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1. Introduction

Anomalous diffusion is a vast and exciting topic, in particular for “crowd-
ed” biological systems, where the transport of molecules plays a central
functional role. In this context, many findings have been made over the
last 20 years, in particular with the advent of new spectroscopic techniques.
There is a vast amount of papers on the subject, including papers on the
theoretical description of anomalous diffusion. The reader is here referred to
the seminal paper on fractional Brownian motion by Mandelbrot and Van
Ness [1], the paper by Scher and Montroll on the Continuous Time Random
Walk [2] and the review articles by Metzler [3] and Sokolov [4]. The idea
of this paper is to look at the anomalous diffusion from the perspective
of non-equilibrium statistical physics, referring in this context to concepts
such as the Generalized Langevin Equation (GLE) [5, 6] and Kubo relations
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for transport coefficients [7]. For this purpose, several recent papers on
that topic are presented in a concise way, starting with classical diffusion
models and their mathematical extensions for the description of anomalous
diffusion and relaxation. These models are then related to exact results,
which are obtained by asymptotic analysis of the GLE and the related mean
square displacements, and the latter are illustrated by molecular dynamics
simulations of biomolecular systems.

2. Some models for anomalous diffusion

2.1. Generalized diffusion equation

The first theoretical description of diffusion processes can probably be
attributed to the physician and physiologist Fick [8]. He derived the well-
known diffusion equation,

∂

∂t
f(r, t) = D∆f(r, t) , (1)

to model the time evolution of concentration profiles of particles in suspen-
sion. Here, D is the diffusion coefficient, which is a transport coefficient
in the language of statistical physics. The diffusion equation holds in the
regime of linear response, where the particle current density responds lin-
early to the concentration gradient, j = −D∇f (first law of Fick). Imposing
particle conservation through ∂tf +∇ · j = 0 (second law of Fick), Eq. (1)
follows. In this description, one considers free diffusion, i.e. diffusion with-
out a systematic driving force. The diffusion constant D determines the
spread of the concentration,

σ2(t) :=

∫
dnr |r|2f(r, t)∫
dnr f(r, t)

= 2nDt , (2)

assuming that the initial concentration is localized at r = 0. Here, n is
the geometrical dimension of the diffusion problem and we assume isotropic
diffusion, such that the total spread is the sum of n independent identical
contributions 2Dt.

Deviations from the diffusion law (2) have been reported already 80 years
ago [9] and with the advent of sophisticated fluorescence-based spectroscopic
methods, numerous observations of anomalous diffusion have been reported
over the last 20 years. Typical examples are the diffusion of molecules in
biological membranes and lipid model bilayers [10–12], where the diffusion
of lipid molecules and embedded proteins is strongly hindered due to the
entanglement with their environment. The effect is often referred to as
crowding and leads to subdiffusion, where

σ2(t) ∝ tα (3)
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with 0 < α < 1. Concentration profiles with an “anomalous” spread of the
form (3) can be obtained by an appropriate generalization of the diffusion
equation (1) in form of a fractional diffusion equation [3, 13]

∂

∂t
f(r, t) = ∂1−αt {Dα∆f(r, t)} , 0 < α < 2 , (4)

where Dα is a fractional diffusion constant and ∂1−αt denotes a fractional
Riemann–Liouville derivative of the order of 1 − α with respect to time
[14, 15]. For an arbitrary function g(t), the latter is defined as

∂1−αt g(t) =
d

dt

t∫
0

dτ
(t− τ)α−1
Γ (α)

g(τ) , (5)

where Γ (.) denotes the Gamma function or generalized factorial [16]. For
α = 1, 2, 3, . . . , the integral

∫ t
0 . . . becomes the familiar Liouville formula

for a multiple integration of g. One may effectively write ∂1−αt g(t) =
d/dt Iαt g(t), where Iαt g(t) denotes a fractional integration of the order of α.
The time evolution of the spread can be computed from the fractional dif-
ferential equation,

∂tσ
2(t) = ∂1−αt 2nDα , (6)

which follows from the definition of σ and from (4), and which can be solved
straightforwardly by Laplace transform to yield

σ2(t) =
2nDαt

α

Γ (1 + α)
. (7)

In view of relation (3), this is the desired result.

2.2. Fractional Fokker–Planck equations for spatial diffusion

Instead of modeling diffusion as a macroscopic migration process, one
can take the perspective of individual particles as representatives for the
whole ensemble and develop models for their trajectories. This route has
been proposed in the pioneering work of Einstein and Smoluchowski [17–20]
and lead to the theory of stochastic processes [21–23]. In this approach,
the concentration profile becomes a conditional probability p(r, t|r0, 0) for a
transition r0 → r within time t, and instead of the concentration spread one
considers the mean square displacement (MSD) of the diffusing particles,

W (t) =
〈
|r(t)− r(0)|2

〉
≡
∫ ∫

dnr0d
nr |r − r0|2p(r, t|r0, 0)peq(r0) , (8)
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where peq(r0) is the equilibrium distribution. Using molecular trajectories
from experiments, such as Single Particle Tracking (SPT) of fluorescently la-
beled molecules [24–26] and molecular dynamics simulations [27, 28], MSDs
may be approximated by (t > 0)

W (t) ≈ 1

T − t

T−t∫
0

dτ |r(τ + t)− r(τ)|2 , (9)

where T is the trajectory length.
In the case of normal diffusion, the time evolution of the transition prob-

abilities is described by Fokker–Planck equations (FPEs) [29], which are
derived by assuming that the underlying stochastic process is Markovian
and that small-step diffusion processes are considered. In order to include
anomalous diffusion, these FPEs can be generalized to corresponding frac-
tional counterparts, fractional Fokker–Planck equations (fFPEs), applying
the same “recipe” as for the fractional diffusion equation (4),

∂

∂t
p(r, t|r0, 0) = ∂1−ρt Lp(r, t|r0, 0) , (10)

where ρ depends on the context. The Fokker–Planck operator L has, in
general, the Smoluchowski form [30],

L = Dρ
∂

∂r
·
{
∂

∂r
+

1

kBT

∂V (r)

∂r

}
, (11)

where V (r) is an external potential and the parameter Dρ is a fractional
diffusion constant. The fFPE (10) is to be solved with the initial condition
p(r, 0|r0, 0) = δ(r − r0) and for long times the resulting solution tends to
the equilibrium probability density, peq(r) = limt→∞ p(r, t|r0, 0). Two cases
must be distinguished.

