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Quasi-power law ensembles are discussed from the perspective of nonex-
tensive Tsallis distributions characterized by a nonextensive parameter q.
A number of possible sources of such distributions are presented in more
detail. It is further demonstrated that the data suggest that nonextensive
parameters deduced from Tsallis distributions functions f (pT), q1, and
from multiplicity distributions (connected with Tsallis entropy), q2, are not
identical and that they are connected via q1 + q2 = 2. It is also shown that
Tsallis distributions can be obtained directly from Shannon information en-
tropy, provided some special constraints are imposed. They are connected
with the type of dynamical processes under consideration (additive or mul-
tiplicative). Finally, it is shown how a Tsallis distribution can accommodate
the log-oscillating behavior apparently seen in some multiparticle data.

DOI:10.5506/APhysPolB.46.1103
PACS numbers: 05.90.+m, 24.10.Pa, 13.75.Ag, 24.60.Ky

1. Introduction

The two most characteristic ensembles is, on the one hand, the one
resulting in exponential (Boltzmann–Gibbs (BG)) distributions, fE(X) ∼
exp(−X/T ), and, on the other hand, the one with power distributions,
fP(X) ∼ X−γ . Both are encountered in the realm of the high energy multi-
particle production processes investigated in hadronic and nuclear collisions.
They are connected there with, respectively, nonperturbative soft dynamics
operating at small Xs and described by exponential distributions, fE(X)),
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and with perturbative hard dynamics, responsible for large Xs and described
by power distributions, fP(X). These two types of dynamics are investigated
separately. It is usually assumed that they operate in distinct parts of phase
space of X, separated by X = X0. However, it was found recently that
the new high energy data covering the whole of phase space (cf., for exam-
ple [1–3]) are best fitted by a simple, quasi-power law formula extrapolating
between both ensembles [4–6]

H(X) = C

(
1 +

X

nX0

)−n
−→

{
exp

(
− X
X0

)
for X → 0

X−n for X →∞
. (1)

This formula coincides with the so-called Tsallis nonextensive distribution [7]
for n = 1/(q − 1)

hq(X) = Cq

[
1−(1− q) X

X0

] 1
1−q def

= Cq expq

(
− X

X0

)
q→1
=⇒ C1 exp

(
− X

X0

)
.

(2)
This is the distribution we shall concentrate on and discuss. In Section 2, we
shall discuss some examples of processes leading to such distributions. It de-
pends on the nonextensivity parameter q and this can be different depending
on whether it arises from a Tsallis distribution (q1) or from the nonextensive
Tsallis entropy (q2). Both are connected by q1 + q2 = 2 and this relation
seems to be confirmed experimentally. This is presented in Section 4. In
Section 3, we shall discuss necessary conditions for obtaining a Tsallis distri-
bution from the Shannon information entropy. Section 5 demonstrates that
a Tsallis distribution can also accommodate the log-periodic oscillations ap-
parently observed in high energy data. Our conclusions and a summary are
presented in Section 6.

2. Some examples of mechanisms leading to Tsallis distributions

In many practical applications, a Tsallis distribution is derived from
Tsallis statistics based on his nonextensive entropy1

Sq = −
∑

pi lnq pi , where lnq x =
pq−1 − 1

q − 1
. (3)

On the other hand, there are even more numerous examples of physical
situations not based on Sq and still leading to quasi-power distributions in
the Tsallis form. In what follows, we shall present some examples of such
mechanisms, concentrating on those which allow for an interpretation of the
parameter q.

1 Cf. [8] for most recent work with references; thermodynamical consistency of such an
approach can be found in [9]. We shall not discuss this point here.
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2.1. Superstatistics

The first example is superstatistics [10] (cf., also [11, 12]) based on the
property that a gamma-like fluctuation of the scale parameter in exponen-
tial distribution results in the q-exponential Tsallis distribution with q > 1
(cf. Eq. (2)). The parameter q defines the strength of such fluctuations,
q = 1 + Var(X)/〈X〉2. From the thermal perspective, it corresponds to
a situation in which the heat bath is not homogeneous, but has different
temperatures in different parts which are fluctuating around some mean
temperature T0. It must be therefore described by two parameters: a mean
temperature T0 and the mean strength of fluctuations, given by q. As shown
in [13], this allows for further generalization to cases where one also has an
energy transfer to/from heat bath. The scale T in the Tsallis distribution
becomes then q-dependent

T = Teff = T0 + (q − 1)TV . (4)

Here, the parameter TV depends on the type of energy transfer, cf. [14, 15]
for illustrative examples from, respectively, nuclear collisions and cosmic ray
physics.

