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The giant unicellular slime mould Physarum polycephalum forms an
extended network of stands (veins) that provide for an effective intracellular
transportation system, which coarsens in time. The network coarsening was
investigated numerically using an agent-based model and the results were
compared to experimental observations. The coarsening process of both
numerical and experimental networks was characterised by analyses of the
kinetics of coarsening, of the distributions of geometric network parameters
(as, for instance, the lengths and widths of vein segments) and of network
topologies.
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1. Introduction

Physarum polycephalum is a well-studied, giant, multinucleated, single
amoeboid cell, which has developed into a prototypical system for inves-
tigating two-dimensional transportation networks. The morphology of the
plasmodium of P. polycephalum consists of an apical zone and an adaptive
vein network [1], through which protoplasm and nutrients are continuously
pumped back and forth. This peristalis-driven phenomenon is known as
shuttle streaming. The adaptive vein network of P. polycephalum forms a
regular graph (in the mathematical sense) |2, 3|, which is known to solve sev-
eral graph theoretical problems, like finding the shortest path in a maze [4],
constructing Steiner minimum trees [5], or even mimicking the topology of
road and railway networks [6-10]. The biological functionality of the vein
network is to provide for an effective transport of protoplasm. Recently, it
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has been shown that the self-similar vein network is hierarchically structured
with respect to its transport efficiency [11]. Such a functionality demands a
continuous and well-organised optimisation of the vein network. To under-
stand the criteria according to which these networks are optimised, numerical
simulations have been performed using a variety of models [6-8, 12-22].

The proposed models of the network topology of P. polycephalum were
developed in order to address different questions. Hence, the nature of these
models varies. A first group of models has been developed to study the op-
timisation of the transportation capabilities (i.e., the protoplasmic flow) of
the plasmodial vein networks. These models consider the networks as follow-
ing Kirchhoft’s rules and supporting Poiseuille flow of protoplasm. Usually,
a network of a preselected topology is given and the change in the weights
of the connectivities between nodes (mimicking the intensity of the flux be-
tween two nodes) is studied as some conditions are varied [6, 8, 12—-15]. These
simulations provide networks with altered vein strengths, however, they do
neither consider the annihilation of veins nor any change in topology during
the development of the network.

A second group of models has been developed to investigate the synchro-
nisation of peristaltic pumping in a network [13, 16]. These models treat
the nodes (branching points of veins) as coupled oscillators and focus on
the nature of the synchronisation patterns obtained in the network. Again,
modifications of the network topology are generally not addressed by such
networks.

A third group of models has been proposed to study changes in the
topology of the vein networks of P. polycephalum [17-22]. These models are
either cellular automata [17]|, agent-based models [18, 19], or even hybrid
agent—cellular automaton schemes [20-22]. Numerical studies using these
models focused on the morphologies of developing networks [22], mimicking
the growth and morphology of the plasmodium either under different envi-
ronmental conditions [17], or in presence of multiple food sources [20-22].
These models have been used to simulate P. polycephalum’s ability to solve
mazes and to approximate Steiner minimum trees [20].

The multi-agent model introduced in Ref. [18] uses a mobile particle
approach to approximate the self-assembly, formation and subsequent adap-
tation of P. polycephalum transport networks. The model was introduced
to explore the potential role of spatially implemented material-based uncon-
ventional computing substrates [23-25]. The motivation for this approach
was inspired by the P. polycephalum plasmodium itself, which exhibits com-
plex behaviour emerging from only simple component parts and interactions
(and, importantly, has no special or critical components). It may thus be
described as a ‘bottom-up’ modelling approach. Although other modelling
approaches, notably cellular automata, also share these motivations and
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properties, the direct mobile behaviour of the agent particles renders it more
suitable to reproduce the flux within the plasmodium. The model is notable
for the self-assembly of transport networks which emerge from an initially
random distribution of particles. These networks were found to exploit Local
Activation and Lateral Inhibition (LALI) dynamics, (where Lateral Inhibi-
tion was indirectly implemented by substrate depletion) and, subsequently,
reproduced a wide range of Turing-type reaction-diffusion patterns [26]. Fur-
thermore, these networks also exhibit physical properties such as network
minimisation, the formation of Plateau angles and the observation of von
Neumann’s law [27].

