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In this work, we use the ideas of scaling to investigate stochastic process
for asymptotic times, we play particular attention to the phenomenon of
anomalous diffusion. The combination of method of complex variables with
scaling concepts allows us to investigate the mechanism of diffusion as well
for intermediates times. We generalized the concept of the diffusion expo-
nent to include other than the asymptotic power-law behaviour. A method
is proposed to obtain the diffusion coefficient analytically through the intro-
duction of a time scaling factor λ. We obtain also an exact expression for λ
for all kinds of diffusion. Moreover, we show that λ is a universal parameter
determined by the diffusion exponent. The results are then compared with
numerical calculations and very good agreement is observed. We show
the existence of two kinds of ballistic diffusion, one ergodic and another
non-ergodic. The method is general and may be applied to many types of
stochastic problem.
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1. Introduction

Scaling methods have been of large application in physics, in particular,
in statistical mechanics. In a recent work [1], one scaling method to obtain
asymptotic results for long time behaviour in anomalous diffusion was dis-
cussed. We revisit the method here and we call attention to its connexion
with another stochastic phenomena, where memory is present. The study
of systems with long-range memory reveals some physical phenomena that
are still not well understood, especially in systems which are outside the
state of equilibrium or those in which the existence of anomalous diffusion
is verified [1–9]. Here, we show a simple analytical method which describes
the behaviour of the diffusion for large and intermediate times. In order to
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do that, we first generalize the concept of the diffusion exponent. Then, we
present a conjecture to obtain, through the introduction of a time scaling
factor λ, an analytical asymptotic result for the diffusion coefficient for long
times. We obtain the scaling factor exactly and we show as well its uni-
versal behaviour. We derive a numerical method to obtain the correlation
function of velocities for an ensemble of particles from any given memory.
We compare both methods and obtain excellent agreement. The method
has general application in the study of stochastic processes and it could be
applied to several situations of physical interest.

2. Generalized Langevin’s equation

The generalized Langevin equation (GLE) is a stochastic differential
equation which can be used to model systems driven by coloured random
forces. For the velocity operator v(t), this equation can be written as

m
dv(t)

dt
= −m

t∫
0

Γ
(
t− t′

)
v
(
t′
)
dt′ + ξ(t) , (1)

where Γ (t) is the retarded friction kernel of the system, or the memory
function. Here, ξ(t) is a stochastic noise subject to the conditions 〈ξ(t)〉 = 0,
〈ξ(t)v(0)〉 = 0, and

Cξ(t) = 〈ξ(t)ξ(0)〉 = m2
〈
v2(t)

〉
Γ (t) , (2)

where Cξ(t) is the correlation function for ξ(t), and the angular brackets
denote an average over the ensemble of particles. Equation (2) is Kubo’s
Fluctuation-Dissipation Theorem (FDT) [10, 11]. The presence of the ker-
nel Γ (t) allows us to study a large number of correlated processes. In the
real world, the vast majority of problems are non-Markovian, i.e., there is
correlation between the various stages of dynamic evolution. This property
is what we call memory, and it makes remote events of the past important
to dynamic events in the present time.

Using the GLE,s it is possible to study the asymptotic behaviour of the
second moment of the particle movement

lim
t→∞

〈
x2(t)

〉
= 2D(t)t ∼ tα , (3)

which characterizes the type of diffusion presented by the system. Here,
D(t) is the diffusion coefficient as a function of time.

Moreover, for an asymptotic behaviour of the form

lim
t→∞

〈
x2(t)

〉
∼ tα[ln (t)]±1 (4)
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we shall define respectively an α± diffusive behaviour [1]. Here, the exponent
α = α± arises in analogy with the critical exponents in a phase transition.
For example, in the two-dimensional Ising model, the critical exponent for
the specific heat is α = 0+ because it does not have a power law behaviour;
rather it has ln |T −Tc| behaviour for temperatures T close to the transition
temperature Tc. This generalized nomenclature is pertinent here since there
is quite a large number of possibilities of combinations for logarithmic and
power-law behaviours.

In this way, the behaviour of D(t) can be determined using

lim
t→∞

D(t) = lim
t→∞

lim
z→0

t∫
0

Cv
(
t′
)

exp
(
−zt′

)
dt′ = lim

z→0
R̃(z) , (5)

where R(t) = Cv(t)/Cv(0), with Cv(0) = 1, and R̃(z) is the Laplace trans-
form of R(t). For t→∞ and normal diffusion, this is the Kubo formula [11].
The limits can be justified using the final value theorem (FVT) for a Laplace
transform [12], i.e., for any function g(t) with Laplace transform g̃(z) then
limt→∞ g(t) = limz→0 zg̃(z). Now, a Laplace transform of the integral gives
D̃(z) = R̃(z)/z, and we end up with the equation above.