2.2. Preferential attachment

The second example is the preferential attachment approach (used in
stochastic networks [16]). Here, the system under consideration exhibits
correlations of the preferential attachment type (like, for example, “rich-get-
richer” phenomenon in networks) and the scale parameter depends on the
variable under consideration. If x0 → x′0(x) = x0 + (q − 1)x, then the
probability distribution function, f(x), is given by an equation the solution
of which is a Tsallis distribution (again, with q > 1)

df(x)

dx
= − 1

x′0(x)
f(x) =⇒ f(x) =

2− q
x0

[
1− (1− q) x

x0

] 1
1−q

. (5)

For x′0(x) = x0, one again gets the usual exponential distribution.

2.3. Multiplicative noise

Consider now a Tsallis distribution from multiplicative noise [11, 12]. We
start from the Langevin equation [12],

dp

dt
+ γ(t)p = ξ(t) , (6)



1106 G. Wilk, Z. Włodarczyk

where γ(t) and ξ(t) denote stochastic processes corresponding to, respectiv-
ely, multiplicative and additive noises. This results in the following Fokker–
Planck equation for the distribution function f ,

∂f

∂t
= −∂ (K1f)

∂p
+
∂2 (K2f)

∂p2
. (7)

Stationary f satisfies
d (K2f)

dp
= K1f (8)

with

K1 = 〈ξ〉 − 〈γ〉p and K2 = Var(ξ)− 2Cov(ξ, γ)p+ Var(γ)p2 . (9)

In the case of no correlation between noises and no drift term due to additive
noise (i.e., for Cov(ξ, γ) = 〈ξ〉 = 0 [17]), its solution is a Tsallis distribution
for p2

f(p) =

[
1 + (q − 1)

p2

T

] q
1−q

with T =
2Var(ξ)

〈ξ〉
; q = 1 +

2Var(γ)

〈γ〉
.

(10)
However, if we insist on a solution in the form of

f(p) =
[
1 +

p

nT

]n
, n =

1

q − 1
, (11)

Eq. (8) has to be replaced by

K2(p) =
nT + p

n

[
K1(p)− dK1(p)

dp

]
. (12)

One then gets f(p) in the form of a Tsallis distribution, (11), but with

n = 2 +
〈γ〉

Var(γ)
or q = 1 +

Var(γ)

〈γ〉+ 2Var(γ)
(13)

and with q-dependent T (reminiscent of Teff from Eq. (4) discussed before,
cf. [18])

T (q) = (2−q) [T0+(q−1)T1] with T0 =
Cov(ξ, γ)

〈γ〉
, T1 =

〈ξ〉
2〈γ〉

.

(14)
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2.4. All variables fixed

Let us now remember that the usual situation in statistical physics is
that out of three variables considered, energy U , multiplicity N and tem-
perature T , two are fixed and one fluctuates. Fluctuations are then given
by gamma distributions [19] (in the case of multiplicity distributions where
N are integers, they become Poisson distributions) and only in the ther-
modynamic limit (N → ∞) does one get them in the form of Gaussian
distributions, usually discussed in textbooks. In [19], we discussed in detail
situations when two or all three variables fluctuate. If all are fixed, we have
a distribution of the type of

f(E) = (1− E/U)N−2 . (15)

This is nothing else but a Tsallis distribution with q = (N−3)/(N−2) < 1 2.

2.5. Conditional probability

For the constrained systems, one gets q < 1. For example, if we have
n independent energies, {Ei=1,...,N}, then each of them is distributed ac-
cording to the Boltzman distribution, gi (Ei) = (1/λ) exp (−Ei/λ) (and
their sum, E =

∑N
i=1Ei, is distributed according to gamma distribution,

gN (E) = 1/[λ(N − 1)](E/λ)N−1 exp(−E/λ)). However, if the available en-
ergy is limited, E = Nα = const, then the resulting conditional probability
becomes a Tsallis distribution with q < 1 3

f (Ei|E = Nα) =
g1 (Ei) gN−1 (Nα− Ei)

gN (Nα)
=

(N − 1)

Nα

(
1− 1

N

Ei
α

)N−2

=
2− q
λ

[
1− (1− q)Ei

λ

] 1
1−q

, (16)

q =
N − 3

N − 2
< 1 , λ =

αN

N − 1
. (17)

2 Actually, such distributions emerge directly from calculus of probability for situation
known as induced partition [20]. In short: N−1 randomly chosen independent points
{U1, . . . , UN−1} breaks segment (0, U) into N parts, length of which is distributed
according to Eq. (15). The length of the kth such part corresponds to the value of
energy Ek = Uk+1−Uk (for ordered Uk). One could think of some analogy in physics
to the case of random breaks of string in N − 1 points in the energy space. Notice
that induced partition differs from successive sampling from the uniform distribution,
Ek ∈ [0, U − E1 − E2 − . . .− Ek−1], which results in f(E) = 1/E [21].