1. Free anomalous diffusion. Here, V = 0 and the MSD behaves asymp-
totically as W (t) ∼ tα, with 0 ≤ α < 2, and ρ ≡ α.

2. Confined anomalous diffusion. Here, V 6= 0 leads to a confinement,
such that asymptotically W (t) ∼ const and therefore α = 0. In this
case, ρ ≡ β and 0 < β ≤ 1 describes how the MSD converges to its
plateau value. The parameters α and β are thus intrinsically different
and we come back to this point in Section 3.4.
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Similarly to the diffusion equation, the fFPE (10) can be written in the
form of an equation of continuity, ∂tf +∇ · j = 0, which expresses here the
conservation of probability and where j has the form

j(r, t) = −Dρ∂
1−ρ
t

{
∂f(r, t)

∂r
+

1

kBT

∂V (r)

∂r

}
. (12)

Compared to Fick’s first law, there are two generalizations to be mentioned.
Firstly, there is a drift term due to the external potential, and secondly, it
follows from Eq. (5) that the fractional derivative induces memory effects in
the response of j to the concentration gradient and the potential gradient.
It must be emphasized that the above phenomenological interpretation of
anomalous diffusion is not the only route to anomalous diffusion and fFPEs,
but it is conceptually close to the framework of non-equilibrium statistical
physics which will be used in the following discussion.

2.3. Fractional Wiener process

In the case of free diffusion, i.e. for V (r) = 0, p(r, t|r0, 0) describes a
Wiener process, which is generalized to a fractional variant if anomalous
diffusion is considered. The corresponding fFPE reads

∂

∂t
p(r, t|r0, 0) = ∂1−αt Dα∆p(r, t|r0, 0) , 0 < α < 2 (13)

and the MSD can be easily computed by using that the equilibrium distri-
bution is here peq(r) = 1/V , where V is the macroscopic volume (V →∞)
in which the diffusion process takes place

W (t) =
2nDαt

α

Γ (1 + α)
. (14)

The MSD has thus exactly the same form as the particle spread for the
generalized Fick model (see Eq. (7)). It should be noted that (13) does not
only include the subdiffusive regime mentioned earlier, where 0 < α < 1,
but also a superdiffusive, sub-ballistic regime, where 1 < α < 2. The latter
has, for example, been found in experiments on chemotaxis [31].

2.4. Fractional Ornstein–Uhlenbeck process
2.4.1. Confined motions — diffusion and relaxation

We consider now a diffusing particle whose motions are confined in space.
Due to the confinement, it has a well-defined mean position and introducing
u(t) = r(t)− 〈r〉, it follows that

W (t) = 2{cuu(0)− cuu(t)} , (15)
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where
cuu(t) = 〈u(t) · u(0)〉 (16)

is the displacement autocorrelation function (DACF) of the diffusing parti-
cle. Relation (15) reflects thus at the same time diffusion and relaxation in
position space. Knowing that limt→∞ cuu(t) = 0 and that cuu(0) = 〈|u|2〉 is
the mean square position fluctuation, it follows from (15) that

lim
t→∞

W (t) = 2
〈
|u|2

〉
. (17)

2.4.2. The model

A simple example for a concrete dynamical model is the fractional
Ornstein–Uhlenbeck (fOU) process [3, 32, 33] which describes anomalous
diffusion of a Brownian particle in a harmonic potential,

V (u) =
K

2
|u|2 , K > 0 . (18)

The corresponding transition probability density is described by the fFPE

∂

∂t
p(u, t|u0, 0) = ∂1−βt L p(u, t|u0, 0) , 0 < β ≤ 1 , (19)

where the Fokker–Planck operator reads

L = Dβ
∂

∂u
·
{
∂

∂u
+
Ku

kBT

}
. (20)

Here kB and T denote, respectively, the Boltzmann constant and the ab-
solute temperature. Due to the Hookean force, F (u) = −Ku, the equi-
librium probability density tends for long times to a Gaussian function of
finite width,

peq(u) =

√
K

2πkBT

n

exp

(
−K|u|

2

2kBT

)
. (21)

With these definitions, the DACF for the fOU process is obtained via

cuu(t) ≡
∞∫
−∞

∞∫
−∞

dnu0d
nuu · u0 p(u, t|u0, 0)peq(u0) , (22)

but the full solution p(u, t|u0, 0) is not required for its computation. One
can, in fact, apply a similar trick as for the MSD of anomalous free diffusion
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and establish a fractional differential equation for cuu(t), whose solution is
found to be [33]

cuu(t) =
〈
|u|2

〉
Eβ

(
−[t/τ ]β

)
. (23)

Here, the mean square position fluctuation is given by〈
|u|2

〉
= nkBT/K , (24)

Eβ(z) denotes the Mittag–Leffler function [16], and the time scale τ is defined
by the relation

τ =

(
nDβ

〈|u|2〉

)−1/β
. (25)

The Mittag–Leffler function is an entire function in the complex plane,

Eβ(z) =
∞∑
k=0

zk

Γ (1 + βk)
, (26)

and can be considered as a generalization of a normal exponential function.
For β = 1, the latter is retrieved, E1(z) = exp(z). According to (15), the
MSD takes the form

W (t) = 2
〈
|u|2

〉 (
1− Eβ

(
−[t/τ ]β

))
(27)

and two regimes can be distinguished:

(a) The short time regime, where t� τ . Here, one may use just the first
two terms of the series (26), such that

W (t)
t�τ∼ 2nDβ

Γ (1 + β)
tβ . (28)

(b) The long time regime, where t� τ . Here, it follows from

Eβ

(
−[t/τ ]β

)
t�τ∼ (t/τ)−β

Γ (1− β) (29)

that the MSD behaves as

W (t)
t�τ∼ 2

〈
|u|2

〉(
1− (t/τ)−β

Γ (1− β)

)
. (30)

Since limβ→1 Γ (1 − β) = +∞, the long-time tail vanishes for normal
diffusion. Here, the Mittag–Leffler function becomes a normal expo-
nential function, E1(z) = exp(z), and one retrieves the exponentially
relaxing DACF of the normal Ornstein–Uhlenbeck process.
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2.4.3. Relaxation rate spectrum

It is illustrative to express the DACF (23) as a continuous superposition
of exponential functions [33, 34], which reflects the multiscale character of
the relaxation dynamics described by the fOU process. Defining the nor-
malized autocorrelation function (relaxation function)

ψ(t) = cuu(t)/cuu(0) , (31)

one writes then

ψ(t) =

∞∫
0

dλ p(λ) exp(−λt), (32)

where p(λ) must be positive and must also satisfy the normalization con-
dition

∫∞
0 dλ p(λ) = 1. The relaxation rate spectrum is intimately related

to the Laplace transform of the DACF, which can be written as a Stieltjes
transform [16] of p(λ)

ψ̂(s) =

∞∫
0

dλ
p(λ)

s+ λ
, (33)

p(λ) =
1

π
lim
ε→0
=
{
ψ̂(−λ− iε)

}
. (34)

On a dimensionless time scale, the relaxation function has the form

ψfOU(t;β) = Eβ

(
−tβ

)
(35)

and from its Laplace transform [35]

ψ̂fOU(s;β) =
1

s (1 + s−β)
, (36)

one finds the corresponding relaxation rate spectrum

pfOU(λ;β) =
sin(πβ)

λ (λ−β + λβ + 2 cos(πβ))
. (37)

Exponential relaxation is obtained for β → 1, i.e.

lim
β→1

pfOU(λ;β) = δ(λ− 1) . (38)

The relaxation function ψ(t;β) and the corresponding relaxation rate spec-
trum for some values of β are shown in Fig. 1. One observes that pfOU(λ;β)
develops a peak around λ = 1 as β approaches one.
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Fig. 1. Left: Normalized DACF ψfOU(t;β) for β = 0.1, 0.3, . . . , 0.9 (curves from
top to bottom/red to blue on-line). Right: Corresponding relaxation spectra
pfOU(λ;β).

