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We address the question regarding the effect of correlated random
spring constants in the one-dimensional harmonic model. We consider all
masses to be equal but the spring constants given by a random sequence
with long-range correlations. We generate the long-range correlated se-
quence of spring constants by using a fractional Brownian motion with a
power-law spectral density S(k) = 1/kα. Using an exact diagonalization
formalism, we compute the participation moments of eigenmodes within
the band of allowed frequencies. We unveil a regime on which all modes
below a critical frequency become extended.
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1. Introduction

The problem of heat conduction in one-dimensional classical systems of
interacting particles has attracted a lot of attention in the recent years [1–19].
One of the controversial and interesting questions is whether low-dimensional
classical systems displays finite thermal conductivity in the thermodynamic
limite. In particular, within the framework of one-dimensional models with
alternating masses, the detailed description of the thermal conductivity has
a long history, starting in the eighties [7]. Within the context of disordered
harmonic chains, there is the possibility to decompose the heat flux into
the sum of independent contributions associated to their eigenmodes [20].
Of particular interest are the localization properties of the eigenfunctions
and self-averaging properties of several observables such as the tempera-
ture profile and the heat flow. There is a large amount of works in the
past decades regarding the localization behavior in randomly disordered
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chains [21]. Most of these works have been concentrated on uncorrelated [22]
and correlated [23] disorder. In general lines, the collective vibrational mo-
tion of one-dimensional disordered harmonic chains of N random masses
can be mapped onto an one-electron tight-binding model [24]. In such a
case, most of the normal vibrational modes are localized. However, there
are a few low-frequency modes not localized, whose number is of the order
of
√
N [24, 25]. It has been shown that short-range correlations in the mass

distribution produce a new set of non-scattered modes in this system [26].
Moreover, non-scattered modes have also been found in disordered harmonic
chains with dimeric correlations in the spring constants [27]. Among the
models with short-range correlation, 1D chains with diluted disorder also
support extended modes [28]. The model consists of two interpenetrating
sub-lattices, one composed of random masses and the other being periodic.
Due to the periodicity of one sub-lattice, special resonant energies appear,
giving rise to a set of extended states. The problem of harmonic chains
with long-range correlated random masses was investigated in Ref. [29]. It
was numerically demonstrated that when the sequence of masses exhibit a
power law spectral density S(k) ∼ 1/kα with α > 1, a phase of extended
modes emerges. Moreover, the vibrational modes in a two-dimensional har-
monic lattice with long-range correlated random masses was investigated in
Ref. [30]. The scale invariance of the fluctuations of the relative partici-
pation number and the local density of states was obtained. There were
found clear signatures of extended vibrational modes when α > αc. It was
shown that αc depends on the magnitude of disorder. To confirm this claim,
the time evolution of an initially localized energy pulse was investigated. It
was shown that the second moment of the spatial distribution of the energy
displays a ballistic regime when α > αc, in agreement with the presence of
extended vibrational modes. We emphasize that these results demonstrat-
ing the possibility of fast transport in low-dimension systems has motivated
several experimental investigations [31–37]. Therefore, the direct relation
between the nature of eigenmodes and the degree of correlations within the
disorder distribution represent an interesting challenger within the context
of low-dimensional disordered systems.

In this work, we report further progress along the above lines by perform-
ing a numerical study of the vibrational modes in a disorder harmonic chain
with the scale-free long-range correlated disorder on the spring constants.
Using an exact diagonalizations formalism, we compute the participation
moments of eigenmodes within the band of allowed frequencies in order to
investigate the possible existence of a regime on which the system presents
extended states.
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2. Vibrational modes

We start by considering a disordered harmonic chain of N masses for
which the equation of motion for the displacements qn = un exp iω with
vibrational frequency ω is [25, 26](

βn−1 + βn − ω2mn

)
un = βn−1un−1 + βnun+1 . (1)

Here, all oscillators have identical masses with mn = 1 and the spring con-
stants given by

βn = β0 + νn , (2)
where β0 is a constant and νn is a random sequence with long-range cor-
relations. We can generate νn from a fractional Brownian motion with a
power-law density S(k) = 1/kα [29]. Here, we chose 〈νn〉 = 0 and the vari-
ance 〈(νn−〈νn〉)2〉 = 1. β0 = 4.5 is used to avoid negative spring constants.
In order to investigate the physical properties associated with the nature
of vibrational eigenstates, we numerically diagonalize the Hamiltonian and
calculate the participation function ξ(ω2) defined by [29]

ξ
(
ω2
)

=

∑
n

∣∣un (ω2
)∣∣2∑

n |un (ω2)|4
, (3)

where the Fourier components un(ω2) are those associated with an eigen-
mode ω2 of a chain with N masses and are obtained by direct diagonal-
ization of the N × N secular matrix A defined as An,n = (βn + βn+1),
An,n+1 = An+1,n = βn, and all other An,m = 0 [29]. In general, the partici-
pation number is a good estimate of the number of masses that participate
in the vibrational state. For extended states, ξ is proportional to the total
number of masses (ξ ∝ N). On the other hand, wave-functions presenting
power-law decaying tails may display an anomalous scaling of the partici-
pation number ξ ∝ ND2 , with D2 < d = 1 [38]. We averaged ξ in a small
window ∆ω2 around ω2