3 One could get a Tsallis-like distribution with q > 1 only if the scale parameter λ
would fluctuate in the same way as in the case of superstatistics, see [22].
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2.6. Statistical physics

We end this part by a reminder of how Tsallis distribution with q < 1
arises from statistical physics considerations. Consider an isolated system
with energy U = const and with ν degrees of freedom (n particles). Choose
single degree of freedom with energy E (i.e., the remaining, or reservoir, en-
ergy is Er = U−E). If this degree of freedom is in a single, well defined state
then the number of states of the whole system is Ω(U −E) and probability
that the energy of the chosen degree of freedom is E is P (E) ∝ Ω(U − E).
Expanding (slowly varying) lnΩ(E) around U ,

lnΩ(U − E) =

∞∑
k=0

1

k!

∂(k) lnΩ

∂E
(k)
r

, with β =
1

kBT

def
=

∂ lnΩ (Er)

∂Er
,

(18)
and (because E � U) keeping only the two first terms, one gets

lnP (E) ∝ lnΩ(E) ∝ −βE or P (E) ∝ exp(−βE) , (19)

i.e., a Boltzmann distribution (or q = 1). On the other hand, because one
usually expects that Ω (Er) ∝ (Er/ν)α1ν−α2 (where α1,2 are of the order of
unity and we put α1 = 1 and, to account for diminishing the number of
states in the reservoir by one, α2 = 2) [23], one can write

∂kβ

∂Ekr
∝ (−1)kk!

ν − 2

Ek+1
r

= (−1)kk!
βk−1

(ν − 2)k
(20)

and write the full series for probability of choosing energy E

P (E) ∝ Ω(U − E)

Ω(U)
= exp

[ ∞∑
k=0

(−1)k

k + 1

1

(ν − 2)k
(−βE)k+1

]

= C

(
1− 1

ν − 2
βE

)(ν−2)

= β(2− q)[1− (1− q)βE]
1

1−q , (21)

where we have used the equality ln(1+x) =
∑∞

k=0(−1)k[xk+1/(k+1)]. This
result, with q = 1 − 1/(ν − 2) ≤ 1, coincides with results from conditional
probability and the induced partition.

2.7. Fluctuations of multiplicity N

Constant values of U , N and T result in Eq. (15) and q < 1. To get
larger values of q, one has to allow for fluctuations of one of the variables: U ,
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N or T . In superstatistics [10–12], it was T that was fluctuating, let us now
consider the example of fluctuating N . It means that, whereas for fixed N
(to simplify notation, we changed N − 2 to N here)

fN (E) =

(
1− E

U

)N
and U =

∑
E = const , (22)

for N fluctuating according to some P (N), the resulting distribution is

f(E) =
∑

fN (E)P (N) . (23)

The most characteristic for our purposes are situations provided by the,
respectively, Binomial Distribution (BD), Eq. (24), Poissonian Distribution
(PD), Eq. (25) and by the Negative Binomial Distributions (NBD), Eq. (26)
(cf. [24])

PBD(N) =
M !

N !(M −N)!

(
〈N〉
M

)N (
1− 〈N〉

M

)M−N
, (24)

PPD(N) =
〈N〉N

N !
e−〈N〉 , (25)

PNBD(N) =
Γ (N + k)

Γ (N + 1)Γ (k)

(
〈N〉
k

)N (
1 +
〈N〉
k

)−k−N
. (26)

They lead, respectively, to Tsallis distribution with q = 1 − 1/M < 1,
Eq. (27), to exponential Boltzmann distribution, Eq. (28) with q = 1, and
to Tsallis distribution with q = 1 + 1/k > 1, Eq. (29) (β = 〈N〉/U)

fBD(E) =

(
1− βE

M

)M
, (27)

fPD(E) = exp(−βE) , (28)

fNBD(E) =

(
1 +

βE

k

)−k
. (29)

Note that in all three cases,

q − 1 =
Var(N)