2.5. Anomalous Brownian motion in velocity space

Diffusion may be as well described by stochastic processes in veloc-
ity space. In this case, one considers a conditional probability density
p(v, t|v0, 0) for a velocity change v0 → v within time t. The process must
be constructed such that p(v, t|v0, 0) tends towards a Maxwell distribution
for long times, independently if the process is normal or anomalous. In the
case of normal diffusion, one considers an Ornstein–Uhlenbeck process in
velocity space and the diffusing particle is referred to as a Rayleigh parti-
cle [23]. To account for anomalous diffusion, Barkay and Silbey [36] proposed
a corresponding fFPE of the form

∂

∂t
p(v, t|v0, 0) = ∂1−ρt Lv p(v, t|v0, 0) , 0 < ρ < 2 , (39)

where the Fokker–Planck operator Lv has the form

Lv = ηρ

{
∂

∂v
· v +

kBT

m

∂

∂v
· ∂
∂v

}
. (40)

The parameter ηρ is a fractional relaxation constant with dimension 1/sρ in
SI units. Here, the equilibrium solution of (39) is indeed the Maxwell distri-
bution, and, analogously to (23), one finds that the velocity autocorrelation
function (VACF) has the form

cvv(t) =
〈
|v|2

〉
Eρ (−[t/τv]ρ) . (41)

The time scale τv is defined through

τv = (1/ηρ)
1/ρ (42)
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and 〈|v|2〉 = nkBT/M . In order to construct the MSD from the VACF of
a diffusing particle, one expresses displacements as integrals over velocities,
such that W (t) = 〈

∫ t
0

∫ t
0 dτ1dτ2 v(τ1) · v(τ2)〉. Assuming stationarity of the

underlying process and a classical dynamical system, this may be expressed
in the form

W (t) = 2

∞∫
0

dτ (t− τ)cvv(τ) . (43)

Two regimes can again be distinguished:

(a) The short time regime, where t � τv. This is the so-called “ballistic
regime” which corresponds to free flight, where cvv(t) ≈ 〈|v|2〉, such
that

W (t)
t�τv∼

〈
|v|2

〉
t2 . (44)

(b) The long time regime, where t � τv. Using the Laplace transform of
W (t), relation (43) becomes Ŵ (s) = 2ĉvv(s)/s

2, where one may use
that (see Eq. (36))

ĉvv(s) =

〈
|v|2

〉
s(1 + (sτv)−ρ)

. (45)

The asymptotic form of the MSD reads therefore

W (t)
t�τv∼ 2

〈
|v|2

〉
τρv

Γ (3− ρ) t
2−ρ . (46)

Setting
ρ = 2− α with 0 < α < 2 , (47)

the MSD takes the form (14), where

Dα =

〈
|v|2

〉
n

η−12−α (48)

is the fractional diffusion coefficient.

2.6. Illustrations

In this section, two examples are presented for anomalous diffusion and
relaxation in biomolecular systems seen by molecular dynamics simulations.
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2.6.1. Lateral diffusion in lipid bilayers

As mentioned earlier, there is an experimental evidence by fluorescence-
based techniques that the lateral diffusion of molecules in lipid bilayers is
anomalous [10–12], and several groups have recently studied these motions
by molecular dynamics simulations [37–39]. It must be emphasized that
the experimental data concern much longer time scales (micro- to millisec-
onds) than those accessible by MD simulations, which are roughly limited to
100 nanoseconds for all-atom models and today’s standard computer equip-
ment. The interesting question is now if the experimentally found subdiffu-
sion is also seen on the much shorter time scales of MD simulations and if
the fractional diffusion constants are comparable.

The left part of Fig. 2 displays the MSD of a simulated lipid bilayer con-
sisting of 128 (2 × 64) dioleoyl-sn-glycero-3-phosphocholine (DOPC) mole-
cules, which are hydrated by 3840 water molecules in total. The right part
of the figure shows the simulated system, where the water molecules are in-
dicated in light gray and the tails of the lipid molecules in dark gray/green.
For details of the simulation, the reader is referred to Ref. [37] and here it is
only mentioned that the length of the MD production run was 160 nanosec-
onds. This is thus approximately 5 times longer than the MSD lag time in
Fig. 2. Statistical accuracy is an important issue in the estimation of MSDs
through Eq. (9) and the main problem is here that inaccuracies sneak in

1

2

3

1

2
3

Water

Water

Fig. 2. Left: Simulated molecule-averaged MSD for the lateral center-of-mass dif-
fusion of the DOPC molecules (dots) and fit of model (14), with n = 2 (solid line,
see the text). The fitted fractional diffusion coefficient is Dα = 0.045 nm2/nsα

for α = 0.61. The inset shows the spread of the individual molecular MSDs with
respect to the molecule averaged MSD at t = 5 ns (label 1), at t = 15 ns (label 2),
and at t = 30 ns (label 3). In the main figure, the corresponding average MSD
values are indicated by correspondingly labeled triangles [37]. Right: Simulated
system consisting of a bilayer of 2 × 64 DOPC lipid molecules and 3840 water
molecules (light gray) [37].
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gradually with increasing lag time. As a rule of thumb, the latter should
be roughly an order of magnitude smaller than the length of the simulated
trajectory.

Since all lipid molecules are physically equivalent, their MSDs can be
averaged to estimate the fractional diffusion constant. This increases the
statistical accuracy considerably and the effect can be seen in the inset of
the left part of Fig. 2, which displays the spread of the individual MSDs.
If Dα is here defined according to relation (14), with n = 2, one finds
Dα = 0.045 nm2/nsα. It should be noted that in [37] the definition W (t) =
2Dαt

α has been used for the asymptotic form of the MSD, which leads to
Dα = 0.101 nm2/nsα. What matters is that the experimental value for
DLPC (dilauroyl-sn-glycero-3-phosphocholine) in Ref. [10] is approximately
Dα = 0.02 nm2/nsα and thus clearly of the same order of magnitude. This
is an interesting result since fluorescence correlation spectroscopy explores
the millisecond to second time scale, which is about 7 orders of magnitude
larger than time scale of MD simulations.