In contrast to the first two groups of models, the cellular automata and
agent-based models not only consider the formation of novel veins but also
consider their subsequent morphological adaptation and annihilation. An-
nihilation of veins, in fact, is a hallmark of the coarsening of networks. In
contrast to flow optimisation, the coarsening of the vein networks of P. poly-
cephalum has, so far, received much less attention in simulation studies.
When monitoring a fixed area of the network, coarsening is observed when
the plasmodium propagates. It coarsens continuously until, eventually, the
slime mould leaves the monitored domain altogether. During coarsening
several morphological parameters of the vein network change, for instance,
the density of veins, the number of nodes (i.e., branching points of veins)
and the mean length of the vein segments. Therefore, one should require
that any model for the coarsening dynamics reproduces three main features,
namely (i) the changes in the geometry of veins, (ii) the annihilation and
disappearance of nodes, and (%ii), in the long run, the network should dis-
appear completely or collapse to a single point.

In the present paper, we investigate the evolution of P. polycephalum vein
networks and focus on the coarsening dynamics of originally dense networks.
We consider the morphology of the network, the distributions of typical net-
work parameters, and how these properties change during the coarsening of
the network. We perform numerical simulations using the multi-agent based
model recently proposed by Jones [18], and compare the numerical results to
findings obtained from experiments. To this purpose, we first briefly intro-
duce the multi-agent based model [18]. Next, we present the materials and
methods used in the experiments and to perform the network graph analysis.
The subsequent section reports on the results on the coarsening processes
in both the simulated and experimental networks, respectively. Finally, we
discuss the obtained results.
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2. Multi-agent model of the P. polycephalum plasmodium

The multi-agent model of P. polycephalum uses a population of coupled
mobile particles with very simple behaviours within a diffusive lattice [18].
The lattice stores particle positions and the concentration of a local diffusive
factor referred to generically as chemoattractant.

The function of this chemoattractant is to reproduce the sol flux within
the plasmodium. Particles deposit the chemoattractant factor when they
move and also sense the local concentration of the factor during the sensory
stage of the particle algorithm. The particles are thus indirectly coupled by
the diffusive factor. This is a simple approximation of the changing composi-
tion of the P. polycephalum plasmodium whereby collective particle positions
represent the global structure of the material (gel phase), and collective par-
ticle movement represents the flux within the plasmodium (sol phase).

In this article, the particles reside within a circular virtual ‘Petri dish’
inside a lattice 400 x 400 pixels in size. The initial population size was com-
posed of 25000 particles, initialised at random positions and with random
orientations.

2.1. Generation of model plasmodium cohesion
and morphological adaptation

The behaviour of each particle occurs in two distinct stages, the sensory
stage and the motor stage. In the sensory stage, the particles sample their
local environment using three forward biased sensors whose angle from the
forward position (the sensor angle parameter, SA) and distance (sensor off-
set, SO) may be parametrically adjusted (Fig. 1(a)). The sampling area A
is thus given as

SA
360°

The offset sensors generate local indirect coupling of sensory inputs and
movement to generate the cohesion of the material. The SO parameter acts
as a scaling parameter and distance is measured in pixels. A minimum dis-
tance of 3 pixels is required for coupling to occur and coupling strength
increases with SO. For the experiments in this article, we fixed the values of
SA and RA to 67.5° and varied the values of SO. During the sensory stage,
each particle changes its orientation to rotate (via the parameter rotation
angle, RA) towards the strongest local source of chemoattractant (for ex-
ample, rotating to the right in Fig. 1(b)). Variations in both SA and RA
parameters have been shown to generate a wide range of reaction-diffusion
patterns [26] and for these experiments, we concentrate on a particular range
of SA and RA parameters which have been shown to generate network as-
sembly and adaptation |27].

A= (SO)?r. (1)
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Fig.1. Architecture of a single particle detailing the three sensory parameters.
(a) Morphology showing agent position ‘C’ and offset sensor positions (FL, F, FR,
that stand for forward left, forward, and forward right, respectively) and the SO
and SA parameters. (b) Effect of the RA parameter of agent orientation.