〈N〉2
− 1

〈N〉
. (30)

It is natural that for BD, where Var(N)/〈N〉 < 1, one has q < 1, for PD
with Var(N)/〈N〉 = 1 also q = 1 and for NBD, where Var(N)/〈N〉 > 1,
one has q > 1 (cf., also case U = const and T = const considered in [19]).
Examples of occurrence q < 1 and q > 1 are presented in Fig. 1.
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Fig. 1. (Color online) Examples of q < 1 or q > 1. (a) Distributions of prelT =

|~p× ~pjet| / |~pjet| for particles inside the jets with different values of ~pjet. Distribu-
tions are fitted using a Tsallis distribution (2) with T = 0.18. (b) (N + 1)

P (N + 1)/P (N) = a + bN as a function of multiplicity N in jets with differ-
ent values of ~pjet as presented in (a). Depending on the range of phase space
covered, the corresponding values of q are 0.885 for ~pjet ∈ (4–6) GeV and 1.094 for
~pjet ∈ (24–40) GeV. Data are from [3, 27] and from the Durham HepData Project;
http://hepdata.cedar.ac.uk/view/irn9136932

Fluctuations of N can be translated into fluctuations of T . Notice first
that [13] (cf. also [25]) NBD, P (N) = Γ (N + k)/[Γ (N + 1)Γ (k)] γk(1 +
γ)−k−N , arises also if in the Poisson multiplicity distribution, P (N) =

N̄Ne−N̄/N !, one fluctuates the mean multiplicity N̄ using gamma distri-
bution f(N̄) = γkN̄k−1/Γ (k) e−γN̄ with γ = k/〈N̄〉 4. Now, identifying
fluctuations of mean N̄ with fluctuations of T , one can express the above
observation via fluctuations of temperature. Noticing that β̄ = N̄/U (i.e.,
that 〈N̄〉 = U〈β̄〉 and γ = k/[U〈β̄〉]), one can rewrite f(N̄) as

f
(
β̄
)

=
k〈

β̄
〉
Γ (k)

(
kβ̄〈
β̄
〉)k−1

exp

(
− kβ̄〈

β̄
〉)

=

(
1
q−1

β̄

〈β̄〉

) 1
q−1
−1

(q − 1)
〈
β̄
〉
Γ
(

1
q−1

) exp

(
− 1

q − 1

β̄〈
β̄
〉) . (31)

And this is just a gamma distribution describing fluctuations of β = 1/T
discussed in [11].

4 We have two types of averages here: X̄ means average value in a given event, whereas
〈X〉 denotes averages over events (or ensembles).
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There is more to the physical meaning of q. Since U = 〈N〉T , the heat
capacity C can be written as 1/C = dU/dT = 〈N〉. However, because in
our case U = const, i.e., Var(N)/〈N〉2 = Var(β)/〈β〉2 (or 〈N〉 ∼ 〈β〉 and
Var(N) ∼ Var(β)), the formula q − 1 = Var(N)/〈N〉2 − 1/〈N〉 obtained
before coincides with a similar formula obtained in [26]

q − 1 =
Var(β)

〈β〉2
− 1

C
' Var(T )

〈T 〉2
− 1

C
. (32)

This can be confronted with q − 1 = Var(N̄)/〈N̄〉2 from [13], which, due to
the form of f(β̄) in Eq. (31), can be rewritten approximately as

q − 1 =
Var

(
β̄
)〈

β̄
〉2 '

Var
(
T̄
)〈

T̄
〉2 . (33)

3. Tsallis distribution from Shannon entropy

Tsallis distribution is usually derived either from the Tsallis entropy (via
the MaxEnt variational approach, not discussed here) or from some dynam-
ical considerations, some examples of which are presented in this paper.
However, it turns out that it also emerges in a quite natural (in the same
MaxEnt approach) way from the Shannon entropy, provided one imposes the
right constraints. In fact, as shown in [28], one can establish a transforma-
tion between these two variational problems and show that they contain the
same information. This means that the two approaches seem to be equiv-
alent, one can either use Tsallis entropy with relatively simple constraints,
or the Shannon entropy with rather complicated ones (cf., for example, one
can get in this way a list of possible distributions [29]).