The accessible time scale to simulations can be extended by using coarse-
grained models, in which several atoms are grouped into one “pseudo-atom”,
and such simulations for fully hydrated POPC (1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine) bilayers have been recently performed [40], com-
paring the results obtained from MD simulations with the all-atom OPLS
force field [41, 42] and the coarse-grained MARTINI force field [43, 44]. All
simulation details can be found in Ref. [40] and here only the most impor-
tant parameters are reported. The all-atom system comprises a bilayer of 274
POPC lipids immersed in 10 471 water molecules and the coarse-grained sys-
tem 2033 POPC molecules immersed in 231 808 water molecules (see Fig. 3).
The corresponding simulation lengths were 15 nanoseconds in the case of

AA CGOPLS MARTINI

Fig. 3. Simulated all-atom (OPLS f.f.) and coarse-grained (MARTINI f.f.) systems
for a POPC bilayer.
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the all-atom system and 600 nanoseconds for the coarse-grained system. In
the latter case, simulations were performed in the NVT-ensemble, i.e. at
constant volume and temperature, and in the so-called “NApzT-ensemble”,
where the membrane surface is constant but the volume can slightly change
perpendicular to the membrane [44]. The idea in the latter case is to main-
tain the surface per lipid molecule strictly. All relevant parameters are re-
ported in Table I and show that lateral subdiffusion is observed for both the
all-atom and the coarse-grained system, but the diffusion coefficient for the
coarse-grained system is about three times bigger. Comparing the fractional
diffusion coefficient to the one of DOPC (see inset of Fig. 2) shows also that
POPC diffuses more slowly than DOPC, noting that the exponents α have
similar values.

TABLE I

Coefficient α and fractional diffusion coefficient Dα for the OPLS all-atom (AA)
simulation of POPC and the coarse-grained (CG) MARTINI force field [40]. Here
“short” refers to the left part of Fig. 4 (time lag 1.5 ns) and “long” to the right
part (time lag 50 ns). The fractional diffusion constant is defined according to
relation (14) and (1) and (2) refer, respectively, to the simulation with the NApzT-
and NVT-ensemble.

AA short CG(1) short CG(2) short CG(1) long CG(2) long

α 0.668 0.515 0.508 0.571 0.558
Dα [nm2/nsα] 0.0081 0.026 0.026 0.023 0.023
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Fig. 4. Left: Molecule-averaged MSD for the lateral center-of-mass diffusion of
POPC molecules from the coarse-grained model, where circles refer to the NPT-
ensemble and square to the sNApzT-ensemble, and the fit of model (14) (solid
line). The inset displays the MSD for the all-atom model on the same time scale
(circles) together with the fit of model (14) (solid line). Right: Molecule averaged
lateral MSDs for POPC from the coars-grained model on a longer time scale. The
legend is the same as in the left part of the figure. The inset shows that the MSDs
for the NVT-ensemble and the NApzT-ensemble cannot be distinguished on short
time scales.
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2.6.2. Diffusive atomic motions in proteins

The following example shows that the fractional Ornstein–Uhlenbeck
process is a good model for protein dynamics on the atomic level. It is, in
fact, probably the simplest model being able to account for the following
two facts:

1. Atomic motions in proteins are confined in space if global translations
and rotations of the whole protein are subtracted.

2. The spectrum of associated time scales is vast, ranging from femtosec-
onds to hours.

Experimental information about motional amplitudes has first been ob-
tained from protein crystallography [45, 46] and from thermal neutron scat-
tering [47, 48]. Early studies of protein reaction kinetics by laser flash pho-
tolysis of CO in myoglobin [49] gave already evidence for the multiscale char-
acter of internal diffusion and relaxation processes and lead to the concept
of complex, “rugged” potential energy landscapes of proteins which contains
a large number of local minima — also referred to as conformational sub-
states [50] — and whose envelope defines an effective potential. The motion
in this effective potential can be modeled as a diffusion process describing the
multiple irregular transitions between the substates which are not resolved
in time. In this picture, the strongly non-exponential binding kinetics ob-
served by flash photolysis experiments is caused by a broad distribution of
barrier heights separating the substates [34]. A sketch of a “rugged” potential
energy landscape with a parabolic envelope is depicted in Fig. 5.

The multiscale character of protein dynamics has also been emphasized
by more recent fluorescence correlation studies of distance fluctuations in
flavin reductase between flavin as a fluorescent site and a nearby tyrosine
acting as a quenching site [51]. The interesting point is that such experi-
ments can be performed on single molecules. On the theoretical side, they
have been interpreted with a generalized Fokker–Planck equation containing
a power-law memory kernel, which leads to a distance autocorrelation func-
tion in form of “stretched” Mittag–Leffler function [52], which is also the form
of the position autocorrelation for the fractional Ornstein–Uhlenbeck process
(cf. Eq. (23)). This was the motivation in Ref. [33] to introduce the fOU
process as a model for the dynamics of atoms in proteins probed by Molecu-
lar Dynamics simulations and neutron scattering. The model is, in fact, an
extension of the harmonic oscillator model which is widely used for the inter-
pretation of the elastic incoherent neutron scattering factor of proteins [48].
In contrast to the latter, it does not only model the motional amplitudes but
also the diffusive multiscale dynamics of atoms in proteins. An application
can be found in the combined neutron scattering and simulation study [53],
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Fig. 5. Average atomic mean-square displacement of lysozyme in solution from MD
simulation (solid lines) [53]. Here W (t) = 〈(x(t)− x(0))2〉, where x stands for the
displacement in an arbitrary direction. The upper curve corresponds to normal
pressure (p = 0.1 MPa) and the lower curve to a pressure of p = 300 MPa. More
explanations are given in the text. The inset shows a sketch of a “rugged” potential
energy surface for the fOU process. More explanations are given in the text.

where the model is used to quantify the influence of a non-denaturing hy-
drostatic pressure (3 kbar) on lysozyme. Figure 5 shows the average time-
dependent MSD for the atoms in lysozyme (solid lines) and the fits of the
corresponding model (27) (dotted lines). The inset displays a sketch for the
“rugged” potential energy surface of a two-dimensional fOU process. Not
surprisingly, the application of pressure leads to a reduction of the motional
amplitudes, which are found to be 〈x2〉 = 6.17× 10−3 nm2 at normal pres-
sure and 〈x2〉 = 4.74 × 10−3 nm2 at 3 kbar. The MSD is here considered
for the displacement in an arbitrary direction, W (t) = 〈(x(t)− x(0))2〉 and
〈x2〉 = 〈|u|2〉/3, assuming isotropic motions. More interesting is that the
β-parameter stays unchanged under pressure, namely β ≈ 0.5, whereas the
fitted values for τ indicate the motions become slower: τ = 31.75 ps for nor-
mal pressure and τ = 39.08 ps for 3 kbar. This means that pressure makes
the dynamics slower but leaves its characteristics unchanged. The value of
β ≈ 0.5 indicates that the diffusion is far from normal and the form of the
corresponding relaxation rate spectrum can be read off from Fig. 1.