Now we multiply Eq. (1) by v(0) and take the average over the ensemble,
with 〈ξ(t)v(0)〉 = 0, to obtain a self-consistent equation for R(t) in the form

Ṙ(t) = −
t∫

0

Γ
(
t− t′

)
R
(
t′
)
dt′ . (6)

We then Laplace transform Eq. (6) to get

R̃(z) =
1

z + Γ̃ (z)
. (7)

Time correlation functions play a central role in the non-equilibrium
statistical mechanics in many areas, such as the dynamics of polymeric
chains [13–19], metallic liquids [20], Lennard–Jones liquids [21], ratchet de-
vices [22, 23], diffusion of spin waves in disordered systems [24], Heisenberg
ferromagnets and dense fluids [25]. Consequently, to invert this transform,
or a similar one, is crucial. Unfortunately, in most cases, it is not an easy
task. In those situations, the use of numerical methods is an alternative to
overcome this problem. Our main objective here is to show a process to
obtain the asymptotic behaviour analytically. Although the method can be
applied to several situations, we concentrate here on the analysis of diffusion.
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3. Beyond the asymptotic method

We consider now the FVT for D(t)

lim
t→∞

D(t) = lim
z→0

zD̃(z) = lim
z→0

R̃(z) . (8)

We claim that after a “transient time” τ , i.e., for t > τ , the leading term for
D(t) will fulfil Eq. (5) within a given approximation. In this context, t→∞
is equivalent to t� τ . Now, we imposed the scaling

z → λ/t . (9)

In order to determine λ, we rewrite Eq. (5) as

lim
t→∞

D(t) = lim
t→∞

R̃(z = λ/t) = lim
t→∞

t

f(t)
, (10)

where
f(t) = λ+ tΓ̃ (λ/t) . (11)

The derivative of Eq. (10) yields

lim
t→∞

R1(t) = lim
t→∞

d

dt
D(t) = lim

t→∞

[
1− t d

dt
ln [f(t)]

]/
f(t) , (12)

while from the FVT for R(t), we get

lim
t→∞

R2(t) = lim
z→0

zR̃(z) = lim
t→∞

λ

f(t)
. (13)

The relative difference

∆R(t) =
R2 −R1

R2
=

[
λ− 1 + t

d

dt
ln [f(t)]

]/
λ (14)

should evolve to zero as t→∞. For λ 6= 0, this yields the exact value

λ = 1− lim
t→∞

t
d

dt
ln [f(t)] . (15)

The scaling works as long as the GLE, Eq. (7), works. To obtain λ, we
need more information about Γ̃ (z), which may be different for every system.
However, since our interest is in the asymptotic behaviour, we can expand
Γ̃ (z), in Taylor or Laurent series around z = 0, in the form

Γ̃ (z) ∼ zν [a− b ln(z)− c/ ln(z)] , (16)
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where a, b, and c are positive constants. Note that we give especial attention
to ln(z), since it will give us the behaviour pointed out in Eq. (4). For b = 0,
this gives a diffusion with exponent α; for b 6= 0, this gives an α−, and
for a = b = 0 and c 6= 0, we get an α+ diffusion. If Γ̃ (z) has another
contribution, besides ln(z), that cannot be expanded at the origin we keep it
and expand the other parts. However, most of the memories in the literature
can be cast in the form of Eq. (16) for small z. Now, we introduce Eq. (16)
into Eq. (15) to obtain λ = ν for ν < 1, and λ = 1 for ν ≥ 1. Notice that it
does not depend on a, b, or c, which suggests a universal behaviour.

In our conjecture, some points deserve attention: First, we are consider-
ing integrals, of the form of Eq. (5), where the function R(t) is well behaved,
and limited to −1 < R(t) < 1, since Cv(t) ≤ Cv(0). R(t) is such that it
always has a well-defined behaviour for finite t, even when the integral di-
verges as t → ∞, as in superdiffusion. Second, D(t) must have a leading
term as t → ∞, which determines the diffusion. For example, the inverse
Laplace transform of R̃(z) is

R(t) =
1

2πi

+i∞+η∫
−i∞+η

R̃(z) exp(zt)dz . (17)