In general, Shannon entropy for some probability density f(x), S =
−
∫
dxf(x) ln[f(x)], supplied with constraint 〈h(x)〉=

∫
dxf(x)h(x) = const,

where h(x) is some function of x, subjected to the usual MaxEnt variational
procedure, results in the following form of f(x):

f(x) = exp [λ0 + λh(x)] , (34)

with constants λ0 and λ calculated from the normalization of f(x) and from
the constraint equation. It is now straightforward to check that

〈z〉 = z0 =
q − 1

2− q
, where z = ln

[
1− (1− q)E

T0

]
(35)

results in f(z) = (1/z0) exp (−z/z0) which translates to (remembering that
f(z)dz = f(E)dE) a Tsallis distribution

f(E)=
1

(1+z0)T0

(
1 +

z0

1 + z0

E

T0

)− 1+z0
z0

=
2−q
T0

[
1− (1− q)E

T0

] 1
1−q

. (36)
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The parameter T0 can be deduced from the additional condition which must
be imposed, namely from the assumed knowledge of the 〈E〉 (notice that in
the case of BG distribution, this would be the only condition).

So far, the physical significance of the constraint (35) is not fully under-
stood. Its form can be deduced from the idea of varying scale parameter in
the form of the preferential attachment, Eq. (5), which in present notation
means T → T (E) = T0 + (q− 1)E. As shown in (5), it results in the Tsallis
distribution (36). This suggests the use of z = ln [T (E)/T0] constrained as
in Eq. (35). In such an approach, ln f(E) = −[1/(q−1)] ln[T (E)]+ [(2− q)/
(q−1)] ln (T0) and, because S = −〈ln f(E)〉, therefore S = 1/(2−q)+ln (T0)
for the Tsallis distribution becoming S = 1+ln (T0) for the Boltzmann–Gibbs
(BG) distribution (q = 1).

It is interesting that the constraint (35) seems to be natural for multi-
plicative noise described by the Langevine equation: dp/dt + γ(t)p = ξ(t),
with traditional multiplicative noise γ(t) and additive noise (stochastic pro-
cesses) ξ(t)) (see [18] for details). In fact, there is a connection between
the kind of noise in this process and the condition imposed in the MaxEnt
approach. For processes described by an additive noise, dx/dt = ξ(t), the
natural condition is that imposed on the arithmetic mean, 〈x〉 = c + 〈ξ〉t,
and it results in the exponential distributions. For the multiplicative noise,
dx/dt = xγ(t), the natural condition is that imposed on the geometric mean,
〈lnx〉 = c+ 〈γ〉t, which results in a power law distribution [30].

4. Tsallis entropy vs. Tsallis distributions (q1 + q2 = 2)

One has to start with some explanatory remarks. The Tsallis distribution
can be also obtained via the MaxEnt procedure from Tsallis entropy,

Sq = − 1

1− q
∑(

1− pqi
)

= −〈lnq pi〉q = −〈ln2−q pi〉q=1 , (37)

where lnq x =
(
x1−q − 1

)
/(1 − q) and 〈x〉q =

∑
pqixi. Now, depending on

the condition imposed, one gets from Sq

either f(x) = q[1 + (1− q)x]
− 1

1−q for 〈x〉1 (38)

or f(x) = (2− q)[1 + (q − 1)x]
1

1−q for 〈x〉q . (39)

However, after replacement of q by q1 = 2−q, the distribution (38) becomes
the usual Tsallis distribution (39). Therefore, one encounters an apparent
puzzle, namely the q1 of Tsallis distribution does not coincides with the q2

of the corresponding Tsallis entropy, instead they are connected by rela-
tion q1 + q2 = 2. The natural question therefore arises: is such a relation
seen in the data? As shown in [31] that seems really be the case, at least
quantitatively. This is seen when comparing q = q1 obtained from the data
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on pT distributions (cf. Fig. 2 (a)) to q = q2 obtained from the data on
multiplicities in p–A collisions assuming that entropy is proportional to the
number of particles produced (cf. Fig. 2 (b)). Whereas q1 is deduced from a
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Fig. 2. (Color online) (a) Energy dependencies of the parameters q obtained from,
respectively: multiplicity distributions P (N) [33] (squares), from different analysis
of transverse momenta distributions f (pT) in p+ p data ([34] — circles, full sym-
bols) and from data on f (pT) from Pb+Pb collisions ([35] — half filled circles).
(b) Energy dependence of the charged multiplicity for nucleus–nucleus collisions
divided by the superposition of multiplicities from proton–proton collisions fitted
to data on multiplicity taken from [35] (NA49) and from compilation [36].

