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The properties of the Mott insulator to superfluid phase transition are
obtained through the fermionic approximation in the Jaynes–Cummings–
Hubbard model on linear, square, SC, FCC, and BCC Bravais lattices, for
varying excitation number and atom-cavity frequency detuning. We find
that the Mott lobes and the critical hopping are not scalable only for the
FCC lattice. At the large excitation number regime, the critical hopping is
scalable for all the lattices and it does not depend on the detuning.
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1. Introduction

Cold-atom systems have been regarded as efficient simulators of quantum
many-body physics [1, 2] due to its ease of controllability. Research involv-
ing ultracold bosonic systems has brought a great interest in the subject
[3, 4]. Experiments with optical lattices in three dimensions have revealed
the superfluid-Mott insulator (MI-SF) phase transition [? ]. Such phenom-
ena have been studied in the framework of the Jaynes–Cummings–Hubbard
Model (JCHM) [5–8].

The JCHM has been a widely used tool for the investigation of many-
body systems describing the interplay between the atom-cavity coupling and
the inter-cavity hopping of photons [9]. In the absence of the hopping term,
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the model reduces to the Jaynes–Cummings Model [10, 11] which can be ex-
actly solved within the Rotating Wave Approximation. When the hopping
term is non-zero, the solution becomes non-trivial. The difficulty to find
analytical solutions for the model has forced researchers to resort to approx-
imation or numerical methods for dealing with such problems [12]. Recently,
Mering et al. [13] have proposed an approach in which spin operators are
mapped to the fermionic ones, hence allowing the application of a Fourier
transform that decouples the Hamiltonian into independent ones, which are
associated to each momentum value. The great advantage of this method
is the simplicity in which physical quantities are found, such as the ener-
gies and the chemical potential. The approach presented by Mering et al.
includes all classes of Bravais structures. However, they only derived the
results for one-dimensional lattices.

Despite the experiments involving optical structures in three dimensions,
only a few theoretical results regarding these lattices in dimensions greater
than one is available in the current literature [14]. It lacks a systematic
presentation of the phase diagram of typical Bravais lattices. This is the
purpose of the present paper. Here, we investigate the JCHM for different
Bravais lattices in one, two and three dimensions, and analyse the influ-
ence of the topology on the MI-SF phase transition. We use the approach
introduced by Mering et al. [13].

The paper is organized as follows. In Section 2, we introduce the JCHM.
In Section 3, we present the fermionic approximation. Results are presented
in Section 4. Finally, in Section 5, we summarize our main results and
conclusions.

2. Jaynes–Cummings–Hubbard Model

The JCHM Hamiltonian for a lattice of L atoms is given by (~ = 1)

Ĥ = ω
∑
j

â†j âj + ε
∑
j

σ̂+j σ̂
−
j + g

∑
j

(
â†j σ̂
−
j + âj σ̂

+
j

)
−t
∑
〈ij〉

(
â†i âj + â†j âi

)
, (1)

where σ̂± = σ̂x ± iσ̂y and σ̂x,y,z are the usual Pauli matrices, âj (â
†
j) is the

annihilation (creation) operator of the light mode at the jth atom, ω is the
light mode frequency, and ε the atomic transition frequency. The light-atom
coupling is represented by g, t is the hopping integral, and 〈ij〉 denotes pairs
of nearest-neighbor atoms on the lattice.
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When t = 0, the Hamiltonian (1) is decoupled into L independent
Jaynes–Cummings model Hamiltonians. In this case, the system has well-
known eigenstates [15]. For t 6= 0, the atoms become coupled thus increasing
the complexity of the solution, since we cannot write the eigenstates of the
whole system as a direct product of single-cavity eigenstates. As discussed
in the introduction, an appropriate approach is the fermionic approximation
recently introduced by Mering et al. [13].