It is finally worthwhile mentioning that the fOU model has also been
successfully used to model experimental data from NMR relaxation spec-
troscopy, where it accounts for the strongly non-exponential decay of reori-
entational correlation function of (N −H) bond vectors [54–57]. Formally,
one replaces here the exponential function in the widely used “model-free”
interpretation of experimental relaxation times [58, 59] by stretched Mittag–
Leffler functions.
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3. Anomalous diffusion by non-equilibrium statistical mechanics

3.1. Generalized Langevin equation

One of the most important steps in the theory of liquids was the intro-
duction of the Generalized Langevin equation (GLE) by Zwanzig [5],

v̇(t) = −
t∫

0

dt′ κ
(
t− t′

)
v
(
t′
)
+ f (+)(t) . (49)

The GLE describes the dynamics of a diffusing tagged particle in a many-
body environment (typically a liquid) and can be considered as a “projected”
equation of motion in which the environment of the diffusing particle is
represented by the memory kernel and the fluctuating force f (+)(t). The
latter is not a stochastic force, as in Langevin’s equation of motion for
a Brownian particle [60] and corresponding generalized stochastic equa-
tions of motion [61, 62], but it can be formally constructed on the ba-
sis of the exact Hamiltonian dynamics of the total system, which com-
prises the tagged particle and its environment. The memory function is
given by κ(t) = 〈f (+)(0) · f (+)(t)〉, assuming an isotropic system. The de-
tails are not important here and can be found in the excellent book by
Zwanzig on non-equilibrium statistical physics [6]. Using that, by construc-
tion, 〈v(0) · f (+)(t)〉 = 0, one can derive a closed equation of motion for the
velocity autocorrelation function (VACF),

∂tcvv(t) = −
t∫

0

dt′ cvv
(
t− t′

)
κ
(
t′
)
, (50)

where the VACF is defined through the ensemble average,

cvv(t) = 〈v(t) · v(0)〉 . (51)

The memory function equation (50) has been the starting point for the
development of numerous models for the dynamics of liquids [63, 64] and it
proves also useful to understand the mechanisms of anomalous diffusion.

3.2. Asymptotic analysis of the diffusion regime

Any stochastic model for normal or anomalous diffusion implies an elim-
ination of fast motions which are represented by noise and for this reason
stochastic models can obviously not be applied on all time scales. Their
applicability depends on the coarse-graining of the underlying time scale. If
diffusion is modeled in position space, the MSD will, for example, not exhibit
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the characteristic ballistic behavior W (t) ∼ 〈|v|2〉 t2 for short times, which
follows from the Taylor expansion of expression (43). A rigorous analysis
of diffusion processes can be accomplished within the framework of non-
equilibrium statistical mechanics, which is based on deterministic equations
of motion for the constituents of a many-body system. In this context, only
the asymptotic form of the MSD is needed, since only this regime is relevant
for diffusion processes. This section resumes the essential steps and results
of two recent articles [65, 66] in which asymptotic analysis is used to estab-
lish the generalized Kubo formulae for transport coefficients, conditions for
anomalous diffusion, and the applicability of fractional Fokker–Planck equa-
tions.

3.2.1. A Tauberian theorem for the mean square displacement

Referring to [65], a relation between the asymptotic regimes of the MSD
and the VACF can be established through a theorem from asymptotic anal-
ysis, which falls into the category of Tauberian theorems. The Hardy–
Littlewood–Karamata (HLK) theorem [67] yields a relation between the
asymptotic form of functions h(t) for which the integral

∫∞
0 dt h(t) diverges

and their Laplace transforms for small arguments s,

h(t)
t→∞∼ L(t)tρ ⇔ ĥ(s)

s→0∼ L(1/s)
Γ (ρ+ 1)

sρ+1
, ρ > −1 . (52)

Here, L(t) is a “slowly growing function”, fulfilling limt→∞ L(λt)/L(t) = 1

for any λ > 0, and ĥ(s) =
∫∞
0 dt exp(−st)h(t) (<{s} > 0) denotes the

Laplace transform of h(t). In the following, L(t) fulfills the stronger con-
ditions limt→∞ L(t) = 1 and limt→∞ t dL(t)/dt = 0. Theorem (52) may
be applied to relate the asymptotic form of the MSD for long times to the
asymptotic form of its Laplace transform for small s (compared to Ref. [65],
where W (t)

t→∞∼ 2Dαt
α, Dα is here defined according to relation (14)),

W (t)
t→∞∼ 2nDα

Γ (1 + α)
L(t)tα ⇔ Ŵ (s)

s→0∼ 2nDαL(1/s)
1

sα+1
. (53)

Here, one may set L(t) = 1, but the possibility to make more sophisti-
cated choices for L(t) is explicitly maintained at this point. The very useful
Laplace transform technique permits to express (43) in the form

Ŵ (s) =
2 ĉvv(s)

s2
(54)

and it follows from the memory function equation (50) that

ĉvv(s) =

〈
|v|2

〉
s+ κ̂(s)

, (55)
noting that 〈|v|2〉 = cvv(0).
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3.2.2. Generalized Kubo formula for Dα

Comparing (53) and (54) provides us with the asymptotic form for the
Laplace-transformed VACF for small values of s,

ĉvv(s)
s→0∼ nDαL(1/s)s

1−α (56)

and this relation may be solved for Dα to give

Dα = lim
s→0

sα−1ĉvv(s)

n
. (57)

Knowing that sα−1ĉvv(s) is the Laplace transform of a fractional derivative
of the order of α− 1 and that f̂(0) =

∫∞
0 dt f(t) for an arbitrary function f ,

it follows that

Dα =
1

n

∞∫
0

dt ∂α−1t cvv(t) , 0 ≤ α < 2 , (58)

where the explicit form of the fractional derivative is

∂α−1t cvv(t) =
d

dt

t∫
0

dt
(t− τ)1−α
Γ (2− α) cvv(τ) . (59)

For α = 1, the standard Kubo formula,

D =
1

n

∞∫
0

dt cvv(t) , (60)

is retrieved, but there is an important difference in the derivation. Kubo’s
derivation of transport coefficients [7] is based on linear response theory,
whereas (58) relies on purely mathematical arguments.