After the sensory stage, each particle executes the motor stage and at-
tempts to move forwards in its current orientation (an angle from 0-360°)
by a single pixel. Each lattice site may only store a single particle and par-
ticles deposit chemoattractant into the lattice (5 arbitrary units per step)
only in the event of a successful forwards movement. If the next chosen site
is already occupied by another particle, move is abandoned and the parti-
cle selects a new randomly chosen direction. Selection of a new direction
in response to obstruction prevents the build-up of momentum within the
particle population. This ensures fluid network adaptation but prevents the
accumulation of different regions of flux within the population, and so the
emergence of oscillatory movement is not generated. This can be achieved
by removing the condition of changing direction, causing oscillatory domains
to emerge and grow [28|, however this is outside the scope of this article.

Diffusion of the attractant left by particle movement in the lattice was
implemented at each scheduler step and at every site in the lattice in parallel
via a simple mean filter of kernel size 3x3. Damping of the diffusion distance,
which limits the distance of chemoattractant gradient diffusion, was achieved
by multiplying the mean kernel value by 0.9 per scheduler step.

2.2. Adaptation of model plasmodium population size

Adaptation of the population size was implemented via tests at regular
intervals. The frequency at which the growth and shrinkage of the population
was executed determines the turnover rate for the population. The frequency
of testing for growth was given by the G¢ parameter and the frequency for
testing for shrinkage is given by the S; parameter. Both Gy and S were
set to 5. Growth of the population was implemented as follows: If there
were between Gpin (0) and Gpax (10) particles in a local neighbourhood
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(window size given by Gy, in this case 9 x 9) of a particle, and the particle
had moved forward successfully, a new particle was created if there was a
space available at a randomly selected empty location in the immediate 3 x 3
neighbourhood surrounding the particle.

Shrinkage of the population was implemented as follows: If there were
between Spin (0) and Smax (22) particles in a local neighbourhood (window
size given by Sy, in this case 5 x 5) of a particle the particle survived, other-
wise it was deleted. Deletion of a particle left a vacant space at this location
which was filled by nearby particles (due to the emergent cohesion effects),
thus causing the population to shrink slightly. As the process continues, the
model plasmodium continues to adapt its shape and shrink further.

The model runs within a multi-agent framework running on a Windows 7
PC system. The particles act independently and iteration of the particle
population is performed randomly to avoid any artifacts from sequential
ordering.

3. Material and methods

The dehydrated form of P. polycephalum strain HU195x HU200, the scle-
rotia, was stored up to 24 months. Sclerotia were placed on a 1.0% w/v
(weight per volume) plain, non-nutritive agar gel (Difco BactoAgar) in a
polystyrene box (size: 18 x 25 x 35 cm3) at a constant temperature of 21°C
in the dark. The sclerotia germinated and transformed into plasmodia which
expanded over the agar matrix. During growth, oat flakes (Kolln Flocken)
were used to feed the plasmodium, in order to increase the plasmodial mass.

An area of about 1 cm X 4 cm of the frontal zone of the expanding
plasmodium was carefully cut off, and transferred into the centre of a square
polystyrene Petri dish of 12 cm x 12 e¢m, which contained 1.0% w /v plain,
non-nutritive agar gel (Difco BactoAgar). After several hours, a network
of tubular strands (veins) developed, that coarsened as the plasmodium
propagated forwards. From this network, the evolution of a region of interest
was observed over time. The coarsening process was monitored with a CCD
Camera (Hamamatsu C3077) at a resolution of 768 x 576 px, where 1 px =
0.0456 mm (i.e. an area of 3.5 cm x 2.6 cm). Images were acquired at a
frame rate of 1/6 Hz and stored in a computer for later analysis.

The experimental and simulated networks were extracted from the stored
or calculated images, respectively, and subsequently analysed according to
the methods described in references [29, 30].

4. Results

A typical network coarsening, as produced by the model, is depicted
in Fig. 2. After the initialisation of the model, the network is formed
(Fig. 2 (a)), and subsequently it begins to coarsen (Fig. 2 (b)—(d)). During
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coarsening the number of veins is reduced, and the area of the network
decreases, as indicated by the red circle which encloses the vein network.
During the entire coarsening process, none of the nodes or edges remain in
their position.