Here, the real number η is such that all the singularities lie at the left of the
line joining the limits. Consider now Eq. (16) with b = c = 0, and ν ≤ 1;
then limz→0 R̃(z) ∼ z−ν , and

lim
t→∞

R(t) ∝ tν−1
+i∞+η′∫
−i∞+η′

s−ν exp(s)ds ∝ tν−1 , (18)

where we have done the transformations s = zt and η′ = η/t. For ν > 0, the
only pole is at s = 0, and the condition in η′ will be automatically satisfied.
Now, by direct integration on Eq. (5), we obtain D(t) ∝ tν . From the
scaling, we get the equivalent result

lim
t→∞

D(t) = lim
z→0

R̃(z = λ/t) ∼ lim
t→∞

R̃(λ/t) ∼ tν . (19)

Note that the above exact result is not only for power laws, but for any
function behaving as a power law for large t. We confirm as well the relation
α = ν + 1, obtained by Morgado et al. [3]. Our results can be readily
expressed as

λ = α− 1 = α± − 1 =

{
ν , −1 < ν < 1 ,
1 , ν ≥ 1 .

(20)
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The factor λ depends only on the diffusion exponent α, consequently it is
universal. Moreover, it will be the same for α or α±. For normal diffusion
α = 1, or for α = 1±, λ = 0. However, we still can obtain the final value.
Consider as an example the Langevin equation without memory; for that
we have R(t) = exp (−γt) and R̃(z) = (γ + z)−1. From Eq. (10), we get

lim
t→ ∞

D(t) = lim
t→ ∞

R̃(λ/t) =
t

γt+ λ
= γ−1 , (21)

while direct integration gives

lim
t→ ∞

D(t) = lim
t→∞

t∫
0

R(t′)dt′ = γ−1 . (22)

In this case, the scaling yields correctly the wanted final value.
Equation (6) imposes also some requirements on R(t). First, its deriva-

tive must be null at the origin, i.e., the integral in the right-hand side must
be null at t = 0. This is true except for non-analytical memories, such as
δ functions. Indeed, we do not expect an exponential behaviour of the form
of R(t) = exp (−γ|t|) with a discontinuous derivative at the origin [26, 27].
Second, in Eq. (1), for a bath of harmonic oscillators the noise can be
obtained as [26]

ξ(t) =

∫ √
2kBTg(ω) cos [ωt+ φ(ω)] dω , (23)

where 0 < φ(ω) < 2π are random phases and g(ω) is the noise spectral
density. The FDT yields

Γ (t) =

∫
g(ω) cos(ωt)dω . (24)

This shows that the memory is an even function of t. An analytical extension
of Γ̃ (z) in the whole complex plane has the property Γ̃ (−z) = −Γ̃ (z).
Consequently, from Eq. (7), R̃(−z) = −R̃(z), or R(−t) = R(t). In short,
it requires well-behaved functions and derivatives. Even functions have zero
derivatives at the origin as required before.

We shall call attention here that for finite time one can as well obtain
λ(t) using Eq. (15) as a map in the form

λn+1(t) = Fl(λn(t)) , (25)

Fl = 1− t d
dt

ln [f(t)] = t
d

dt
ln
[
R̃(λn/t)

]
. (26)

For a given memory, this map converges readily for a final value of λ(t)
after few iterations.
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4. Ergodicity

Diffusion is a very good lab for the study of ergodicity because we can
obtain simple relations which allows us to get clean conclusions without
doubt. Let us consider the spectral density

g(ω) =

{
bω1−β

s ωβ , ω ≤ ωs ,
0, ω > ωs .

(27)

This is a generalization of the Debye density of states. Here, b > 0 is
a dimensionless constant, and ωs is a cutoff frequency. For β 6= 0 we get
anomalous diffusion. In particular, for β = 1 we introduce Eq. (27) into
Eq. (24) to obtain

Γ (t) = bω2
s

(
sin(ωst)

ωst
+

cos(ωst)− 1

(ωst)2

)
, (28)

with the Laplace transform

Γ̃ (z) =
bz

2
ln

[
1 +

(ωs
z

)2]
. (29)

First, we have the analytical function D(t) = R̃(z = λ/t); second, from
Eq. (15) we obtain limt→∞ λ = 1, exactly. This is a ballistic diffusion of the
form of α = 2−.

In figure 1, we plot λ(t) as a function of t. We use the map Eq. (25)
and the Laplace transform of the memory Eq. (29). After 20 iterations, the
difference |λn+1 − λn| becomes less than 10−12. For both curves, the plot
shows the evolution of λ(t) towards 1. The convergence is faster as the ratio
ωs/b increases.

