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An unstable fixed point of a map cannot be calculated by iteration
from almost any initial value. If such a map is concave, it is possible to
turn it convex by reforming the map. An unstable fixed point is thereby
made stable for iteration. The technique of reformation is presented with
examples from the physics and math literature.
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1. Introduction

For chaotic maps, fixed points are of special interest [1–3]. They are
obtained numerically, almost exclusively by the Fixed-Point Analysis (FPA).
It is a powerful yet simple iterative method, with which one can easily and
quickly calculate fixed points to any desired degree of accuracy. To calculate
them by FPA, their “characters” must be stable (to be defined below). If
not, FPA is powerless. A map may contain as many unstable fixed points
as stable ones. It is thus desirable to find a way to make FPA applicable
also to the unstable classes of fixed points, which is precisely the goal of this
work. If our goal could be realized, FPA could also be used to calculate real
positive roots of functions and polynomials. This is because roots may be
put in the form of fixed points.

The basic idea is to change the character of a fixed point from being
unstable to stable but without changing its value. This is accomplished by
transformation or substitution, or re-ordering or others, collectively termed
reformation. As our work will show, there are no unique ways nor universal
algorithms for reformation. Like doing an integral, the reformation will
depend on the nature of a map or a function, making this new approach an
interesting challenge in itself.

(1123)
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2. Fixed-Point Analysis (FPA)

Here we provide a brief review of the conventional version of FPA. Let
x and x′ be a pair of real positive numbers in an interval such as (0,1). If f
is a map which takes x to x′, we write the process or mapping as

x′ = f(x) . (1)

If f is a nonlinear function of x, it is possible that, for some value x = x∗

say, it may map on to itself: f(x∗) = x∗. Such a special value of x is termed
a fixed point of f and its existence must depend on the nature of f .

We shall term |df(x∗)/dx| the character of x∗. If it is less than 1, the
character of x∗ is said to be stable (sometimes attractive). If greater than 1,
the character of x∗ is unstable (sometimes repulsive).

If the character of a fixed point is stable, the following iteration process
is well established: If x(1) is an initial value in the interval then,

f
(
x(1)

)
= x(2), f

(
x(2)

)
= x(3), . . . f

(
x(N−1)

)
= x(N), . . . , f

(
x(∞)

)
= x∗ .

(2)
A fixed point is reached by iteration for almost any initial value in the
interval. An accurate value of x∗ is easily and quickly obtained this way.
For most cases of practical interest, typically N = 50–100 steps of iteration
are sufficient.

If a map is given, there is a simple way to determine by graph whether
the character of a fixed point is stable or not. Plot (1) and draw a bisector
of slope 1 on it. Suppose f describes concave up with respect to the bisector
and it intersects the bisector at two points x1 and x2, (x1 < x2). The two
points are the fixed points of f .

Since x1 is a result of f crossing the bisector from above, its character is
usually stable. Since x2 is a result of f crossing the bisector from below, its
character is always unstable (since the slope must be greater than 1 to be
able to intersect the bisector from below).

For f describing concave up with respect to the bisector, x1 is obtained
by FPA (2), starting from almost any initial value in the interval. But x2
cannot be obtained. Almost any initial point will move away from it if
an iteration is unfolded. Below, we will illustrate these issues through one
simple map.

An Ising model on the square lattice [4] yields a map x′=f(x), 0<x<∞,
where

f(x) =
{(
x+ x−1

)
/2
}3/2

. (3)

It is concave up (as supposed above) and there are two intersections or two
fixed points at x1 = 1 and x2 ≈ 7.6. By graph, one can easily determine that
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the character of x1 is stable but that of x2 unstable. The second fixed point,
which is of physical interest, thus cannot be obtained by FPA. An iteration
from almost any initial value will move away from it. If one could turn f
into concave down without altering the intersecting points, one might be able
to turn x2 stable making it amenable to FPA. This is what a reformation
intends to do, formally described in Sec. 4.

