2λ2λ

2
4

(
1 + u2 + v2

)6
F ′22

+λ4

(
λ2λ4

(
1 + u2 + v2

)5
F ′′2 + 1

2

(
1
2λ4

(
1 + u2 + v2

)
F2

+c2
(
1 + u2 + v2

)
− λ00

)
λ11
) (

1 + u2 + v2
)2
F ′2 +

(
1
2λ4

(
1 + u2 + v2

)
F2

+c2
(
1 + u2 + v2

)
− λ00

)
λ00λ11

)
u
)
du

+

∫
1

λ11λ2 (1 + u2 + v2)3

{[
−1

2

(
1 + u2 + v2

)3(∫ 1

(1 + u2 + v2)4

×
(
4

(
6λ24

(
λ2u

4+2λ2
(
1+v2

)
u2+2λ2v

2+
1

24
λ11+

(
1+v4

)
λ2

)(
1+u2+v2

)4
F ′22

+λ4

(
8λ2λ4

(
1 + u2 + v2

)5
F ′′2 + λ2λ4

(
1 + u2 + v2

)6
F ′′′2 + λ00λ11

)
×
(
1 + u2 + v2

)2
F ′2 + λ2λ

2
4

(
1 + u2 + v2

)8
F ′′22

+
1

2
λ11λ4

(
1 + u2 + v2

)3(λ4
2

(
1 + u2 + v2

)
F2 + c2

(
1 + u2 + v2

)
−λ00

)
F ′′2

−2λ00λ11
(
λ4
2

(
1 + u2 + v2

)
F2 + c2

(
1 + u2 + v2

)
− 3

2
λ00

))
u

)
du

)
+2λ2λ

2
4

(
1 + u2 + v2

)6
F ′22 + λ4

(
λ2λ4

(
1 + u2 + v2

)5
F ′′2

+
λ11
2

(
λ4
2

(
1 + u2 + v2

)
F2 + c2

(
1 + u2 + v2

)
− λ00

))(
1 + u2 + v2

)2
F ′2

+λ00λ11

(
λ4
2

(
1 + u2 + v2

)
F2 + c2

(
1 + u2 + v2

)
− λ00

)]
v

}
dv + c1 , (82)

where c1 = const, c2 = const, F2 = F2(u
2 + v2) ∈ C3 and F ′2, F ′′2 , F ′′′2 denote

the derivatives of the function F2, with respect to its argument: u2 + v2.
Hence, the Bogomolny decomposition for gauged full baby Skyrme model

in (2 + 0)-dimensions has the form [37]

u,x + v,y = A1v −A2u , (83)
u,y − v,x = A1u+A2v , (84)

u,xv,y−u,yv,x−A1 (uu,y+vv,y)+A2 (uu,x+vv,x)=−
λ4
2λ11

(
1+u2+v2

)4
F ′2 ,

(85)

A2,x −A1,y = −
1

2λ2

(
λ4
2
F2 −

λ00
1 + u2 + v2

+ c2

)
, (86)
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where F2 = F2(u
2 + v2) and F ′2 denotes the derivative of the function F2,

with respect to its argument: u2 + v2, and the potential V (u, v) needs to
satisfy the conditon (82).

3. Summary

We started from finding the most general form of the functions Rj =
Rj(ω, ω

∗, A1, A2), (j = 1, 2), in the density of the topological invariant
(20), written down in complex field variables, and the most general form
of these functions in the density of the topological invariant (an analogon
to (20)), written down in real field variables u, v. It has turned out that
R1 = G′1 and R2 = G1, where G1 = G1(ωω

∗) (or G1 = G1(u
2 + v2), then

the factor 1/2 appears, by the function G1(u
2 + v2), in the density of the

corresponding topological invariant). The form of the dependency of the
function G1, on the field variables ω, ω∗ (or u, v) and the independence of
G1 on Ak (k = 1, 2) have the influence on the dependency of the potential
V on these field variables. As we explained it in Introduction and later, the
necessity of gauge-invariance of the Lagrangian is obvious, but we planned
to investigate whether the conditions for the potentials in these models,
in the case of existing of the Bogomolny decomposition, would permit the
dependency of the gauge field Ak, (k = 1, 2) and then whether we would
obtain some model similar to the Proca theory [46] (or to the theory of a
massive vector field [47]).