Tsallis distribution taken in one of the forms discussed above, q2 is deduced
directly from the corresponding entropy Sq of the p–A collision. Assume
that such collision can be adequately described by a superposition model
in which the main ingredients are ν nucleons which have interacted at least
once [32]. Assume further that they are identical and independent and pro-
duce ni secondaries of each other. As a result, N =

∑ν
i=1 ni are produced

in one collision and the mean multiplicity is 〈N〉 = 〈ν〉〈ni〉, where 〈ν〉 is the
mean number of nucleons participating in the collision and 〈ni〉 the mean
multiplicity in ith elementary collision. The corresponding entropy S(ν)

q of
such process will then be q-sum of ν entropies S(1)

q of individual collisions
and is given by

S(ν)
q =

ν∑
k=1

ν!

(ν − k)!k!
(1− q)k−1

[
S(1)
q

]k
=

[
1 + (1− q)S(1)

q

]ν
− 1

1− q
. (40)

Notice that ln[1 + (1 − q)S(ν)
q ] = ν ln[1 + (1 − q)S(1)

q ] and S(ν)
q

q→1−→ ν S
(1)
1 .

For q < 1, entropy S(ν)
q is nonextensive because S(ν)

q /ν
ν→∞−→ ∞. For q > 1,

one has S(ν)
q ≥ 0 only for q < 1 + 1/S

(1)
q and S(ν)

q /ν
ν→∞−→ 0, i.e., entropy is

extensive, 0 ≤ S(ν)
q /ν ≤ S(1)

q .
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As 〈NAA〉>NP 〈Npp〉= ν〈Npp〉, the nonextensivity parameter obtained
from the corresponding entropies must be smaller than unity, q2 < 1. On
the other hand, all estimates of the nonextensivity parameter from Tsallis
distributions lead to q1 > 1.

5. Dressed Tsallis distributions (log-periodic oscillations)

The pure power-like distributions are known to be in many cases deco-
rated by specific log-periodic oscillations (i.e., multiplied by some dressing
factor R) [37]. They suggest some hierarchical fine structure existing in the
system under consideration and are usually regarded as possibly indicating
some kind of multifractality in the system. Closer inspection of recent data
from the LHC [1–3, 38, 39] reveals that, for large transverse momenta pT,
one observes a similar effect, cf. Fig. 3. So far, the prevailing opinion is that
this is just an apparatus induced artifact with no meaning. However, its
persistence in the type of experiment considered, energy or type of collision
process (provided that the range of pT covered is large enough) calls for some
explanation. Such an explanation was considered in [40, 41]. In [37], the
only possibility investigated was to attribute such oscillations to complex
values of the power index n in Eq. (1). As shown in [40] and also below,
it also works in the case of quasi-power-like Tsallis distributions. However,
because one now also has a scale parameter T and a constant term, one
can offer another explanation: real n but log-periodically oscillating scale
parameter T . This was discussed in detail in [41]. We shall present both
possibilities here.

5.1. Complex nonextensivity parameter q

For simple power laws, one has some function O(x) which is scale invari-
ant, O(λx) = µO(x) and O(x) = Cx−m with m = − lnµ/ lnλ. However,
this can be written as µλm = 1 = ei2πk, where k is an arbitrary integer. We
then have not a single power m but rather a whole family of complex pow-
ers, mk, with mk = − lnµ/ lnλ + i2πk/ lnλ. Their imaginary part signals
a hierarchy of scales leading to log-periodic oscillations. This means that,
in fact, O(x) =

∑
k=0wkRe (x−mk) = x−Re(mk)

∑
k=0wk cos [Im (mk) ln(x)]

(where wk are coefficients of the expansion). This is the origin of the usual
dressing factor appearing in [37] and used to describe data

R(E) = a+ b cos [c ln(E + d) + f ] (41)

(only w1 and w2 terms are kept).
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Fig. 3. (Color online) Examples of log-periodic oscillations. (a) dN/dpT for the
highest energy 7 TeV, the Tsallis behavior is evident. Only CMS data are shown [1],
others behave essentially in the identical manner. (b) Log-periodic oscillations
showing up in different experimental data like [1] or ATLAS [3] taken at 7 TeV.
(c) Results from CMS [1] for different energies. (d) Results for different systems
(p+p collisions compared with Pb+Pb taken for 5% centrality [38]). Results from
ALICE are very similar [39].