3. Enmapping

By definition, the fixed points of f are the roots of φ(x) = f(x) − x.
Thus, obtaining the fixed points is formally the same as solving

φ(x) = 0 . (4)

Now the l.h.s. could represent a function or a polynomial. If it were, by
“enmapping” it, i.e., putting it in the form of a map (also see below), one
could obtain its real positive roots by FPA if their characters are stable and
by FPA after reformation if their characters are unstable. In this way, one
could obtain real positive roots of any function or polynomial just as easily
and quickly to any desired degree of accuracy just as the fixed points of a
map. Below, we illustrate this idea through one simple example.

The integral representation of Γ (s+ 1) =
∫∞
0 eφ(x)dx,Re s > −1, where

φ(x) = s log x− x , (5)

which gives dφ(x)/dx = 0 at x = s. One can obtain an asymptotic form
of Γ (s+ 1) by Laplace’s method by expanding (5) in the neighborhoods of
x = s [5, 6], which is bounded by x1 and x2, (x1 < x2), the two real positive
roots of φ. For the purpose of illustration, let s = 3. To obtain the roots, we
put the r.h.s. of (5) as: x = 3 log x, which is enmapped to read: x′ = f(x),
0 < x <∞, where

f(x) = 3 log x . (6)

The fixed points of f are the roots of φ. We see that f plots concave down
on the bisector, so that the character of x1 is unstable but that of x2 stable.
Thus the second root is readily obtained by FPA.

The character of x1 can be reformed (i.e. made stable) if f is made
concave up. To do so, we write x = 3 log x as x = ex/3s, which is enmapped
as x′ = h(x), 0 < x <∞, where now

h(x) = ex/3 . (7)

The fixed points of h are the same fixed points of f . That is, reforming does
not alter the fixed points. But h is concave up. As a result, the character
of x1 in h is stable, making it amenable to FPA.



1126 M.H. Lee

We have illustrated two different ways a function can be enmapped. The
more complex is a function, the more ways are there to enmap it.

Going from f to h may also be regarded as changing variables from x
to t by x = et/3 or more simply et. In the plane of x, f is concave down but
in the plane of t, h is concave up. The problem posed by (5) is among the
simplest and clearest. A more formal treatment of the reformation is given
in Sec. 4.

4. General principle of reformation

The reforming method transforms a map into another without altering
the fixed points, but altering their characters. By this method, an unstable
fixed point having been made stable, becomes amenable to FPA. The method
applies to all fixed points greater than 0.

The basic idea is as follows: The fixed points of f(x) are the real positive
roots of f(x) − x = 0. The roots are unchanged if it is replaced by e.g.
(f(x))2 − x2 = 0. The roots are still unchanged if the latter is multiplied
by a constant or by any power of x, x 6= 0 (both to be denoted by γ). If
this resulting process is expressed as: γ((f(x))2 − x2) = Q(x) − x, x 6= 0,
the roots of Q(x)− x are also the roots of f(x)− x. It is possible that the
characters of the same roots may be different for f and for Q. If this occurs,
a fixed point may be unstable for f but stable for Q. We shall term this
process a reforming operation denoted as

R[f(x)− x] = Q(x)− x . (8)

4.1. Procedure

The procedure for the reforming method is described below, applicable
to maps and equations. (For equations, it begins immediately with Step 2.)

Step 1: Take a map x′ = f(x).

Step 2: De-map it into the form of an equation

f(x)− x = 0 . (9)

Since the real positive roots of (9) are the fixed points of f(x), de-
mapping does not alter the fixed points.

Step 3: Generate a function Q(x) by reforming (9) by an operation R:

R[f(x)− x] = Q(x)− x = 0 . (10)

The operation R on f(x) − x = 0 means any operation which trans-
forms f − x = 0 into Q − x = 0 without altering the roots, with the
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possible exception of the root x = 0. The R operation depends on f ,
so that there may be a variety of ways to achieving (10), i.e., one f
may yield several independent Qs. See Sec. 4.2 below.