3. The Fermionic approximation

The fermionic approximation consists in replacing the spin operators by
fermionic ones, i.e., σ̂+ (σ̂−) is replaced by ĉ† (ĉ). In this framework, we
can rewrite Hamiltonian (1) as

Ĥ = ω
∑
j

â†j âj + ε
∑
j

ĉ†j ĉj + g
∑
j

(
â†j ĉj + âj ĉ

†
j

)
−t
∑
〈ij〉

(
â†i âj + â†j âi

)
. (2)

This approximation allows to solve the model exactly, by means of a Fourier
transformation. For t = 0, spin and fermionic operators are equivalent and
then the approximation becomes exact. Therefore, for small values of t, this
approach turns out to be very accurate when dealing with the JCHM [13].

Now, we apply a Fourier transform to the fermionic and bosonic opera-
tors as

âj =
1√
L

∑
~k

e−2πi
~k~Rj
L â~k , ĉj =

1√
L

∑
~k

e−2πi
~k~Rj
L ĉ~k , (3)

then the Hamiltonian can be written as

Ĥ =
∑
~k

[
ω~kâ

†
~k
â~k + g

(
â†~k
ĉ~k + â~k ĉ

†
~k

)
+ εĉ†~k

ĉ~k

]
, (4)

where ω~k = ω-ν~k and ν~k is the dispersion relation of the Bravais lattice.
The Hamiltonian (4) corresponds to a sum of L independent Hamiltoni-

ans Ĥ~k (Ĥ =
∑

~k
Ĥ~k), where each of them is associated with a particular

momentum ~k. The ground-state energy of Ĥ~k is given by

E
n~k
~k

=
(
1− δn~k0

)[
n~kω~k +

∆+ ν~k
2

+−1

2

√(
∆+ ν~k

)2
+ 4n~kg

2

]
, (5)

where the superscript denotes the excitation number and ∆ ≡ ε − ω is
the detuning between atomic transition and light frequencies. Notice that



1242 C.B.C. Gomes, F.A.G. Almeida, A.M.C. Souza

n̂~k commutes with Ĥ~k. For a total excitation number N (N =
∑

~k
n~k),

we have a particular configuration {n ~k1 , n ~k2 , n ~k3 , . . .} that minimizes the
total ground-state energy,

∑
~k
E
n~k
~k

. For t � 1, it is easy to see that this
configuration is {n, n, n, . . .} corresponding to the Mott insulator state. By
increasing t, a quantum phase transition takes place and the system is driven
to a superfluid state. Since n is constant, the phase boundaries of the Mott
lobes are n dependent. Thus, the nth Mott lobe is obtained through an
analysis of the particles chemical potential, µ+ = En+1

~k′
− En~k′ , and the hole

one, µ− = En~k
−En−1~k

[13], where ~k′ and ~k are, respectively, the values that
minimize and maximize these potentials. For µ+ = µ−, the Mott lobe is
closed at the critical hopping, tc, hence describing the MI-SF transition.

4. Results

In order to analyse the influence of Bravais lattices topology on the
MI-SF transition, we study the one-dimensional (1D), square (SQ), sim-
ple cubic (SC), body-centered cubic (BCC) and face-centered cubic (FCC)
lattices. The dispersion relations ν~k are, respectively, given by [16]

ν
(1D)
k = −2t cos(ka) , (6)

ν
(SQ)
kx,ky

= −2t[cos(kxa) + cos(kya)] , (7)

ν
(SC)
kx,ky ,kz

= −2t[cos(kxa) + cos(kya) + cos(kza)] , (8)

ν
(BCC)
kx,ky ,kz

= −8t[cos(kxa) cos(kya) cos(kza)] (9)

and

ν
(FCC)
kx,ky ,kz

= −4t[cos(kxa) cos(kya) + cos(kxa) cos(kza) + cos(kya) cos(kza)] ,

(10)
where a is the lattice constant. For each structure, we found the momen-
tum vectors that maximizes the hole chemical potentials and minimizes the
particle ones in order to obtain µ−, µ+, and consequently the Mott phase
boundary.

