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The time evolution of the density fluctuation of a two-dimensional high-
density ultrarelativistic-like electron gas is studied at the long wavelength
and zero temperature limits. The model we consider is a reduced version
of the relativistic Sawada model within the massless Dirac particles frame.
Time correlation functions are exactly calculated through the recurrence
relations method, and a dynamic equivalence between the ultrarelativistic-
like and the nonrelativistic dense electron gas systems is stated by the
present approach.

DOI:10.5506/APhysPolB.46.1135
PACS numbers: 71.10.Ca, 71.45.Gm, 72.10.Bg, 73.22.Lp

1. Introduction

The study of the time evolution of perturbed systems constitutes a
branch of nonequilibrium statistical mechanics in which the time correlation
function (TCF) plays a central role [1]. The TCF is an important physical
quantity since it can be directly related to the scattering cross section by
the Van Hove relation [2]. Besides, it describes properly the nonequilibrium
behavior of a system, particularly if the deviation from equilibrium is small.
The velocity autocorrelation function of a Brownian particle is a classical
example, while the density–density response function is a quantum analog.
Generally, if A(t) denotes a dynamical variable of interest, one may want to
know it to obtain the TCF 〈A(t), A(0)〉, which demands to solve the Heisen-
berg equation Ȧ(t) = i [H,A(t)]. A well recognized and physically appeal-
ing method that attempts to handle this problem directly is the recurrence
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relations method (RRM), a continued fraction based approach proposed by
Lee [3] some years ago. The RRM enables one to solve the Heisenberg
equation exactly, and provides a way to straightforwardly calculate TCFs.

In this work, we study the time evolution of the density fluctuation oper-
ator of a two-dimensional ultrarelativistic-like dense electron gas (2DREG),
at the long wavelength and zero temperature limits. Despite the 2DREG
generality, one can consider two-dimensional massless Dirac-like materials
such as graphene [4] as a motivation for studying it. The apparatus we are
going to employ to solve the equation of motion of the density fluctuation
is the well established RRM. This approach has already been successfully
applied in the study of the nonrelativistic dense electron gas (2DEG), at the
long wavelength and zero temperature limits, in one [5], two [6], three [7],
and D dimensions [8]. Applications of the RRM to many-body systems, in
general, are also available in the literature (see, e.g., reference [9]).

The rest of the paper is organized as follows. The model and the method
are presented in Section 2. Section 3 is devoted to some results and discus-
sion, and in the last section some concluding remarks are made.

2. The model and the recurrence relations method

2.1. The model

Recent progress in the field of plasmonics in graphene [10] and other
massless Dirac-like systems [11] has stimulated interest in 2DREG mod-
els [12]. At the helm of the nonrelativistic electron gas theory is the Sawada
model [13]. This quasiboson approach considers only electron-hole pairs
interaction, and its first relativistic generalization is due to Jancovici [14].
According to his work, two kinds of excitations are allowed in relativistic
dynamics, the electron–Fermi-hole pair and the electron–Dirac-hole pair,
besides transverse polarized photons [14]. We will restrict our study here
into a reduced version of the relativistic Sawada model that accounts only
for electron–Fermi-hole pair interactions. The Hamiltonian of the 2DREG
we shall deal with is

H =
∑
q

εq

[
c†qcq − b†qbq

]
+ 1

2Vq
∑
p 6=p′

[
bpcp+q + c†−p−qb

†
−p

]
×
∑
p′

[
b−p′c−p′−q + c†−p′−qb

†
−p′
]
, (1)

where Vq = 2πe2/q is the Fourier transform of the Coulomb potential, c†q and
cq represent particle creation and annihilation operators, b†q and bq are Fermi-
hole creation and annihilation operators, εq = vF|q| is the linear energy
dispersion (we are considering ~ = 1 from now on), and vF is the Fermi
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velocity. In equation (1), the sum over p implies the condition |p| < qF
and |p + q| > qF, where qF is the Fermi momentum. Spin and pseudospin
degeneracies are taken into account later.

In accordance with the linear response theory [15], the 2DREG will un-
dergo a relaxation process if slightly perturbed by an external field of the
form

Hext =
∑
q

ρq(t)pqe
iωt , (2)

where pq and ω are the Fourier component and the frequency of the field,
respectively, while ρq is the electron–Fermi-hole pair density-fluctuation op-
erator

ρq(t) = eiHtρqe
−iHt and ρq =

∑
p

[
bpcp+q + c†−p−qb

†
−p

]
(3)

with ρq(0) = ρq. Its time evolution satisfies the Heisenberg equation of
motion

ρ̇q(t) = i [H, ρq(t)] , (4)

and the RRM approach will be employed in order to solve it exactly.