Next, we applied the concept of strong necessary conditions for the
gauged models in (2+ 0)-dimensions: O(3) “sigma”, restricted baby Skyrme
and full baby Skyrme model. In result, we obtained the Bogomolny decom-
position, i.e. the Bogomolny equations, for each of them: (43), (60) and (86),
correspondingly, for wide class of the potentials: V (ωω∗) (or V (u2+v2)). We
derived also the conditions (for the potentials) of existence of this Bogomolny
decomposition, these conditions have the forms: (42), (61) and (82), corre-
spondingly. In the case of gauged O(3) “sigma” model and gauged restricted
baby Skyrme model, obtained results are some generalizations of the results
obtained in [22] and [31], [37], correspondingly. Moreover, at the beginning
of this paper, we have assumed that for the gauged O(3) “sigma” model and
for the gauged baby Skyrme models: restricted and full one, the potentials
in their Hamiltonians, depend on ω, ω∗, A1, A2 or u, v,A1, A2. Next, it has
turned out that the most general forms of the topological invariant for these
models, are built on, among others, function G1 and its derivative with re-
spect to the argument of G1: ωω∗ and u2 + v2, respectively. Finally, this
function and its derivatives have been included into the expression, that V
needs to be equal to, if we want to get Bogomolny decomposition. On the
other hand, it has turned out that in the case of existence of the Bogomolny
decompositions for any of the gauged models, investigated in this paper,



The Existence of Bogomolny Decompositions for Gauged O(3) Nonlinear . . . 1021

the potential V does not depend on Ak, k = 1, 2. Hence, in the case of the
Bogomolny decompositions for these models, the potentials of them cannot
include the expression AkAk (k = 1, 2), which occurs in the potential in the
Proca theory [46] or in the theory of a massive vector field [47].

As it has turned out, the BPS equations (or zero-pressure equations) of
BPS baby Skyrme model can be extended to first order equations with a
non-zero pressure [49, 50]. Their solutions are topologically nontrivial so-
lutions of Euler–Lagrange equations, however then, the pressure does not
vanish — this has been showed for the BPS Skyrme model in [51]. As we
think, applying the concept of strong necessary conditions (CSNC) for the
case of non-zero pressure configurations would be possible. Obviously, as
usual, if we apply CSNC, we need to possess a complete set of the invariants
appropriate to the present topology. In the case of the BPS Skyrme model,
the homotopy group is π3(S3) (and the topological charge is here identified
with the baryon number [52]). After deriving dual equations, probably, the
next steps will be analogical to the ones presented in this paper or in [32],
among others, it will be interesting to see what the contributions from the
densities of the invariants will be, to the condition for the potential. An-
other interesting matter is the existence of the solutions of Euler–Lagrange
equations and Bogomolny equations of the gauged BPS baby Skyrme model.
In [31] and [53], some analytical arguments and numerical exploration have
been included, according to which, the gauged BPS baby Skyrme model with
a double vacuum potential does not support any baby skyrmions even in the
non-BPS sector (i.e. solving the full Euler–Lagrange equations). The explo-
ration of the problems of: applying of CSNC in the case of non-zero pressure
configurations and existence of the solutions in BPS sector, especially, for
some more wide class of the potentials, is in proceed [54].

The author thanks to Dr. A. Wereszczyński for interesting discussions
on the gauged restricted baby Skyrme model, carried out in 2010 and Dr.
Z. Lisowski for some interesting remarks. The author thanks also the Referee
for the interesting and valuable comments and suggestions, which allowed to
make this paper more interesting and more concerning current explorations
of the subject. The computations were carried out by using WATERLOO
MAPLE Software on computer “mars” in ACK-CYFRONET AGH in Kraków
(No. of grant: MNiSW/IBM_BC_HS21/AP/057/2008). This research was
supported in part by PL-Grid Infrastructure, too.
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