Step 4: Enmap (10) as
x′ = Q(x) . (11)

The fixed points of Q are still the same fixed points of f with the possible
exception of x = 0. By reformation, it is possible that the characters of
some of the fixed points may have been changed. An unstable fixed point of
f may have turned a stable fixed point of Q.

4.2. Possible types of R operation

Because the R operation depends on the nature of f itself, there cannot
be just one general “algorithm” for it. It is somewhat like doing an integral.
As we know, it all depends on the nature of the integrand. Similarly, there
are different possibilities for the R operation. Since Q = x + R[f − x], we
want to express the R operation in the form

R[f(x)− x] = −x+ . . . (remainder) (12)

by a suitable choice of γ, so that Q is given by the remainder. Listed below
are R operations for three different general forms of f by which Qs are
generated in this way:

Type-1. f raised to power

R[f − x] = γ
(
fk − xk

)
, (13)

k is an integer or rational number, where γ is a constant or a simple
power of x, chosen to yield the r.h.s. of (12). It is called a reforming
prefactor or simply a reformer. If γ is a power of x, the R operation
requires x 6= 0. If a fixed point happens to be x = 0, it cannot be
reformed by this reformer.

Type-2. f in a new variable by x = u(y)

R[f(x)− x] = γ(f(u(y))− u(y)) (14)
= −y + . . . (remainder) , (15)

where the remainder is Q(y). Here, γ, the reformer is a constant or a
simple power of y, y 6= 0.
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Type-3. f(x)− x = p(x), p(x) a polynomial

R[p(x)] = γp(x) , (16)

where γ is a constant or a simple power of x (x 6= 0).

In Sec. 5, the reforming operation is illustrated for different types of f .
As stated above, there are several different ways to achieving the R oper-
ation even for one form of f . They will be denoted Qk(x), k = 1, 2, . . . to
distinguish them.

5. Illustrations of Type-1

5.1. Ising map [4]

Consider x′ = f(x), where

f(x) =
{(
x+ x−1

)
/2
}3/2

. (17)

There are two fixed points x1 = 1 and x2 ≈ 7.6, of which x1 is stable and
x2 unstable. Thus x2, which is of physical interest, is not amenable to FPA.
Our goal is to reform the map (17) into another, in which x2 is stable.

If we choose k = 2/3 (see Eq. (13)),

R[f(x)− x] = γ
((
x+ x−1

)
/2− x2/3

)
. (18)

If γ = −2, r.h.s. of (18) = −x− x−1 + 2x2/3. Hence,

Q1(x) = 2x2/3 − x−1 . (19)

Thereby, x′ = f(x) has been re-mapped to x′ = Q1(x). The fixed points
of Q1 are x1 and x2, the same fixed points of f , but in Q1 their characters
have changed as can be verified graphically. The re-mapping has turned x1
and x2 unstable and stable, respectively. As a result, it is now possible to
obtain the value of x2 accurately by FPA.

If (18) is considered Type-2, we can change x to y by x = y3. If γ =
−y−2, y 6= 0, r.h.s. of (18) = −y − y−5 + 2. Hence,

Q2(y) = 2− y−5 . (20)

If the above is re-mapped as y′ = Q2(y), there are two fixed points y1
and y2, corresponding to x1 and x2, respectively, by x = y3. One can
verify graphically that the character of y2 is also stable. Evidently, this map
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y′ = Q2(y) is simpler than the previous reformed map x′ = Q1(x). By FPA,
we obtain:

y2 = 1.965948236645490
(
y(1) = 1.1 ; N = 20

)
,

x2 = 7.598296491 .

A comparison of the slope at the fixed point is revealing:

df(x2)/dx = 1.448922355 ,

dQ1(x2)/dx = 0.695534639 ,

dQ2(y2)/dy = 0.0860391642 .

