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In this work, we extend the etching model [B.A. Mello, A. Chaves,
F.A. Oliveira, Phys. Rev. E 63, 041113 (2001)] to d+ 1 dimensions. This
permits us to investigate its exponents behaviour on higher dimensions,
to try to verify the existence of an upper critical dimension for the KPZ
equations. Our results show that d = 4 is not an upper critical dimension
for the etching model, and suggest that if an upper critical dimension exists
it must larger than six.
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1. Introduction

Among many equations describing the behaviour of moving surfaces, the
KPZ equation [1] is of special interest, partially motivated by the fact that it
describes many physical phenomena, such as flame front propagation [2, 3]
and deposition of thin films [4]. Although its exponents in one dimension
have been long known [5, 6], the renormalization group technique used for
obtaining its values is not usable for higher dimensions. As such, either nu-
merical simulations or approximate methods are used to obtain exponents
for the KPZ in higher dimensions and even then, the numerical determina-
tion of exponents can be tricky [7].

Such methods give no final answer to the values of these exponents,
which combined with the absence of exact solutions leads to the much de-
bated possibility of an upper critical dimension (UCD) dc for the dynamic
exponents [8]. For a concise review, see [9].
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One approach consisted of trying to find a general expression for the
exponents depending on the substrate dimension d, i.e. α = α(d), β = β(d)
and z = z(d). Notable examples are those for the RSOS model, by Kim and
Kosterlitz [10], for the Eden model [11] by Kertész and Wolf, the heuristic
approach to the strong-coupling regime by Stepanow [12], a tentative method
based on quantization of the exponents by Lässig [13], and a perturbation
expansion of the KPZ equation by Bouchaud and Cates [14]. Unfortunately,
further numerical results have shown these results to be incorrect [15–18].

Analytical methods such as mapping of the directed polymer [19], per-
turbation expansion [20] and mode-coupling techniques [21] among others
[22–25] observe dc = 4. An asymptotic weak noise approach by Fogedby [26]
suggests dc < 4. Otherwise, some numerical studies found no such limit
[11, 27, 28], as well as the numerical and theoretical results by Scharwartz
and Perlsman [9].

We present in this work a version of the etching model by Mello et al.
[29, 30] extended to work with d + 1 spatial dimensions [31]. The one di-
mensional version of the etching model is known to be compatible with the
KPZ equation, and as such, is classified in the KPZ universality class.

Using this version of the model, we determine exponents for surfaces
with 1 ≤ d ≤ 6, reaching the conclusion that if there is a UCD, it must be
such that dc > 6.

2. The etching model in d dimensions

Proposed by Mello et al. [29] in 2001, the etching model simulates an
one-dimensional crystalline solid submerged in a solvent liquid. Its scaling
exponents are very close to those of the KPZ equation, namely α = 0.4961±
0.0003 and β = 0.330 ± 0.001, and as such, it is believed to belong to the
KPZ universality class. This model was object of extensive research in recent
years [32–37].

We extend the model to d+1 dimensions, considering the solid a square
lattice exposed to the solvent liquid, with a removal probability proportional
to the exposed area. The algorithm can be described as:

1. at discrete instant T , one horizontal site i = 1, 2 . . . , L is randomly
chosen;

2. hi(T + 1) = hi(T ) + 1;

3. if hi+δ(T ) < hi(T ), do hi+δ(T +1) = hi(T ), where δ = ±1 are the first
neighbours.

In the multidimensional version, i and δ are vectors and δ runs over the 2d

first neighbours of the hypercube. We consider L to be the substrate length
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in each direction, with the total number of sites Ld. The normalized time t
defines the time unity as Ld cellular automata iterations, i.e., t = T/Ld. We
use periodic boundary conditions on the surface to reduce unwanted finite
size length effects. Albeit the model is not a direct mapping of the KPZ
equation, it generally mimics its dynamics and reproduces its exponents for
1 + 1 as well as the general case d+ 1.