Now, we compare the analytical asymptotics with a numerical solution
of Eq. (6). To do this, we rewrite this equation in a discrete form, and then
we expand it up to terms of the order of ∆t2n to obtain

R(t+ ∆t) = R(t−∆t) + 2
n∑
k=0

R(2k−1)(t)
(∆t)2k−1

(2k − 1)!
, (30)

where R(n)(t) is the time derivative of R(t) of the order of n. Note that
this expansion eliminates all the even derivatives. Now, we can obtain all
R(t + ∆t) from the sequence of the previous value of R(t), starting from
R(0) = 1. From these values, it is possible to get the diffusion coefficient
through direct integration of Eq. (5).
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Fig. 1. Function λ(t) as a function of time t. Time in arbitrary units. We use the
map (25) and the memory (29), after 50 iteractions, we get convergence. Curve a,
ωs = 1, and b = 1; curve b, ωs = 5, and b = 1/2.

In Fig. 2, we plot the correlation function R(t) as a function of time t.
The curves correspond to the numerical solution, and are calculated using
Eq. (30), and Eq. (28) with ∆t = 10−5. For curve a, ωs = 1, and b = 1; for
curve b, ωs = 5 and b = 1/2.
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Fig. 2. Correlation function R(t) as a function of time t. We use the map (25) and
the memory (28). Curve a, ωs = 1, and b = 1; curve b, ωs = 5, and b = 1/2.

In Fig. 3, we plot the diffusion coefficientD(t) as a function of time t. The
oscillatory curves corresponds to the numerical solution and are calculated
from the data of Fig. 1. The curves without oscillations correspond to the
analytical asymptotic limit, Eq. (10), with memory Eq. (29). Here, we
see that the asymptotic curves are mean values of the oscillatory ones. In
this range, the fit yields for curve a, λ = 0.928 ± 0.002, and for curve b,
λ = 0.94822± 0.00001. We see in curve b that the two curves collapse onto
a single one. Here, the transient time τ to which we refer before Eq. (10) is a
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decreasing function of b/ωs. The value of λ approaches the exact value 1 as
the ratio b/ωs decreases, or as time increases. This shows the efficiency of the
scaling; even before convergence is fully established, curve a, the asymptotic
curve gives us an average value that can be used to understand the main
characteristics of the process.
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Fig. 3. Diffusion coefficient D(t) as a function of time t. Curve a, ωs = 1, and
b = 1; curve b, ωs = 5, and b = 0.5. The oscillatory curves are the numerical
result. The curves without oscillations are the analytical asymptotic limit. We see
in curve b that the two curves collapse onto a single one.

Consider now Γ̃ (z) = az, exactly. That means R̃(z) = [(1 + a)z]−1 or
R(t) = [1 + a]−1, and by direct integration, we get D(t) = t/(1 + a) exactly.
This is a ballistic α = 2 diffusion. If we apply Eq. (10), we obtain the same
result with λ = 1. Since from the relations (16) and (20) the value of λ does
not depend on ln (z), this result is exactly what we get from Eq. (29). There
are important differences between the α = 2− diffusion which, according to
the Khinchin theorem [7, 28], is ergodic, and the α = 2 diffusion, which does
violate ergodicity. This distinction was not possible before the generalization
of the diffusion exponent we present here.

5. Perspective and conclusion

In this work, we generalize the concept of the diffusion exponent and
we propose a conjecture to investigate the asymptotic limits of anomalous
diffusion through the introduction of a time scaling factor λ. We obtain
the scaling parameter exactly and we show that it is universal and depends
only on the diffusion exponent. We analyse the ballistic diffusions α = 2−

and α = 2, both analytically and numerically. The method can be useful
as well to analyse large amounts of data in stochastic processes [5], and in
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different fields of science where it is necessary to inverse a Laplace trans-
form of the form of Eq. (7). The phenomenon of diffusion also poses chal-
lenges in the understanding of fundamental concepts in statistical physics,
such as entropy [6, 34] general properties as the correlation function [26],
ergodicity [7, 9, 28–32], the Khinchin theorem [7, 28], and FDT [33].

In biological systems where motion [35] and pattern formation [36, 37]
is a prime, diffusion has still an important contribution to do. A very broad
and growing area is that of synchronization [38–40], where we expect the
scaling may yield more analytical results.

In nonlinear phenomena, such as growth and etching [41–44], analytical
results are rather difficult to obtain. For example, the KPZ equation has an
exact solution for one dimension. However, no solutions for higher dimen-
sions have been found, as in many other areas of non-equilibrium physics
where even not exact solutions can be considered major results. In this way,
we hope that this work may inspire research into similar asymptotic limits.

We thank the Brazilian agencies CNPq, CAPES, and FAP/DF for finan-
cial support.
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