If γ = −2x2, x 6= 0, r.h.s. of (18) = −x− x3 + 2x8/3. Thus,

Q3(x) = 2x8/3 − x3 . (21)

Now x′ = f(x) is re-mapped to x′ = Q3(x). The fixed points are still the
same. But this reforming operation does not achieve the desired goal. As
one can verify graphically, both fixed points are now unstable:

dQ3(x1)/dx = 7/3 ,

dQ3(x2)/dx = −16.57803652 .

The above failure indicates that the reforming operation is not to be done
routinely but with judicious care.

5.2. Chaotic map [7]

We next consider x′ = f(x), where

f(x) = sin2 ax , 0 ≤ x ≤ 1 , a = π/2 . (22)

There are 3 fixed points: x1 = 0, x2 = 1/2, and x3 = 1, of which x1 and
x3 are stable and x2 unstable. Since the fixed points are known, FPA is not
needed. But we consider this map to further illustrate the workings of the
reforming operation. If k = 1/2,

R[f − x] = γ
(

sin ax− x1/2
)
. (23)

By expressing sin ax=ax−ax+sin ax and γ=−1/a, r.h.s. of (23) = −x +
1/ax1/2 + x− a−1 sin ax. Hence,

Q1(x) = a−1x1/2 + x− a−1 sin ax . (24)
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Evidently, the fixed points of Q1(x) are the same fixed points of f(x) : x1 =
0, x2 = 1/2 and x3 = 1. By (24),

dQ1(x)/dx = 1 + (1/2a)x−1/2 − cos ax , (25)

yielding:

dQ1(0)/dx = infinity ,

dQ1(1/2)/dx = 0.74305133 ,

dQ1(1)/dx = 1.318309886 .

In Q1(x), x2 has been made stable.
Another possible R operation is to write f = sin2 ax as 1/2(1−cos 2ax),

a = π/2. If k = 1 now and by expressing cos 2ax = 2(ax)2−2(ax)2+cos 2ax

R[f(x)− x] = γ
(
1/2− (ax)2 + (ax)2 − 1/2 cos 2ax− x

)
. (26)

If γ = −a−2x−1, x 6= 0, r.h.s. of (26) = −x+1/a2+1/2a2(cos 2ax−1)/x+x.
Hence,

Q2(x) = 1/a2 + 1/2a2(cos 2ax− 1)/x+ x , x > 0 . (27)

The fixed points x2 = 1/2 and x3 = 1 are unaltered in Q2(x). But observe
thatQ2(0) = 1/a2 6= 0, i.e., x1 = 0 is not a fixed point ofQ2(x). A particular
form for γ excludes x = 0. As noted in Sec. 4, the reforming method keeps
all the fixed points invariant, fixed point zero possibly excepted.

By (27),

dQ2(x)/dx = 1− 1/a2(cos 2ax− 1)/x2 − 1/a(sin 2ax)/x , (28)

yielding:

dQ2(1/2)/dx = 0.537329924 ,

dQ2(1)/dx = 1.405284735 .

The second reforming operation has turned the fixed point x2 = 1/2 also
stable.

6. Illustration of Type-2

For this type, we return to (5) and (6) with s = 3. Of the two fixed
points, x2 is stable, f being concave down. Hence by FPA

x2 = 4.536403653
(
x(1) = 5 ; N = 51

)
,

df(x1)/dx = 0.661316811 . (29)
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To obtain x1, we turn to the reforming method by substitution x = u(t). If
u(t) = et,

R[f(x)− x] = γ(f(u(t))− u(t)) = γ
(
3t− et

)
. (30)

If γ = −1/3, the r.h.s. is −t+ et/3. Thus,

Q(t) = et/3 . (31)

There are two fixed points t1 and t2 corresponding to x1 and x2, related by
t = log x. The reformed function Q(t) is concave up in t with respect to the
bisector and now t1 is stable. By FPA on Q(t),

t1 = 0.619061287
(
x(1) = 1 ; N = 45

)
,

dQ(t1)/dt = 0.619061287 (since dQ/dt = Q) . (32)

By x1 = et,

x1 = 1.857183961 ,

df(x1)/dx = 1.61534895 . (33)

We have thus obtained the root x1 by applying the reforming method to the
original function f for which x1 was an unstable fixed point.