〈
ξ
(
ω2
)〉

=

y=ω2+∆ω2/2∑
y=ω2−∆ω2/2

ξ(y)

/Nω2 . (4)

We use ∆ω2 ≈ 0.1 and a large number of samples such that the number of
eigenmodes at each window (Nω2) is close to 105 in order to obtain a good
accuracy of the statistically averaged quantities. Here, we will be partic-
ularly interested in computing the relative fluctuation of the participation
number given by

∆ξ
(
ω2
)

=

√〈
ξ (ω2)2

〉
− 〈ξ (ω2)〉2

〈ξ (ω2)〉
, (5)
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where 〈ξ(ω2)2〉 can be computed as in Eq. (4). Within the framework of
random and non-random long-range hopping models, it was demonstrated
rigorously that the relative fluctuation of the participation number goes to
zero for extended eigenmodes [39, 40].

3. Results

In our calculations, the eigenmodes and eigenfrequencies were obtained
by direct diagonalization of the equation for the amplitudes un, using lat-
tices up to N = 1600 sites with open boundary conditions. From them, the
participation number and its relative fluctuation were calculated. Results
were obtained after averaging over 1000 realizations of the random sequence
of spring constants. The error bars obtained were smaller than the symbols
size. Figure 1 (a) shows the re-scaled participation number ξ/N versus ω2

for α = 0 i.e., the uncorrelated random case. We have considered N = 200,
400, 800, 1600. Note that the re-scaled participation number ξ/N for ω2

remains finite in the thermodynamic limit. However, for any nonzero fre-
quency, the vibrational modes become localized since ξ/N goes to zero. This
result reflects the localization of the eigenstates with finite frequency in the
presence of disorder, either in the masses or spring constants, and the delo-
calization of the uniform mode (ω2 = 0). In order to investigate the effects of
long-range correlations in random spring distribution, we compute the par-
ticipation number for α > 0. Figure 1 (b) shows the re-scaled participation
number ξ/N versus ω2 for α = 1.5 and N = 200, 400, 800, 1600. We can
see again that the re-scaled participation number ξ/N for ω2 > 0 vanishes
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Fig. 1. The re-scaled participation number ξ/N versus ω2 for N = 200, 400, 800,
1600 and (a) α = 0 and (b) α = 1.5. For all values of the correlation parameter
α ≤ 2, we have found that the uniform mode (ω = 0) is extended and all modes
with ω > 0 are localized.
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as the system size N is increased. Therefore, all modes with nonzero fre-
quency remain localized. The uniform mode (ω2 = 0) remains extended in
the thermodynamic limit. For all values of the correlation parameter α ≤ 2,
we have found similar results: The uniform mode (ω = 0) is extended, while
all modes with ω > 0 are localized. When the correlation parameter be-
comes larger than 2 (α > 2), the characteristics of the vibrational modes
change dramatically. The re-scaled participation number ξ/N for α = 2.5
(see Fig. 2) exhibits a well defined collapse of all curves in a finite frequency
range. This result is a clear signature of extended states. In Fig. 3, we plot
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Fig. 2. ξ/N for α = 2.5 and N = 200, 400, 800, 1600. We observe a well defined
collapse of all curves in a finite frequency range. This result suggests the existence
of a band of extended states in this regime.
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Fig. 3. The relative fluctuation of the participation number (∆ξ) versus ω2 for
α = 2.5 and N = 200, 400, 800, 1600. For ω < ωc, we observe that the relative
fluctuation goes to zero thus indicating extended states within this frequency range.
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the relative fluctuation of the participation number versus ω2. We can see
that the relative fluctuation goes to zero in a finite range of nonzero frequen-
cies. We can also observe that the region in which the relative fluctuation
vanishes is in good agreement with the frequency range where we found the
collapse of the re-scaled participation number (see Fig. 2).

4. Summary and conclusions

In summary, we studied the nature of collective excitations in harmonic
chains with correlated random spring constants. We considered the spring
constants to be given by a random sequence with long-range correlations.
The long-range correlated sequence of spring constants was generated by us-
ing a fractional Brownian motion with a power-law spectral density S(k) =
1/kα. Using an exact diagonalization technique, we computed the partici-
pation moments of eigenmodes within the band of allowed frequencies. Our
results suggest that for weak correlations all eigenmodes with ω > 0 are
localized. The uniform mode (ω = 0) remains extended in the thermo-
dynamic limit. For strong correlations (α > 2), our calculations suggest
the existence of a localization–delocalization transition. The numeral re-
sults indicate the presence of a finite region of frequencies ω < ωc in which
the participation number diverges and the relative fluctuation of the par-
ticipation vanishes. Therefore, linear chains with strong enough long-range
correlated spring constants allow the transport of low-frequency harmonic
components, while exponentially damps those with frequencies above a well
defined threshold. This feature can be used to design new devices that are
able to filter high-frequency components of acoustic waves. We hope the
present results may stimulate future experimental works aiming to probe
the here proposed phenomenology.

This work was partially supported by the Brazilian research agencies
CNPq and CAPES, as well as by the Alagoas state research agency FAPEAL.
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