(b) t = 300 (c) t = 1650 (d) t = 9075

Fig.2. Coarsening in the model. SO = 5, RA = SA = 67.5°. The red circle
enclosing the network indicates the circular shape of the network. This allows the
measurement of the network diameter and thus the area, where the vein network
is embedded. (a) At 50 time steps (time units, t.u.), a dense network has formed.
(b) At 300 t.u., the number of veins has decreased. (c) At 1650 t.u., the vein
network has almost lost its circularity. (d) At 9075 t.u., the vein network has
vanished, due to the coarsening.

The coarsening of an experimentally observed vein network is shown in
Fig. 3. At the beginning of the experiment, the plasmodium propagates over
the agar. When it completely covers the observed area (Fig. 3 (a)), the vein
network is very dense. As the plasmodium propagates, it keeps its mass
(as the plasmodium migrates over a non-nutrient gel). This leads to the
coarsening of the vein network (Fig. 3 (b), (c)). The coarsening is monitored
until the plasmodium has moved out of the observation area.

Fig. 3. Coarsening of a P. polycephalum vein network. The plasmodium propagates
from left to right. (a) 16 h after beginning the experiment, the dense vein network
is found in the observation area. (b) 17.5 h. The vein network begins to coarsen.
(c) 19.5 h. Further coarsening of the vein network. After 20.0 h (not shown), the
vein network has almost vanished.
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4.1. Morphology of coarsening networks

At the beginning of the simulation, the model network covers the maxi-
mum area as the particles are distributed over the entire area of interest A et.
The densely and randomly distributed particles form a dense and extended
network of veins. With time, this network coarsens and the area A,q; covered
by the network shrinks. These phenomena are associated with a continuous
decrease in the number of veins, a situation that is also observed in the
experiments. A notable difference between the morphologies of the experi-
mentally observed networks and the model networks is found for the widths
of the strands: whereas the widths of the veins are log-normally distributed
in the real P. polycephalum networks [2], the width of the stands is uniform
and invariant in the model networks.

The log-normal distribution of vein widths observed in the experiments
contributes to the generation of P. polycephalum networks that are hier-
archically and self-similarly organised with respect to their transport effi-
ciency [11]. Hence, these networks are optimised to provide for an efficient
transport of protoplasm. Similar network structures are not found in the
model.

Another morphological aspect studied is the type of graph that is re-
alised by the model and in the experiment. It was recently reported that
the plasmodial vein networks of P. polycephalum form regular graphs with
the unique node degree k = 3 [2, 3|. In the model, by contrast, nodes of
degree k = 3 predominate, however, during the contraction of the lacunar
areas delimited by the veins, nodes of higher degree (up to k = 5) can also
be found. Hence, model networks possess node degree distributions, and
therefore they do not form regular graphs as the real networks do.

4.2. Network area coverage

We define the area of the smallest circle that covers the entire network
as the network area Anet, and the number of all pixels belonging to veins of
the network as vein area A,. The network coverage p

Ay
_ 9
= (2)

describes the density of veins in the network area, and it is given by the ratio
of the vein area to the network area. At the beginning of the simulation,
the network coverage Ay /Ayet is large, as almost 70% of the space is covered
by veins or cell mass, thus yielding p =~ 0.7. With time the network cover-
age decreases until any branches of veins have disappeared and the shape
of the last remaining vein has become circular. During this process, the
area coverage converges to p ~ 0.20. Once the network consists only of a
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single circular vein, coarsening continues further and the network density p
increases again, as the circle shrinks to a point, such that p — 1 in the long
term (Fig. 4).

1.0 T T y T \ T T

0.6 i

0.4 .

Ay/Apet

0.2 B

0.0

T T T T
0 2000 4000 6000 8000 10000
t

Fig.4. Temporal evolution of the network coverage p = A,/Anet for a model
network with SO =5 and RA = SA = 67.5°. The evolution is determined by two
processes: initially, the coarsening process, where p decays exponentially until it
reaches a minimum at t. = 6850 t.u. (time units). Thereafter, the evolution is
given by the shrinkage of the remaining circular vein to a single spot. This leads
to an increase of p.

The evolution of the network coverage p is governed by two processes,
namely the coarsening of the network and, in the last stage of the coarsen-
ing, the subsequent collapse of a circular vein (Fig. 2 (d)) to a single point.
These processes are reflected in Fig. 4, where the network coverage p at first
decreases exponentially with time

p=poe ™, (3)

until it reaches a minimum. In Eq. (3), s is the decay constant. The time
required to reach this minimum is the coarsening time t. that is defined as
the instant where all branching points of the network have been annihilated.
In Fig. 4, which was obtained using a sensor offset SO = 5, the coarsening
time was t. = 6850 t.u., where t.u. stands for time units (or time steps).
The second process is the collapse of a circular vein to a single spot, and it
occurs at t > t.. This process is associated with an increase in p.

