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We report on the status of a direct computation of the time-like splitting
functions at next-to-next-to-leading order in QCD. Time-like splitting func-
tions govern the collinear kinematics of inclusive hadron production and
the evolution of the parton fragmentation distributions. Current knowl-
edge about them at three loops has been inferred by means of crossing
symmetry from their related space-like counterparts, which has left certain
parts of the off-diagonal quark–gluon splitting function undetermined. This
motivates an independent calculation from first principles. We review the
tools and methods which are applied to attack the problem.
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1. Introduction

Splitting functions are universal quantities in QCD. They govern the
collinear evolution in hard scattering processes with hadrons in the initial
or final state. In reactions with initial state protons, the parton luminosity
is parametrized by parton distribution functions whose scale dependence is
subject to evolution equations with space-like kinematics (a space-like hard
scale −q2 ≥ 0) and splitting functions P S

ab(x), where x denotes the par-
ton’s momentum fraction of the proton momentum. Similarly, for processes
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with identified hadrons in the final state, the parton-to-hadron transition
is described by the parton fragmentation distributions Dh

f (x, q2), where x
represents the fractional momentum of the final-state parton f transferred
to the outgoing hadron h and q2 ≥ 0 is a time-like hard scale. The scale
dependence of the fragmentation distributions is controlled by the so-called
time-like splitting functions PT

ba(x), and is given by

d

d ln q2
Dh
a

(
x, q2

)
=

1∫
x

dz

z
PT
ba

(
z, αs

(
q2
))
Dh
b

( x
z
, q2
)
, (1.1)

where the summation runs over the number nf of effectively massless quark
flavors and the gluon, b = qi, q̄i, g for i = 1, . . . , nf .

The time-like splitting functions PT
ba can be computed in perturbation

theory in powers of the strong coupling αs,

PT
ba

(
x, αs

(
q2
))

= as P
(0)T
ba (x) + a2s P

(1)T
ba (x) + a3s P

(2)T
ba (x) + . . . , (1.2)

where we normalize the expansion parameter as as = αs/(4π). At one
and two loops, the leading (LO) and next-to-leading order (NLO) splitting
functions P (0)T

ba and P (1)T
ba have been obtained with different methods in the

past, e.g., from the collinear singularities in inclusive hadron production in
electron–positron annihilation [1, 2].

In contrast, the next-to-next-to-leading order (NNLO) terms P (2)T
ba at

three loops have been determined by crossing relations from the respective
functions P S

ab for space-like kinematics based on analytic continuation in the
scaling variable x, i.e., mapping x → 1/x [3–5]. In fact, the LO space-like
and time-like splitting functions are identical (up to transposition), a fact
known as the Gribov–Lipatov relation [6, 7]. At higher orders, such relations
between the space-like splitting functions, or their analytic continuations,
and their time-like counterparts do not hold in the usual MS scheme [8].

Analytic continuations of the corresponding physical evolution kernels
in the respective kinematics can, however, be used for a constructive ap-
proach to the time-like splitting functions and yield relations, which fix the
components of the matrix P (2)T

ba at three loops [5]. For the diagonal terms
P

(2)T
aa , these results agree with assumptions about the universality of evo-

lution kernels [9], while for the off-diagonal terms an uncertainty in the
time-like quark–gluon splitting function PT

qg remains. This motivates a di-
rect calculation of the time-like splitting functions in perturbative QCD from
a physical process. We choose electron–positron annihilation and consider
inclusive hadron production through photon exchange as well as top-quark
mediated decay of the Higgs boson into hadrons in the effective theory [4].
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The report is organized as follows. In Section 2, we show how to recon-
struct time-like splitting functions from the bare fragmentation functions in
the framework of mass factorization, picking the process e+ + e− → γ∗ →
g + 〈n partons〉 as an example. Section 3 is dedicated to some technical
aspects of the calculation. Here we briefly discuss, in particular, how to
perform final-state integration with the help of integration-by-parts (IBP)
method and how to find master integrals from differential equations. In ad-
dition, to illustrate our approach, we provide some examples relevant to the
calculation of NLO corrections to time-like splitting functions. We summa-
rize in Section 4.