3.2.3. Generalized Fluctuation-Dissipation Theorem

Combining relations (53), (54) and (55) leads to a direct relation between
the Laplace-transformed MSD and the memory function of the VACF for
small values of s,

Ŵ (s)
s→0∼

〈
|v|2

〉
s2κ̂(s)

. (61)
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Here, the assumption s3 � s2κ̂(s) has been made, which is correct for s→ 0
if ballistic diffusion is excluded. Equating expressions (53) and (61) leads
then to the asymptotic form of the memory kernel for small values of s,

κ̂(s)
s→0∼

〈
|v|2

〉
nDα

sα−1

L(1/s)
. (62)

Similarly to the fractional diffusion coefficient, one can define a fractional
relaxation constant through

ηα = lim
s→0

s1−ακ̂(s) . (63)

In the time domain, this relation reads

ηα =

∞∫
0

dt ∂1−αt κ(t) , (64)

where (see Eq. (5))

∂1−αt κ(t) =
d

dt

t∫
0

dτ
(t− τ)α−1
Γ (α)

κ(t) .

It should be noted that the order of the derivative is here 1− α, whereas it
is α− 1 in the case of the fractional diffusion constant (58).

Expressions (58) and (64) may be connected in form of a generalized
Fluctuation-Dissipation Theorem,

Dα =

〈
|v|2

〉
n ηα

. (65)

3.2.4. Long-time tails for the VACF and its memory function

A closer look at expressions (56) and (62) shows that ĉvv(s)/s ∝ s−α and
that κ̂(s)/s ∝ sα−2. Both s−α and sα−2 diverge if 0 ≤ α < 2 and knowing
that the Laplace transform of an integral of the form

∫ t
0 dτ f(τ) is f̂(s)/s, it

follows from the HLK theorem that

f(t) =

t∫
0

dτcvv(τ)
t→∞∼ nDαL(t)

Γ (α)
tα−1 , (66)

g(t) =

t∫
0

dτκ(τ)
t→∞∼

〈
|v|2

〉
DαnΓ (2− α)L(t)

t1−α . (67)
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Here, it has been used that if L(t) is a slowly growing function, the same is
true for 1/L(t). Differentiating f(t) and g(t) yields then necessary conditions
for the long-time tails of the VACF and its memory function

cvv(t)
t→∞∼ nDαL(t)t

α−2

Γ (α− 1)
, (68)

κ(t)
t→∞∼

〈
|v|2

〉
t−α

Γ (1− α)nDαL(t)
. (69)

The HLK theorem shows that these conditions are also sufficient for the
VACF if 1 < α < 2 (superdiffusion) and for the corresponding memory
functions if 0 ≤ α < 1. This means that subdiffusion is equivalent with
the asymptotic form (68) of the memory function and that superdiffusion is
equivalent with the asymptotic form (69) of the VACF.

Figure 6 displays the α-dependent weights of the long-time tails. One
recognizes that the VACF has a negative long-time tail for subdiffusion (0 <
α < 1) and a positive long-time tail for superdiffusion (1 < α < 2). This
can be understood as follows. In the case of subdiffusion, anticorrelations
between the velocities at times τ and τ + t, respectively, persist for long lag
times t, indicating that the diffusing particle tends to invert its velocity to
go back to the point of departure. Negative velocity correlations, in general,
are referred to as “cage effect” in the theory of liquids, and subdiffusion
indicates a persisting cage. In the case of superdiffusion, one finds exactly the
opposite. Here, positive autocorrelations between velocities for two different
lag times persist and reflect a sort of “anti-cage”, namely that the diffusing
particle is essentially repelled from its local environment, which leads to
accelerated diffusion. It should be noted that the signs of the long-time tails
for the VACF and its memory function are opposite and that they vanish
for α = 1, i.e. in the case of normal diffusion.

1/Γ(α-1)

1/Γ(1-α)

0.5 1.0 1.5 2.0
α

-0.2

0.2

0.4

0.6

0.8

1.0

Fig. 6. α-dependence of the long-time tails of the VACF (black/blue) and its mem-
ory function (light gray/dark yellow).



Anomalous Diffusion in Biomolecular Systems from the Perspective . . . 1187

3.3. Anomalous Brownian motion and time scale separation

In Section 2.5, it has been reported that a particle whose velocity follows
a fractional Ornstein–Uhlenbeck process in velocity space exhibits anoma-
lous free diffusion in position space [36]. According to Eq. (41), the corre-
sponding VACF has the form of a “stretched” Mittag–Leffler function. The
anomaly of the diffusion process is steered by the parameter ρ, which varies
between 0 and 2. For ρ = 1, normal diffusion is retrieved and the VACF
becomes an exponential function. Since the first computer simulation of
simple liquids [27], it has been known that the VACF of a molecule is not an
exponential function, but exhibits a regime of negative values. This reflects
a caging effect through the neighboring molecules which make the diffusing
particle invert its direction. An exponentially relaxing VACF indicates a
time scale separation between the slowly diffusing tagged particle and the
fast motions of the surrounding liquid molecules. Such a time scale separa-
tion is characteristic for Brownian motion, where one considers the diffusion
of a heavy particle in a bath of light particles. Molecular dynamics simu-
lations are a beautiful tool to investigate the effect of time scale separation
empirically, increasing gradually the mass of the diffusing particle with re-
spect to the mass of the solvent molecules [68]. When the mass of a selected
tracer particle is increased, one sees, indeed, that its VACF takes a more and
more exponential form and varies at the same time more and more slowly.
In Ref. [69], it has been shown that this can be understood on the basis of
a scaling of the memory function, which scales inverse proportional to the
(reduced) mass of the diffusing particle,

κ(t) → λκ(t) , (70)
m → m/λ , (71)

where λ → 0. In a recent article [66], I have shown that the same scaling
procedure leads to VACFs of the form (41) if the starting point is a simple
liquid in which all molecules perform anomalous free diffusion. The details
of this somewhat more tricky scaling approach can be found in [66]. As a
result of the scaling process (70)/(71) the VACF approaches

ψλ(t) ≈ E2−α

(
−
[
t/τ (λv )

]2−α)
, (72)

where τ (λ)v is the time scale of the “slow” tracer particles

τ (λ)v =
τv

λ1/(2−α)
� τv (73)

with τv being the velocity time scale of the “fast” solvent molecules. Using
the definition (14) to define the fractional diffusion constant, the velocity
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time scale is set through

τv =

(
nDα

〈|v|2〉

)1/(2−α)
. (74)

Figure 7 shows the result of the scaling procedure for a numerical exam-
ple, in which the memory function has the form

κ(t) = Ω2M (α, 1,−t/τm) . (75)

Here, M(a, b, z) is Kummer’s hypergeometric function [16], κ(0) = Ω2, and
Ω has the dimension of a frequency. The parameter τm sets the time scale of
the memory function. Since the Laplace transform of the memory function
behaves for small s as sα−1, condition (62) is verified. The corresponding
diffusion constant is found to be