In experiments, a similar shrinkage of the network coverage was also
reported [2|. Initially, the network coverage was high, however, its value
decreased as the network coarsened and finally settled to an asymptotic
value of p =~ 0.20.
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4.8. Coarsening time

The dependence of the coarsening time ¢, on the range of the sensor
offset was determined from networks generated with various values of SO.
Figure 5 shows that t. shortens with increasing SO. An analysis reveals that
the coarsening time t. is proportional to 1/ SO?, according to

so? t tc(0), (4)

te =7
as demonstrated in the inset of Fig. 5. « is the coarsening constant, which
is determined as v = 140352 t.u. x px 2, and the offset #.(0) = 1422 t.u. It
is worth noticing that the dimension of SO is that of a reciprocal diffusion
constant.

20000 v T T T T T T T T T y T

15000

10000

5000

0 T T T T T T v T T T d T T
2 4 6 8 10 12 14 16
SO

Fig.5. Dependence of the coarsening time . on the sensor offset SO. A plot of ¢,
as a function of 7/SO? is shown in the inset. This correlation is linear (see Eq. (4))
with the slope 7 as the coarsening constant obtained as v = 140352 t.u. x px 2
and the offset ¢.(0) = 1422 t.u.

The coarsening time t. depends on the sampling area A which is probed
by each particle during the sensory stage. This can be shown by substituting
Eq. (1) into Eq. (4), such that

SA 1
o= <7T360°> . (5)

which states that the coarsening time decreases (increases) as the sampling
area A is increased (decreased).
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Hence, the area of the sensing domain may be interpreted as a measure
for the “range” of influence of nearby flux on an individual particle (relating
to the position and distance of nearby veins with greater flux). The more
extended the sampling area A is, the faster any merging of veins may occur,
thus leading to a faster coarsening process.

4.4. Number of veins

As the network coarsens, the number of veins in the network diminishes.
However, the coarsening takes place at different time scales in experiment
and simulations. To enable the comparison of kinetic data obtained from
both experiments and simulations, we introduce the normalised time ¢/¢yax.
Here tax is the time at which the network had either collapsed to a single
point or completely disappeared from the region of observation.

In model networks, the number N of veins decreases following the bi-
exponential function (Fig. 6)

N = Nie ! 4 Nye 2t (6)

due to coarsening. Nj + No = Ny is the number of veins at the beginning
of the simulation (i.e., at time ¢ = 0). In other words, in the model, the
coarsening takes place at two time scales that are characterised by the decay
rate constants « and as. The fast decay rate constant a; is associated
with the rearrangement of the densely distributed particles to form veins.
This process is fast and leads to a drop in the network density p. Once
the first veins are formed, the network coarsens at a slower rate, which is
dependent on the rate constant ay. This means that in Fig. 6, the fast
process (associated to «aj) lasts until ¢/tnmax ~ 0.06, and the coarsening
process of veins which is associated with the decay rate constant as becomes
dominant at ¢/tyax > 0.06.

The coarsening of real vein networks of P. polycephalum follows different
kinetics than that of the model networks. The annihilation of veins was
found to decrease mono-exponentially in time, as described by

N = NO eiat> (7)

suggesting that reduction in the number of veins follows a single process.
The kinetics of this process is characterised by the decay rate constant .
The physical process accounted by the (mono-exponential) decay constant o
resembles that described by the (bi-exponential) decay constant aw in coars-
ening model networks.

The decreases in the number of veins during coarsening in both model
and real vein networks are plotted in Fig. 6. Here, a normalised number of
veins N/Ny and a normalised time ¢/t were used to allow for a convenient
comparison of the behaviours of the model and experimental networks.