2. The set-up

Let us consider the relevant parton processes in electron–positron anni-
hilation

e+ + e− → γ∗(q)→ p(k0) + 〈n partons〉 , (2.1)
e+ + e− → φ∗(q)→ p(k0) + 〈n partons〉 , (2.2)

with photon (γ) exchange and Higgs (φ) boson exchange in the effective the-
ory and the partons p = q, q̄, g with momentum k0. For the photon-exchange
process (2.1), following the notation in [10], the unpolarized differential cross
section in m = 4− 2ε dimensions is given by

1

σtot

d2σ

dx d cos θ
=

3

8

(
1 + cos2 θ

)
FT(x, ε)+

3

4
sin2 θFL(x, ε)+

3

4
cos θFA(x, ε) ,

(2.3)
where θ denotes an angle between the beam and parton momentum k0. The
scaling variable x is defined as

x =
2 q ·k0
q2

, q2 = s > 0 , 0 < x ≤ 1 . (2.4)

In the center-of-mass frame of the e+e− pair, x can be interpreted as a
fraction of the beam energy carried by the parton with momentum k0. The
transverse, longitudinal, and asymmetric fragmentation functions are defined
as FT, FL, and FA, respectively. They are the analog quantities of the deep-
inelastic structure functions for space-like q (−q2 ≥ 0).

2.1. Mass factorization

In the context of the mass factorization formalism, the transverse frag-
mentation function FT(x, ε) in the MS scheme can be written as

FT,p(x, ε) =

∞∑
n=0

ans F
(n)
T,p(x, ε) , p = q, g , (2.5)
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and explicitly, in terms of coefficients of the QCD β-function and splitting
functions up to NNLO for e+ + e− → γ∗ → p(k0) + 〈n partons〉

F (1)
T,p = −1

ε
P (0)
pq + c(1)p + ε a(1)p + ε2 b(1)p +O

(
ε3
)
, (2.6)

F (2)
T,p =

1

ε2

{
1
2P

(0)
pi P

(0)
iq + 1

2β0P
(0)
pq

}
− 1

ε

{
1
2P

(1)
pq + P

(0)
pi c

(1)
i

}
+
{
c(2)p − P

(0)
pi a

(1)
i

}
+ ε
{
a(2)g − P

(0)
pi b

(1)
i

}
+O

(
ε2
)
, (2.7)

F (3)
T,p = − 1

ε3

{
1
6P

(0)
pi P

(0)
ij P

(0)
jq + 1

2β0P
(0)
pi P

(0)
iq + 1

3β
2
0P

(0)
pq

}
+

1

ε2

{
1
6P

(0)
pi P

(1)
iq + 1

3P
(1)
pi P

(0)
iq + 1

2P
(0)
pi P

(0)
ij c

(1)
j + 1

3β1P
(0)
pq

+β0

(
1
3P

(1)
pq + 1

2P
(0)
pi c

(1)
i

)}
−1

ε

{
1
3P

(2)
pq + 1

2P
(1)
pi c

(1)
i −

1
2P

(0)
pi P

(0)
ij a

(1)
j + P

(0)
pi c

(2)
i −

1
2β0P

(0)
pi a

(1)
i

}
+
{
c(3)p − P

(0)
pi a

(2)
i + 1

2P
(0)
pi P

(0)
ij b

(1)
j −

1
2P

(1)
pi a

(1)
i + 1

2β0P
(0)
pi b

(1)
i

}
+O(ε) , (2.8)

where summation over the repeated indices i, j = q, g, Mellin convolution in
x-space, and the normalization F (0)

T,p = δ(1− x) is understood.
The term in Eq. (2.8) proportional to 1/ε for p = g contains the off-

diagonal time-like splitting function P
(2)T
gq (plus some terms of lower or-

ders which are known). The fragmentation functions F (i)
φ,p for the Higgs

boson decay into hadrons in the effective theory [4] with the normalization
F (0)
φ,g = δ(1− x), i.e. e+ + e− → φ∗(q)→ p(k0) + 〈n partons〉, allow the ex-

traction of P (2)T
qg (in which we are interested) from F (i)

φ,q. The corresponding
expressions for the mass factorization can be obtained by replacing q → g
in Eqs. (2.6)–(2.8).

2.2. Perturbative expansion in QCD

In perturbative QCD, the transverse fragmentation function FT(x, ε) can
be calculated with standard means as (see [1])

FT(x, ε) =
2

2−m

(
q ·k0
q2

Wµ
µ +

kµ0k
ν
0

q ·k0
Wµν

)
, (2.9)

where the hadronic tensor Wµν(x, ε) (for the case of photon exchange) reads

Wµν(x, ε) =
xm−3

4π

∫
dPS(n) Mµ(n)Mν(n) . (2.10)



Towards Three-loop QCD Corrections to the Time-like Splitting Functions 1283

Here dPS(n) is n-particle real phase-space, defined in Eq. (3.1), Mµ(n) de-
scribes amplitudes for the process of Eq. (2.1) and the index µ corresponds
to the polarization of the virtual photon, which is summed over.