It turns out that a similar scaling solution can also be obtained in the
case of a Tsallis quasi-power-slike distribution. To this end, one must start
from the stochastic network approach, Section 2.2 and Eq. (5), in which the
Tsallis distribution is obtained by introducing a scale parameter depending
on the variable considered. In our case, it is df(E)/dE = −f(E)/T (E)
resulting in

f(E) =
n− 1

nT0

(
1 +

E

nT0

)−n
for T (E) = T0 +

E

n
. (42)

In final difference form (with change in notation: T0 replaced by T )

df(E)

dE
= − f(E)

T (E)
=⇒ f(E + δE) =

−nδE + nT + E

nT + E
f(E) . (43)



1116 G. Wilk, Z. Włodarczyk

We consider a situation in which δE = αnT (E) = α(nT + E). It depends
now on the new scale parameter α (α < 1/n in order to keep changes of δE
to be of the order of T ) and can be very small but always remains finite.
It can now be shown that f [E + α(nT + E)] = (1 − αn)f(E) which, when
expressed in the new variable x = 1 + E/(nT ), corresponds formally to the
following scale invariant relation:

g[(1 + α)x] = (1− αn)g(x) . (44)

Following the same procedure used to obtain dressed solutions of scale in-
variant functions discussed at the beginning of this section, one arrives at the
dressed Tsallis distribution (we keep, as before, only the two lowest terms,
k = 0 and k = 1 )5

g(E) '
(

1 +
E

nT

)−m0
{
w0 + w1 cos

[
2π

ln(1 + α)
ln

(
1 +

E

nT

)]}
(45)

with m0 = − ln(1 − αn)/ ln(1 + α)
α→0−→ n. In addition to the scale pa-

rameter α, one has two more parameters occurring in the dressing factor R,
w0 and w1. The other parameters occurring in Eq. (41) are expressed by the
original parameters in the following way: a/b = w0/w1, c = 2π/ ln(1 + α),
d = nT and f = −2π ln(nT )/ ln(1 + α) = −c ln d. One can, however, con-
sider a more involved evolution process, with κ sequential cascades; in this
case, the additional parameter κ changes parameter c in (41), c→ c′ = c/κ.
It does not affect the slope parameter m0 but changes the frequency of oscil-
lations which now decrease as 1/κ. Comparison with data requires κ ∼ 22
(cf. [40] for details).

5.2. Log-periodically oscillating T

As mentioned before, one can translate a dressed Tsallis distribution into
a normal one but with a log-periodically oscillating in pT scale factor T , cf.
Fig. 4 (a). The formula used there to fit the obtained results resembles that
for dressing factor (41)

T = ā+ b̄ sin
[
c̄
(
ln(E + d̄

)
+ f̄

]
. (46)

In fit shown in Fig. 4 (a), parameters (generally energy-dependent) are ā =
0.143, b̄ = 0.0045, c̄ = 2.0, d̄ = 2.0, f̄ = −0.4.

5 Notice that in Eq. (45) n 6= m0. However, n and T are both unknown a priori
parameters. Therefore, for fitting purposes, where we have to use two (and not three)
parameter Tsallis distribution, we use [1+E/(m0T

′)]−m0 with fitting parameters m0

and T ′. In terms of T , n and α we have T ′ = nT/m0 = −nT ln(1 + α)/ ln(1− αn).
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Fig. 4. (Color online) (a) Oscillations of scale parameter T leading to identical
dressed Tsallis distribution as shown in Fig. 3 (b), obtained for CMS data at 7 TeV
and fitted using Eq. (46). (b) Dependencies of τ/τ0 from Eq. (54) and ξ − ξ0 from
Eq. (51) resulting in oscillations of T shown in panel (a).

To explain Eq. (46), one uses a stochastic equation for the temperature
evolution [42] written in the Langevin formulation with energy-dependent
noise, ξ(t, E), and allowing for time-dependent E = E(t) 6

dT

dE

dE

dt
+

1

τ
T + ξ(t, E)T = Φ . (47)

Assuming now a scenario of preferential attachment (cf. Section 2.2 above)
known from the growth of networks [16], one has

dE

dt
=
E

n
+ T , (48)

and Eq. (47) has now the form(
E

n
+ T

)
dT

dE
+

1

τ
T + ξ(t, E)T = Φ . (49)

After straightforward manipulations (cf. [40] for details), one gets for large E
(i.e., neglecting terms ∝ 1/E)

1

n

d2T

d(lnE)2
+

[
1

τ
+ ξ(t, E)

]
dT

d(lnE)
+ T

dξ(t, E)

d(lnE)
= 0 . (50)

6 Notice the change of notation, we discuss formulas for energy E but results are for
transverse momenta pT here. However, they are taken at the midrapidity, i.e., for
y ' 0 and for large transverse momenta, pT > M , and in this region, one has
E =