1212 W. BAUMGARTEN, J. JONES, M.J.B. HAUSER

13 T " T
] experiment ]
+  model - SO7, RA 67.5°, SA 67.5° |
0.1
[=}
Z
Z e -
0.01+ TS
] ," 3}'!
1E-3 , ; . . .
0.0 0.2 0.4 0.6
t/t
max

Fig.6. Evolution of the number of veins in a coarsening network. The decay
of the normalised number of veins N/Ny in dependence of the normalised time
t/tmax- The coarsening of the model network (red stars) with SO = 7 is best
fitted by a bi-exponential function (light grey/red line, with the decay constants
a; = —31.25t.u. 7! and ap = —6.25 t.u.71). By contrast, the experimental network
(black squares) presents a mono-exponential coarsening dynamics (grey/blue sline:
mono-exponential fit, with o = —7.69 s71).

4.5. Fvolution of the mean length of veins

The lengths of the veins in the network are distributed log-normally,
in both, the model networks (Fig. 7) and in the real networks [2|. This
functional form remains constant during the entire coarsening process, only
the parameter values change in time. In numerically generated networks,
the log-normal function fits to the length distribution of veins to a good
agreement as long as SO is kept small (i.e. SO < 7). With increasing SO
values the peak of the function becomes sharper, increasingly deviating from
the typical log-normal distribution.

With time, the mean length (I) of the veins increases almost linearly in
both model and real networks (Fig. 8). This can be explained by the removal
of nodes from the network, which leads to both a reduction in the number
of veins and an increase in their lengths. P. polycephalum continuously
optimises its plasmodial vein network, resulting in the annihilation of several
nodes of the vein network, such that mean vein length (I) increases. In the
model, lacunar areas between the veins shrink and nodes are continuously
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removed, causing an increase in the lengths of the adjacent veins. As the
network coarsens, these processes lead to a decrease of the number N of
veins and to an increase of the mean vein length (I).

0.05 - T T T T T
= S03
- e s07
0.04 - 4 SO15
A
0.03 1 4

= 0.02 |
0.011
0.00 : : : —
0 30 60 90 120
I [px]

Fig. 7. Distribution of lengths of veins in simulations for SO = 3 (squares), SO = 7
(circles), and SO = 15 (triangles). The values of RA = 67.5° and SA = 67.5° were
held constant. Log-normal distributions were fitted to the data (lines).

80 T

» model - SO7, RA 67.5°, SA 67.5°
experiment L]

<>

0.0 0.2 0.4 0.6

t/t max

Fig.8. Evolution of the mean vein length (I) as a function of the normalised time
t/tmax- Red stars show the data obtained from model networks, whereas black
squares represent data obtained from experiments.



1214 W. BAUMGARTEN, J. JONES, M.J.B. HAUSER

The mean length (/) and the number of veins N were found to be corre-
lated through the power law

(1) =nN", (8)
as revealed by Fig. 9. The exponents 3 obtained from the coarsening model
and experimental networks were § = —0.41 and § = —0.35, respectively,

suggesting a similar, but not identical coarsening dynamics.

40 : ————— , ——

35 * model - SO7, RA 67.5°, SA 67.5° -
. = experiment

303", P

25

20

<[>

15

10

100 1000 10000
N

Fig.9. Correlation between the number of veins N and the mean vein length (I).
Red stars and lines represent the model data and the corresponding fit of Eq. (8) to
the data, respectively, whereas black squares and the light grey/blue line represent
the experimental data and the corresponding fit of Eq. (8) to the data, respectively.

4.6. Mean width of the veins

The mean width (w) of veins remains constant in time in both the model
and the experiment (Fig. 10). However, the mechanisms leading to a con-
stant mean vein width (w) are different in the model and experimental net-
works. In the model, the width of veins is determined by the values of SA,
RA and SO. Once these values are set, they remain fixed during the entire
simulation, and so does the mean width (w) of the veins. This contrasts with
the situation encountered in the experiments where the widths of the veins
are distributed log-normally [2, 3| at all stages of the coarsening process.
Interestingly, however, the mean width (w) of veins in the experiment also
remains nearly constant during the coarsening process, since the log-normal
distributions of the vein widths are narrow and the mean of the distribution
always settles at a small value of w.
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Fig. 10. Temporal evolution of the mean vein width (w) in model (red stars) and
experimental (black squares) networks. Interestingly, (w) is constant in both cases.