2.2. The recurrence relations method

Let L be a d-dimensional realized Hilbert space of ρ(t). The variable
(operator) ρ(t) is a vector in this space, and its norm is a constant of motion
since the system is assumed to be Hermitian. Hence, ρ(t) evolves on time
changing only its direction, delineating a trajectory in L. The trajectory will
be closed, and the motion periodic, if the Hilbert space dimensionality d is
finite. If d is infinite, the trajectory turns out to be open, and the motion
aperiodic. For some time instant t ≥ 0, we express ρ(t) by an orthogonal
expansion

ρ(t) =

d−1∑
ν=0

fνaν(t) , (5)

where {fν} constitutes a set of orthogonalized basis vectors which spans L,
and {aν(t)} is a set of real time-dependent projection functions. We assume
that L is realized by the Kubo scalar product (KSP) [16],

(X,Y ) = β−1
β∫

0

dλ
〈
eλHXe−λHY †

〉
− 〈X〉

〈
Y †
〉
, (6)

for every X, Y ⊂ L, where 〈. . . 〉 represents the canonical ensemble average,
dagger the Hermitian conjugation, and β the inverse temperature (we are
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considering kB = 1)1. The basis vectors {fν}must satisfy the first recurrence
relation (RR1)

fν+1 = ḟν +∆νfν−1 , 0 ≤ ν ≤ d− 1 , (7)

such that ḟν = i[H, fν ], and

∆ν =
(fν , fν)

(fν−1, fν−1)
, ν = 0, 1, 2, . . . , d− 1 . (8)

Quantity (8) is a relative norm, henceforth referred to as ν-recurrant. Since
there are only d basis vectors, we set f−1 ≡ 0 and ∆0 ≡ 1 to avoid ambi-
guities. Equation (7) represents a set of d hierarchical difference equations.
Once we state the basal vector as f0 = ρ, hence f1 is calculable and then
also is the ∆1.

The trajectory of interest is governed by the equation of motion (4), and
since the basis vectors {fν} satisfy it and also the RR1, the autocorrelation
functions {aν} are ruled out by the second recurrence relation (RR2)

∆ν+1aν+1(t) = −ȧν(t) + aν−1(t) , 0 ≤ ν ≤ d− 1 , (9)

where ȧν(t) = daν(t)/dt, and aν−1 ≡ 0. Analogously to RR1, RR2 is also
a hierarchical set of d equations. The basal autocorrelation a0 is unknown
a priori , however it is possible to determine it through the analytical theory
of continued fractions due to Mori [16]. By taking the Laplace transform of

1 It is worth mentioning that the KSP (6) has already been used in several situations
where β →∞ (see, e.g., [6, 7]). It is a standard linear response relation whose validity
at T = 0 was established many years ago [2, 17, 18]. To see it clearly, consider the
KSP (6) in a more general form [19]

(X,Y ) = β−1

β∫
0

dλg(λ)
〈
eλHXe−λHY †

〉
− 〈X〉

〈
Y †

〉
,

with the weight function, g(λ), satisfying the conditions

g(λ) ≥ 0 , g(β − λ) = g(λ) , β−1

β∫
0

dλg(λ) = 1 .

By choosing g(λ) = 1
2
β[δ(λ) + δ(β − λ)], the KSP (6) turns into

(X,Y ) = 1
2

〈
XY † + Y †X

〉
− 〈X〉

〈
Y †

〉
,

and is readily evaluated at β > 0 situations, including the important case of T = 0.
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RR2, regarding that a0(t = 0) = 1, and aν(t = 0) = 0, ν ≥ 1, one has

1 = zã0 +∆1ã1 , (10a)
ãν−1 = zãν +∆ν+1ãν+1 . (10b)

After some algebraic manipulation of equations (10a)–(10b), we obtain the
continued fraction representation of ã0,

ã0(z) = 1/z +∆1/z +∆2/z + . . . , (11)

that can also be written as

ã0(z) =
1

z + φ(z)
, φ(z) =

∆1

z + ∆2
z+∆3 ...