7. Illustrations of Type-3

If p(x) = 0, where p(x) is a polynomial in x, real positive roots can be
obtained by FPA following (16):

Q(x) = x+ γp(x) . (34)

We shall illustrate the analysis by considering a polynomial from the logistic
map x′ = f(x), f(x) = ax(1 − x), x = (0, 1) and 1 < a ≤ 4, where a is a
parameter [1–3].

A superstable point in the logistics map occurs at x = 1/2 [8]. One
is to determine the value(s) of a where it occurs. One defines 4-cycle by
f4(x) − x = 0, where f4(x) = f(f(f(f(x)))). If x = 1/2 for f defined by
the logistic map, it results in the following polynomial:

P (t) = t6 − 18t5 + 123t4 − 524t3 + 1511t2 − 1858t+ 4861 , (35)

where t = (a−1)2. There are 6 roots. The roots must be complex conjugate
pairs or real positive or some combinations like 2 pairs of complex conjugates
and two real positive roots. Evidently, t = 0 is not a root.
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Following (34) but in variable t, if γ = −t−5, t 6= 0,

Q1(t) = 18− 123t−1 + 524t−2 − 1511t−3 + 1858t−4 − 4861t−5 . (36)

The map t′ = Q1(t) intersects points at t1 and t2 (t1 < t2). Evidently, 4
other roots are two pairs of complex conjugates. As Q1 is concave down, t1
is unstable and t2 stable. By FPA, we obtain:

t2 = 8.76319922611
(
t(1) = 12 ; N = 49

)
,

a2 = 3.960270127 .

To obtain t1, we reform it by taking γ = (1/18)t4 in (34):

Q2(t) = 1/18
[
t2 + 123− 524t−1 + 1511t−2 − 1858t−3 + 4861t−4

]
. (37)

The map t′ = Q2(t) is concave up, where there are observed the same two
fixed points t1 and t2. But now t1 is stable and t2 unstable. The new map
has successfully reformed t1. By FPA,

t1 = 6.2428105653
(
t(1) = 2.8 ; N = 74

)
,

a1 = 3.4985616999 .

The above a1 value is probably the most accurately determined parametric
value for the superstable 4-cycle in the bifurcation domain. The a2 value
comes as a surprise as it places another superstable 4-cycle in the thick
of the chaotic domain. According to the theorems due to Sharkowskii [9]
and Li and Yorke [10], the domain of chaos for 1d unimodular maps begins
where a 3-cycle exists. For the logistic map, the onset value of 3-cycle is
a = 1 +

√
8 = 3.8284271 . . . [11].

8. Concluding remarks

We have demonstrated that unstable fixed points of a map can also be
calculated by iteration if reformed. A geometric interpretation of reforma-
tion is to transform a map which if concave to convex. A formal process
for achieving it is presented. The underlying principle holds that the fixed
point is fundamental but not its character, hence reformable. We have shown
that the idea may be used to obtain real positive roots of any function or
polynomial.

There are other numerical techniques for obtaining roots. Perhaps the
best known is Newton’s method [12, 13]. A root of φ(x) is successively
approximated as if iterated, the nth approximation being given as

xn+1 = xn − φ(xn)/(dφ(xn)/dx) , n = 1, 2, . . . (38)
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An iteration by Newton’s method depends on the derivative, thus one
more set of calculations than FPA. In addition, it requires that, in the vicin-
ity of a root, the slope not vanish, its sign not change. There are no inflection
points. FPA is not burdened by such constraints. For these reasons, stable
fixed points have almost always been calculated by FPA.

I wish to thank Mayuri Perera, Tara Hufford and Qiongge Li for numer-
ical assistance.
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