5. Discussion

Coarsening is a process that was observed in studies of P. polycephalum
vein networks, which are optimised with respect to the transport efficiency
of the veins that transport protoplasm and nutrients. Whereas the coars-
ening process and its dynamics have been characterised in a series of stud-
ies [2, 22, 29, 30|, simulation studies of this process are scant. In fact, this
has been attempted by Gunji and coworkers, who have presented a model
(the vacant particle-shrinkage model) that accounts for the coarsening of an
initially very dense to a sparse network that connects nutrient sources de-
posited on the arena (Petri dish) [22]. This setting reproduces experiments
as reported in Ref. [31]. Gunji et al. have also compared the coarsening dy-
namics obtained in numerical simulations to that of laboratory experiments
by studying the temporal evolution of some network parameters, for instance
the network area, the number of loops, and area closure of the experimental
and simulated networks [22].

In the present article, we have performed a detailed examination of the
coarsening dynamics as presented by a frequently used agent-based model
for P. polycephalum network [18, 19]. Results of the numerical studies were
compared to those obtained from experiments. We found that the model
reproduces a series of features seen in the coarsening of P. polycephalum
to good agreement, while some discrepancies remain. Good agreement was
achieved for the distribution of the lengths of the veins in the network,
that were found to obey log-normal distributions in both, experiments and
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numerical simulations. Furthermore, a good agreement was also observed
in the evolution of the mean vein length (I), which was found to correlate
to the number of veins N in the network by a power-law function in both,
experiments and simulations. The values of the exponents 8 were quite
similar as well.

Another point where numerical and real networks behave similarly is the
development of the network coverage p. Both experiments and simulations
reveal that the network coverage decreases in time until it approaches a value
of ~ 0.2 in both experimental and numerical networks. However, in exper-
iments this value of p ~ 0.2 is asymptotic, whereas in the numerical simu-
lations the area coverage p increases again as soon as all branching points
have been removed from the network, and only a single shrinking circular
vein remains. This difference can be explained by different problem settings
studied in the experiments on the one hand, and in the numerical studies
on the other. The experiments were designed to elucidate the dynamics of
a freely migrating giant plasmodium on a nutrient-free gel substrate. Ulti-
mately, the scarce, propagating network leaves the region of observation. On
the other hand, the agent-based model was originally designed to reproduce
a scenario where a dense matrix of protoplasm is spread on a substrate that
contains a few nutrient sources. In such a situation, the plasmodium does
not migrate. In the long term, a plasmodium located in a nutrient- and
stimulus-free setting (as studied in this paper) rather contracts to a single
spot.

These different settings lead to some disparities in the coarsening of ex-
perimental and numerical networks. The most pronounced difference lies in
the kinetics of the number of veins N in the network: whereas N decays
mono-exponentially in the experiments, the decay of N in numerical net-
works is bi-exponential. In the experiments, one considers the evolution of
the number of veins in the network area. That is, the formation of veins in
the transition zone between the apical and the network zones of the plas-
modium [1] are not taken into account. By contrast, the initial condition
used in numerical simulations corresponds to a plasmodium that is entirely
and densely covered by tiny veins, as it is the case of the transition zone.
Therefore, the simulated networks account for two processes, namely the
formation of the veins and their fate in a coarsening network. Following this
reasoning, the kinetics observed in the experimental networks corresponds
to the network decay described by as (Eq. (6)) in the simulated networks.

One of the factors determining the kinetics of coarsening in the simulated
networks is the area of the domain A that is sensed by any agent. In fact,
the coarsening occurs faster as the size of the sensing domain A (and hence
the value of the sensor offset parameter SO) increases. This suggests that
the rate of network coarsening augments with the area from which any agent
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(i.e., any position in the network) draws information about its environment.
This further suggests that an agent approaches a more efficient vein in a
more directed way as the sampling range A increases.

In conclusion, the present study has provided insights in the coarsen-
ing dynamics of both the plasmodial vein network of P. polycephalum, and
networks produced by the multi-agent model proposed in Ref. [18]. Even
though the modelling approach was developed for other purposes than the
study of the contemplative migration of a plasmodial vein network, the net-
work coarsening in experiments and numerical simulations show remarkable
similarities. Nevertheless, the mechanistic origins leading to the remaining
differences between experiments and numerical simulations constitute an in-
teresting challenge for further studies.

J.J. was supported by the EU research project “Physarum Chip: Growing
Computers from Slime Mould” (FP7 ICT Ref 316366).
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