. (12)

If d is finite, the r.h.s. of equation (12) is a polynomial of finite order with a
finite number of zeroes, and its Laplace transform corresponds to a periodic
function. On the other hand, if d is infinite, the r.h.s. of relation (12) is an
infinite continued fraction.

For certain physical models, the trajectory of the dynamical variable in
the realized Hilbert space is soft, which means that the sequence of ∆s con-
verges. Hence, one can find ã0(z) and its Laplace transform, the relaxation
function a0(t). Therefore, all autocorrelation functions aν(t), ν ≥ 1, are
provided by the RR2.

The RRM also enables one to construct subspaces of L in order to study
the time evolution of other set of autocorrelation, such as memory functions,
in a similar fashion [20].

3. Results and discussion

By following the RRM, we straightforwardly obtained the relative norms
for the interacting 2DREG at the long wavelength limit,

∆1 = 1
2q

2v2F + Γ , (13a)

∆ν = ∆ = 1
4q

2v2F , ν ≥ 2 , (13b)

where Γ has dimension of squared frequency. For the 2DREG model we
have considered, the Hilbert space dimensionality is d =∞, and the infinite
sequence of recurrants is convergent. Hence, the relaxation function for the
density fluctuation is given by

a0(t) = As

∞∑
n=0

(−α)n [∂/∂(t)]2n J1
(
2
√
∆ t
)
/2
√
∆ t+Ap cos

(
2
√
∆/α t

)
,

(14)
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where J1 is the Bessel function of first order, and α = 4∆ (1−∆/∆1) /∆1.
The coefficients As = 1−(1−α)−1/2 and Ap =

[
(1− α)1/2 − (1− α)

]
/ ( 1

2
α)

stand for the single particle (electron-hole pair) and the collective (plasma)
excitations, respectively. In the limit α = 1, which represents no interaction,
the relaxation for the ideal system is given by a damping function, i.e.,
a0(t) = J0(2

√
∆ t). On the other hand, the asymptotic behavior of the

interacting system is primarily an oscillatory plasma excitation, i.e.,

a0(t) ∼ t−3/2 cos
(
2
√
∆ t− 3π/4

)
+Ap cos

(
2
√
∆/α t

)
, t→∞ . (15)

Within the linear response approach [15], dynamical quantities such as sus-
ceptibility, structure factor, and spectral density, can be readily obtained
from the relaxation function.

An important discussion we briefly carry out here is concerning the
recurrants (13a)–(13b). According to the RRM, the dimensionality d =
(f1f2 . . . fd−1) and the shape σ = (∆1∆2 . . . ∆d−1) of the Hilbert space are
the static properties that characterize the TCFs related to a dynamical vari-
able in a given system towards a relaxational process [21]. Therefore, dif-
ferent systems may belong to the same dynamical universality class if they
have the same d and σ, i.e., identical relaxation functions (this subject is
nicely exemplified in [22]). Some years ago, Lee and Hong [6] have applied
the RRM to study the time evolution of the density fluctuation in a two-
dimensional nonrelativistic electron gas (2DEG), at the long wavelength and
zero temperature limits. The corresponding recurrants they have obtained
for the interacting system are

∆1 = 2q2ε2F + Γ , (16a)
∆ν = ∆ = q2ε2F , ν ≥ 2 , (16b)

where εF = q2F/2m is the Fermi energy, and Γ is the squared classical plasma
frequency. By comparison of expressions (13a)–(13b) and (16a)–(16b), one
can see that the recurrants for the corresponding 2DREG and 2DEG have
the same structure, besides the Hilbert space dimensionality for both systems
is d =∞. Hence, these systems are dynamically equivalent and possess the
same TCFs.

4. Concluding remarks

We have studied the time evolution of the density fluctuation operator
of a two-dimensional ultrarelativistic-like dense electron gas (2DREG), at
the long wavelength and zero temperature limits. The employed machinery
was the recurrence relations method (RRM), a well established continued
fraction approach that has, so far, been successfully applied to nonrelativistic
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many-body systems. To the best of our knowledge, this work is the first
application of the RRM to relativistic problems. We verified that both the
2DREG and the 2DEG are dynamically equivalent, i.e., they have identical
relaxation functions.

This work started during my sabbatical visit to The University of Georgia
financially supported by the Brazilian agency CAPES (Grant No. 1177-10-9).
I thank M. Howard Lee for his kind introduction to the recurrence relations
method, for all his guidance and warm hospitality. I also thank A.E. San-
tana, J.A. Plascak, and L. Craco for fruitful discussions.
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