Figure 1 shows the first three Mott lobes for ω/g = 1 and ∆ = 0, for the
considered lattices. We see that as the number of lattice neighbors increases,
the MI phase region decreases. This result is expected since the probability
of photon tunneling increases for higher number of nearest-neighbors. We
observe that for d-dimensional hypercubic lattices, the lobes can be rescaled
by td = t/d causing the collapse into a single curve. The shape of the Mott
lobes is equal for bipartite lattices, where a bipartite structure is such that
we can decompose it into two substructures with all nearest-neighbour sites
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shared between each other. The FCC lattice is non-bipartite, hence display-
ing a different behavior. Thus, we propose to make a detailed comparative
analysis between the FCC and SC lattices representing, respectively, the
non-bipartite and bipartite classes.

Fig. 1. First three Mott lobes for different lattices. Inside the lobes we have a Mott
insulator state, while the outside of the system is in a superfluid state.

The first Mott lobe (n = 1) on the SC and FCC lattice is shown in
figure 2 for typical detuning values. We see that both lattices have a simi-
lar MI-SF phase transition frame. However, the FCC always has a smaller
MI phase region. For both lattices, the MI phase region decreases for in-
creasing detuning. Figure 3 shows the critical hopping tc as a function of
the detuning. While at the first lobe, tc decreases when ∆ increases, in the
other lobes (n > 1), we observe that the critical hopping reaches a maxi-
mum at ∆ = ∆m. For this particular detuning value, when n increases the
critical hopping decreases, as predicted in [13]. This behavior is present in

Fig. 2. Mott lobe for n = 1 and typical values of detuning for SC and FCC lattices.
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both structures. Figure 4 shows the critical hopping as a function of n for
∆ = 0. The properties expressed by both lattices are, again, qualitatively
equivalent where there is only one gap between the two curves. Figure 5
presents the detuning values corresponding to the maximal critical hopping
as a function of n. We can observe this, except for the n = 1 case, where the
tc maximum is associated with the detuning minimum. The critical hopping
correspondent detuning is approximately null.

Fig. 3. Relationship between critical hopping and detuning on the (right) SC and
(left) FCC lattices for varying excitation number.

Fig. 4. Critical hopping for the SC and FCC lattices in terms of n for null detuning.

By performing an asymptotic approach to large excitation number,
n� 1, we can find the dominant term of the critical hopping which is
given by

tc =
g

16d̃n3/2
+O

(
n−3

)
, (11)

where we obtain d̃ = 4 for the FCC and BCC lattices where it corresponds
to the hypercubic lattices dimentions, i.e., 1 for linear, 2 for square, and 3
for the SC lattice. It is important to emphasize that at the large-n regime,
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Fig. 5. Detuning versus n for maximal critical hopping on the SC and FCC lattices.

the detuning and the topology class (bipartite or non-bipartite) influence
on the critical hopping tc is suppressed. Figure 6 confirms the prediction
of equation (11). It shows that the exact results are in excellent agreement
with the asymptotic ones for n > 4.

Fig. 6. Critical hopping versus n for various lattices at the large n regime. The
symbols are related to numerically obtained results for ∆/g = −0.5, 0.0, and 0.5,
where each detuning value produces the same result with errors smaller than the
symbol size. The solid line represents the asymptotic analytical result given by
means of equation (11).

5. Summary and conclusions

We have studied the properties of the MI-SF phase transition for the
Jaynes–Cummings–Hubbard model over several Bravais lattices by means
of the fermionic approximation. We find that the transition parameters
of hypercubic lattices are scalable, except for the FCC lattice, since it is
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non-bipartite. The Mott lobes for the SC and FCC lattices show a similar
detuning dependence having only a quantitative difference which is sup-
pressed as the detuning increases. An analogous feature is observed in tc
versus n for null delta and in ∆m versus n where treir quantitative difference
tends to be smaller as n increases. Furthermore, we observed that not only
the number of neighbors influences the MI-SF phase transition but also does
the lattice topology.

The FCC lattice shows a behavior quantitatively different and non-
scalable from bipartite lattices. On the other hand, asymptotic results for
large excitation number indicate an universality on tc because it obeys a
power law in n which does not depend on ∆ and topology associated pa-
rameter can be rescaled for different classes through a multiplication of tc
by an effective parameter that corresponds to the dimension, for hypercubic,
and to 4, for BCC and FCC lattices.

This work was partially supported by CNPq, CAPES and FAPITEC/SE
— Brazilian Research Funding Agencies.
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