Dα =

〈
|v|2

〉
τ−αm

nΩ2
(76)
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Fig. 7. Velocity autocorrelation functions ψλ(t) for different scaling factors λ (solid
lines) and corresponding asymptotic approximations (72) (dashed lines). From top
to bottom α = 1/2, 1, 3/2, from left to right λ = 1, 0.2, 0.02. The amplitude of
the memory function is chosen as Ω = 1/τm, such that τ = τm.
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and the characteristic velocity time reads

τv =

(
τ−αm

Ω2

) 1
2−α

. (77)

It is clearly visible that the exact VACFs (solid lines) tend rapidly to the
limiting forms (72) (dashed lines) as λ tends to zero. Here, it must be
emphasized that a strict limit λ → 0 cannot be performed since the VACF
would not change at all. This short paragraph has thus shown that the VACF
of the anomalous Rayleigh particle corresponds to the Brownian limit, in
which the mass of the diffusing particle is much bigger than the mass of the
solvent molecules. It is thus the natural generalization of the exponentially
decaying VACF of the Rayleigh particle, which is retrieved for α = 1.

3.4. Confined anomalous diffusion
3.4.1. Memory kernel and anomalous relaxation

Spatially confined diffusion, where the motions of the diffusing particle
are confined by a container of finite size or by external forces, merits a
separate discussion. Here, α = 0, which expresses that the MSD tends to a
plateau value for long times,

W (t)
t→∞∼ 2nD0L(t) . (78)

As discussed earlier, one considers effectively the MSD of u(t) = r(t)− 〈r〉
in this case and the corresponding fractional diffusion coefficient D0 can be
formally obtained from the generalized Kubo relation (58)

D0 =
1

n

〈
|u|2

〉
. (79)

This is in agreement with the general physical dimension of Dα, which is
length2/timeα. It follows from expression (68) that the memory function
has the general asymptotic form

κ(t)
t→∞∼

〈
|v|2

〉
〈|u|2〉

1

L(t)
. (80)

This expression can be understood by setting L(t) = 1. In this case, the
asymptotic form of the memory function is a constant, κ(t) t→∞∼ Ω2, where
Ω is defined through Ω =

√
〈|v|2〉/〈|u|2〉. The resulting asymptotic VACF

is simply a cosine function, cvv(t) = 〈|v|2〉 cos(Ωt), describing a “rattling”
motion of the diffusing particle in the cage represented by its environment.
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This is, of course, to some extent an unphysical picture since the rattling
motion is undamped and one expects damping effects by collisions with
the neighbors. A more refined description of the diffusion process is, in
fact, obtained by taking into account the function L(t), and normal and
anomalous diffusion must be distinguished on the basis of the asymptotic
form of L(t). Following [65], confined diffusion is said to be anomalous if
the relaxation time

τc =

∞∫
0

dt
κ(t)− κ(∞)

κ(0)− κ(∞)
(81)

diverges. This is the case if

1

L(t)
− 1

t→∞∼ C t−β and 0 < β ≤ 1 , (82)

where C > 0 is a constant. Relation (82) is obtained if L(t) has the form
L(t)

t→∞∼ 1−Ct−β and with (15) this corresponds to saying that the DACF
decays anomalously slowly,

cuu(t)

cuu(0)

t→∞∼ Ct−β . (83)

The above considerations show that anomalous relaxation in position space is
a direct consequence of the slow power law approach of the memory kernel to
its plateau value. Using the cage picture for the environment of the diffusing
particle, relation (82) reflects a slowly decaying cage towards its plateau
value. The persistence of the cage for arbitrarily long times prevents the
diffusing particle from escaping to infinity.

3.4.2. Relaxation rate spectra

The relaxation rate spectrum of a slowly decaying DACF has a par-
ticular form, which can be used to build relaxation models. Referring to
Section 2.4.3, the relaxation function ψ(t) = cuu(t)/cuu(0) is represented in
the form

ψ(t) =

∞∫
0

dλ p(λ) exp(−λt) ,
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and the relation between the relaxation function and its relaxation spectrum
is given by the Stieljes transform pair

ψ̂(s) =

∞∫
0

dλ
p(λ)

s+ λ
,

p(λ) =
1

π
lim
ε→0
=
{
ψ̂(−λ− iε)

}
.

In the case of anomalous relaxation, where the DACF decays asymptot-
ically as in (83), it follows from the HLK-theorem (52) that

ψ(t)
t→∞∼ t−β ⇔ ψ̂(s)

s→0∼ Γ (1− β)
s1−β

, (84)

and, therefore, p(λ) must have the general form [70]

p(λ) = f(λ)
sin(πβ)

π

Γ (1− β)
λ1−β

, 0 < β ≤ 1 . (85)

The function f(λ) is yet undetermined and must be chosen such that
limλ→0 f(λ) = const and that

∫∞
0 p(λ;β) = 1. The special choice [70]

f(λ) = exp(−βλ) (86)

ensures that all moments of the relaxation spectra exist, which are defined
through

λk =

∞∫
0

dλλkp(λ) = (−1)kψ(k)(0) . (87)

The correctly normalized relaxation rate spectrum for corresponding to the
choice (86) is

p(λ;β) =
λβ−1ββ exp(−βλ)

Γ (β)
, (88)

and the corresponding relaxation function ψ(t) reads

ψ(t;β) =
1

(1 + t/β)β
. (89)

It is worthwhile noting that ψ(t;β) yields the Tsallis exponential function
by setting β = 1/(1− q) [71–73]. One realizes that

lim
β→∞

ψ(t;β) = exp(−t) (90)
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and, therefore,
lim
β→∞

p(λ;β) = δ(λ− 1) . (91)

The cumulants of p(λ;β), which are defined through

c
(k)
β = (−1)k dk

dtk
ln(ψ(t;β))

∣∣∣∣
t=0+

, (92)

have a particularly simple form

c
(1)
α,β = 1 , (93)

c
(k)
α,β =

(k − 1)!

βk−1
, k = 2, 3, . . . (94)

Figure 8 displays the relaxation function (97) for several values of β and
the corresponding relaxation rate spectra. These curves should be compared
to their counterparts for the fOU process, which have been presented in
Fig. 1. The initial decay of the relaxation function in the latter case is
visibly steeper. It follows, in fact, from (35) that all derivatives of ψfOU(t;β)

diverge at t = 0, (−1)kψ(k)
fOU(0;β) = +∞. Therefore, all moments λk diverge

for k ≥ 1 according to relation (87).