√
M2 + p2T cosh(y) ' pT.
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Let us now assume that noise ξ(t, E) increases logarithmically with energy,

ξ(t, E) = ξ0(t) +
ω2

n
lnE . (51)

In this case, Eq. (50) becomes an equation for the damped hadronic oscillator
with solution in the form of log-periodic oscillation of temperature with
frequency ω and depending on initial conditions phase shift parameter φ

T = C exp

{
−n

[
1

2τ
+
ξ(t, E)

2

]
lnE

}
sin(ω lnE + φ) . (52)

Averaging the noise fluctuations over time t and taking into account that the
noise term cannot on average change the temperature, 1/τ + 〈ξ(t, E)〉 = 0,
one arrives at

T = ā+
b′

n
sin(ω lnE + φ) . (53)

This should now be compared with the parametrization of T (E) given by
Eq. (46) and used to fit data in Fig. 4 7.

We close with the remark that, instead of using energy-dependent noise
ξ(t, E) given by Eq. (51) and keeping the relaxation time τ constant, we
could equivalently keep the energy-independent white noise, ξ(t, E) = ξ0(t),
but allow for the energy-dependent relaxation time, for example, in the
form of

τ = τ(E) =
nτ0

n+ ω2 lnE
. (54)

In this case, the temperature evolution has the form

T (t) = 〈T 〉+ [T (t = 0)− 〈T 〉]E−tω2/n exp

(
− t

τ0

)
, (55)

and T gradually approaches its equilibrium value 〈T 〉. Actually, for τ =
τ(E), as in our case, this approach towards equilibrium is faster for large E.
This is because, in addition to the usual exponential relaxation characteristic
for the τ = const case, we have an additional factor ∼ E−tω2/n.

6. Summary and conclusions

We presented examples of possible mechanisms resulting in quasi-power
distributions exemplified by the Tsallis distribution, Eq. (2). Our presenta-
tion had to be limited, therefore we did not touch thermodynamic connec-
tions of this distribution [8, 9] or the possible connection of Tsallis distribu-
tions with QCD calculations discussed recently [43, 44].

7 Notice that only a small amount of T , of the order of b̄/ā ∼ 3%, emerges from the
stochastic process with energy-dependent noise; the main contribution comes from
the usual energy-independent Gaussian white noise.
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The main results presented here can be summarized in the following
points:

— Statistical physics consideration, as well as “induced partition process”,
results in Eq. (15), i.e., in a Tsallis distribution with q=(N−3)/(N−2)
< 1. Fluctuations of the multiplicity N modify the parameter q which
is now equal to q = 1 + Var(N)/〈N〉2 − 1/〈N〉, cf. Eq. (30). Notice
that conditional probability for the BG distribution again results in
Eq. (15).

— Fluctuations of the multiplicity N are equivalent to results of an ap-
plication of superstatistics, where the convolution

f(E) =

∫
g(T ) exp

(
−E
T

)
dT (56)

becomes a Tsallis distribution, Eq. (2), for

g(T ) =
1

Γ (n)T

(
nT0

T

)n
exp

(
−nT0

T

)
. (57)

— Differentiating Eq. (56), one gets

df(E)

dE
= − 1

T (E)
f(E) , where T (E) = T0 +

E

n
. (58)

This is nothing else than a “preferential attachment” case, again re-
sulting in a Tsallis distribution which for T (E) = T0 becomes a BG
distribution, cf. Eq. (5).

— Replacing in Eq. (58) differentials by finite differences, cf. Eq. (43),
one gets for δE = αnT (E) the scale invariant relation, Eq. (44), which
results in log-periodic oscillations in Tsallis distributions8.

In addition to this line of reasoning, we have also brought in the prob-
lem of the apparent duality between the nonextensive parameters obtained
from the whole phase space measurements of multiplicity and more local
measurements of transverse momenta. This point deserves an experimental
and phenomenological scrutiny.

8 Among numerous other explanations, we can therefore say that we have demonstrated
that a Tsallis distribution, which can be regarded as generalization to real power n
of such well known distributions as the Snedecor distribution (with n = (ν + 2)/2
with integer ν, for ν →∞ it becomes an exponential distribution), can be extended
to complex nonextensivity parameter.
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Finally, we tentatively suggested that, by choosing the right constraints,
which account for additive or multiplicative processes considered, one can
also get a Tsallis distribution directly from the Shannon information entropy.
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