We simulate several substrate lengths L for each dimension d, with each
experiment being repeated several times. This ensemble average is necessary
to reduce noise, producing higher accuracy in the resulting exponents.
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Fig. 1. Roughness w(L, t) from the etching model as a function of time, for surfaces
with (a) d = 1, (b) d = 2, (c) d = 3, (d) d = 4, (e) d = 5, and (f) d = 6, showing
only data points for t < 15t× for clarity. The lines are guides for the eyes.
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In Fig. 1, we show our results for simulating roughness dynamics on
various substrate lengths for dimensions from 1+1 to 6+1, on log–log scale.
In all simulated dimensions, the expected Family–Vicsek (FV) scaling [38]
is visible.

The Family–Vicsek scaling is a relation that can be used to model surface
roughness dynamics by considering it composed of two different regimes:
one in which it grows in a power-law-like function of time, and another one
where it saturates after a saturation time t×. The values of the saturation
roughness is related to the substrate length, with

ws ∝ Lα . (1)

These properties are expressed in the FV relation

w(t, L) = wsf(t/t×, β) =

{
wyt

β if t� t×

ws if t� t×
. (2)

3. Determination of exponents value

The etching model presents a transient behaviour such that times t . 1
are discarded from the fitting. Using the FV relation, we obtain our expo-
nents by fitting our data to a set of power laws. We fit values of wy, βL, and
ws by using the two expressions of (2) at t� t× and t� t×. Determination
of t× is made by analysing the intersection between the functions of the
aforementioned regimes. This implies in a β that is not independent of L.
For this reason, the parameter obtained from the fitting is called βL and a
correction is made in the form

βL = β

(
1 +

A0

Lγ

)
, (3)

where γ ≈ 1. This correction considers the real value of β to be the asymp-
totic of βL, eliminating finite size effects.

The values of βL, ws and t× for each value of d and L were obtained
from Fig. 1 and plotted in Fig. 2.

4. Dynamic exponents and the UCD

Using the fitting from the data shown in Fig. 2, we obtain the values of
each exponent for dimensions ranging from 1 + 1 to 6 + 1. It allows us to
observe how these exponents behave on higher dimensions.

In Table I, we show our results. It is simple to observe that there is
no UCD dc = 4. I.e. all exponents continues to change after d = 4. This
suggests that there is not an UCD dc ≤ 6, in agreement with previous results
[9, 11, 27, 28, 39] obtained through other models.
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Fig. 2. Parameters of (2) plotted as functions of L with d = 1 . . . 6. (a) ws(L), (b)
t×(L) multiplied by 10d for better visualization, and (c) βL(L). In all simulations
L = 2n, with n integer.

TABLE I

Dynamic exponents obtained from the fittings of Fig. 2. An evidence of the preci-
sion of these exponents is the value of α+ z, which should be 2.

d α β z α+ z

1 0.497(5) 0.331(3) 1.50(8) 2.00(1)
2 0.369(8) 0.244(2) 1.61(5) 1.98(2)
3 0.280(7) 0.168(1) 1.75(9) 2.03(2)
4 0.205(3) 0.116(3) 1.81(3) 2.02(1)
5 0.154(2) 0.079(3) 1.88(6) 2.04(1)
6 0.117(1) 0.054(1) 1.90(6) 2.01(1)
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It is important to note that although the one-dimensional etching model
is on the KPZ universality class, it is hard to classify it, or for that matter,
any multidimensional model, on the KPZ universality class, as there are no
known solutions for those cases. We can, however, compare our results with
others [31] showing great concordance.

5. Conclusion

We have made a generalized version of the etching model, capable of
simulating surfaces on d + 1 dimensions. Using this version of the model,
we were capable of obtaining exponents for systems up to 6+ 1 dimensions.
Through the obtained exponents, we have shown that the etching model does
not show an upper critical dimension at dc = 4. It is not possible, however,
to assert that the same thing is true to the KPZ equation, as we still do
not have a formal mapping of our model to the KPZ equation. However,
comparison with current literature points to the same general direction of
both the etching model belonging to the KPZ universality class and the
absence of this UCD on the KPZ equation. We expect as well that import
results obtained in stochastic process [40–46] could be used to give a more
complete solution to this problem.

This work was supported by the Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPQ), the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior (CAPES), the Fundação de Apoio a Pesquisa do
Distrito Federal (FAPDF), and the Companhia Nacional de Abastecimento
(CONAB).
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