0 1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0
ψ(t;β)

0 1 2 3 4 5
λ
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1.0

1.5
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2.5

3.0
p(λ;β)

Fig. 8. Left: Normalized DACF ψ(t;β) for β = 0.5, 1.5, . . . , 4.5 (curves from top to
bottom/red to blue on-line) Right: Corresponding relaxation spectra p(λ;β).

3.5. Illustrations
3.5.1. VACF for lateral motions of lipid molecules

In the following, we go briefly back to Section 2.6.1, in which two ex-
amples for subdiffusion in lipid bilayers have been given. A more detailed
analysis of the VACF describing the lateral center-of-mass motion of the
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DOPC lipids illustrates expressions (69) and (68) for, respectively, the long-
time tail of the VACF and its memory function. The left part of Fig. 9
shows first of all that the VACF of a lipid molecule has a negative long time
tail and the inset shows that the theoretical form (69) superposes well with
the simulated VACF for t > 1 ps. We note here that, according to (74), the
relaxation time of the VACF is

τv ≈ 0.23 ps (95)

if the definition (14) for Dα is used. The concrete value of τ gives an in-
dication of what “asymptotically” means in practice and one sees that the
asymptotic regime starts already in the picosecond range. The right part
of Fig. 9 displays the simulated memory function, where the inset shows,
again, the theoretical longtime tail superposed to the simulated function.
The decay of the memory function is extremely steep, of the order of a
few integration time steps, and the dynamics is probably not well enough
resolved for a detailed analysis. The figure shows, however, clearly a qualita-
tive agreement between the simulated function and the theoretical long-time
tail (68). It should, in particular, be noted that the simulated long-time tails
of the VACF and its memory function have opposite signs, as required by
the theoretical considerations for the case of subdiffusion.

Long time tail Long time tail

Fig. 9. Left: Normalized VACF for the lateral CM motion of the DOPC molecules.
The inset shows the simulated VACF (dots) together with the long-time tail (69)
with L(t) = 1 (solid line). Right: The corresponding memory function. The inset
shows the superposition of the simulated memory function (dots) with the corre-
sponding long-time tail (68) with L(t) = 1 (solid line).

3.5.2. Backbone relaxation in proteins

This section is devoted to the presentation of a model for the relaxation
and diffusion dynamics for the main chain of proteins, which has been re-
cently published [70]. The idea was to test a model based on the theoretical
considerations presented in Section 3.4.2, which would, in particular, lead to
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finite moments of the relaxation rate spectrum and, therefore, to displace-
ment autocorrelation functions which are differentiable at t = 0. As already
mentioned, this is not the case if the underlying dynamical model is an fOU
process. The dynamical model to be briefly discussed in the following is a
coarse-grained model in which a protein is represented only by the so-called
Cα-atoms along the protein main chain, which are the anchor points of the
side chains. Writing the displacement autocorrelation for the Cα-atoms as

cuu(t) =
〈
|u|2

〉
ψ(t) , (96)

the relaxation function for the model reads

ψ(t;α;β) =
exp(−αt)
(1 + t/β)β

. (97)

The corresponding relaxation spectrum has the form

p(λ;β;α) = p0(λ− α;β;α) , (98)

where p0(λ;β;α) is given by expression (88),

p0(λ;β) =
λβ−1ββ exp(−βλ)

Γ (β)
. (99)

The model relaxation spectrum (98) is thus a shifted form of p0(λ;β), with
a cut-off at λ = α at the lower end of the relaxation rate spectrum. Only
for α = 0 and 0 < β < 1, the relaxation is anomalous. The corresponding
cumulants of the relaxation rate spectrum are the same as for p0(λ;β), except
the first one

c
(1)
α,β = 1 + α , (100)

c
(k)
α,β =

(k − 1)!

βk−1
, k = 2, 3, . . . (101)

A coherent view of the results for a concrete time scale τ is obtained by
looking at

— the mean relaxation rate, λ = (1 + α)τ−1,

— the corresponding spread, σλ =
(
λ2 − λ2

)1/2
= β−1/2τ−1,

— the mean square position fluctuation 〈|u|2〉,

— the short time diffusion coefficient, Ds = 〈|u|2〉λ,
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and to correlate the results with the solvent accessible surface (SAS). The
results are given in Fig. 10, where the sketch on top of the figure indicates
secondary structure elements. These are α-helices (black rectangles), short
helicoidal motifs (grey rectangles) and β-strands (arrows). The vertical dot-
ted lines locate four selected residues, two of which are in α-helices (Ala 9
and Val 29) and two in loops (Thr 47 and Gly 104). These residues are
also indicated in Fig. 11. The results show that fast relaxation is strongly
correlated with a broad relaxation spectrum, which applies, in particular,
to residues with a low SAS. This effect is particularly pronounced for the
“buried” residues Ala 9 and Val 29. The fast relaxation of buried residues
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Fig. 10. Upper panel: Solvent accessible surface for the Cα-atoms in lysozyme.
Middle panel: Mean relaxation rate λ (blue/dark gray line) and corresponding
standard deviation σλ (green/light gray line). Lower panel: Mean square posi-
tion fluctuation 〈|u|2〉 (blue/dark gray line) and short time diffusion coefficient
Ds (green/light green line). The graphics on top indicate secondary structure ele-
ments, where black rectangles stand for α-helices, gray, rectangles short helicoidal
motifs and arrows, beta strands.
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can be understood by the picture of frequent collisions with adjacent atoms
and the large spread of relaxation rates reflects strong correlations between
their motions and those of the atoms in the environment. The lower part of
Fig. 11 shows that large position fluctuations are seen in loop regions, but
more surprisingly, that the short time diffusion coefficients are the highest
for residues with small SAS, although the position fluctuations in these re-
gions are small. The λ-factor in the short time diffusion coefficient is thus
dominant.

Thr 47

Gly 104

Val 29

Ala 9

Fig. 11. Protein main chain of lysozyme and four selected residues.

4. Conclusions

The idea of this short review was to present models for anomalous diffu-
sion in complex biomolecular systems in the framework of non-equilibrium
statistical physics, which is the theoretical basis to understand the structure
and dynamics of liquids. In this context, a Tauberian theorem from asymp-
totic analysis was an essential element to generalize the well-known Kubo
expressions for diffusion-related transport coefficients to the case of anoma-
lous diffusion. It was also shown that general conditions for anomalous
diffusion can be derived by applying asymptotic analysis to the generalized
Langevin equation and that this approach yields well-defined characteristic
time scales as well as insight into the validity of diffusion models. The ap-
proach may, moreover, be used to construct physically meaningful relaxation
and diffusion models for protein dynamics. In order to illustrate the theo-
retical concepts, several applications were presented for simulation studies
of protein dynamics and anomalous diffusion of molecules in lipid bilayers.
It has been in particular demonstrated that molecular dynamics simulation
is an invaluable tool to gain insight into transport and relaxation processes
in “crowded” biomolecular systems.
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