To generate Feynman diagrams for the processes (2.1) and (2.2), we
use QGRAF [11] and process its output further with the help of FORM [12],
i.e., contract indices, calculate Dirac traces and SU(N) color factors, make
partial fractioning, etc. The resulting scalar expression is suitable for the
further final-state integration as described in Section 3.

In the remaining part of this section, let us discuss which contributions
to the NNLO splitting functions are known and which actually need to be
calculated.

Fig. 1. Contributions to the time-like splitting function at LO: P (0)T
gq (tagged gluon,

photon exchange process (2.1)); respectively P
(0)T
qg (tagged quark, Higgs boson

exchange process (2.2)).

(a) (b)
Fig. 2. The same as Fig. 1 at NLO.

As described in [5, Eq. (38)], the uncertainty for P (2)T
qg is proportional

to β0, which means that only contributions with closed or cut fermion loops
should be considered. For that reason, we do not need to account for the
topologies depicted in Fig. 3 (d), which are sub-leading in nf . The two-loop
contributions in Fig. 3 (a), (b) have been recently calculated in [13], while
the contributions in Fig. 3 (c) can be constructed from one-loop helicity
amplitudes calculated in [14] (γ∗ → 4 partons) and [15, 16] (φ→ 4 partons),
respectively. For those contributions, the final-state integration is of NLO
complexity and, hence, is considered to be simple.

Finally, the contributions of Fig. 3 (e) are not known and should be
computed by explicitly performing the final-state integration. This is a non-
trivial task and in the next section we describe how to complete it.
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(a) (b) (c)

(d) (e)
Fig. 3. The same as Fig. 1 at NNLO.

3. Final-state integration

The phase-space for the n-particle final-state integration in Eq. (2.10)
reads as

∫
dPS(n) =

∫ n∏
i=0

dmki δ
+
(
k2i
)
δ

(
x− 2 q ·k0

q2

)
δ

q − n∑
j=0

kj

 . (3.1)

Integrals of this type can be calculated analytically with up to n = 4 particles
in the final state using explicit parametrizations of the phase-space (for
example, see [1, 17]). However, with n = 5 particles in the final state, such
an approach does not look promising.

Alternatively, we propose to find such integrals with the method of differ-
ential equations (see, e.g., [18]), which has been used in a number of recent
state-of-the-art computations. The idea is as follows:

1. Find the integration-by-parts (IBP [19, 20]) rules and reduce all the
integrals to the small set of masters.

2. Build a system of differential equations in x for the masters.

3. Choose an appropriate basis of new masters, so that the r.h.s. of the
system of equations vanishes in the limit ε→ 0.

4. Solve a new system of equations as a series in the parameter ε.

5. Find the integration constants from inclusive integrals.

Let us briefly discuss each of the above steps and provide some examples
from calculations of the contributions in Fig. 2 (b).
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3.1. Integration-by-part rules and master integrals

Integration-by-parts (IBP) [19, 20] is a powerful tool to reduce a set
of integrals of common structure to the small number of master integrals.
Nowadays, there are several tools to automatically generate IBP reduction
rules, e.g. FIRE [21], LiteRed [22, 23] or Reduze [24]. We chose LiteRed out of
that list because this tool supports cut propagators, a feature that leads to
additional simplifications in final-state integrals, which is essential at higher
orders. At NLO (see Fig. 2 (b)), LiteRed demonstrated good performance
and generated all the IBP rules (in several hours on a standard PC) and
found 9 master integrals, depicted in Fig. 4. In order to parametrize those
integrals, we introduce the following notation

Ji(x, ε) = {a1, . . . , an} =

∫
dPS(n)

1

Pa1 . . . Pan
, (3.2)

with propagators for the contributions from Fig. 2 (b) defined as

P1 = (q − k1)2 , P2 = (q − k2)2 , P3 = (q − k1 − k3)2 ,
P4 = (q − k1 − k2)2 , P5 = (q − k2 − k3)2 , P6 = (k2 + k3)

2 ,

P7 = (k1 + k3)
2 . (3.3)

It is worth to mention that this set of masters differs from the one in
Mellin space calculated for the same contribution, see [25].

For the contributions from Fig. 3 (e), LiteRed can solve the major part
of IBP sectors. However, for a few, it takes months of CPU time with no
guarantee of completion. Preliminary attempts show that these sectors can
be solved with a private version of Reduze, which also features support for
cut propagators.

3.2. Differential equations and solutions for master integrals

The master integrals from Fig. 4 may be integrated explicitly, which at
higher orders becomes a challenging task. A simpler approach is to solve a
linear system of differential equations, which is constructed as

∂Ji(x, ε)

∂x
=

n∑
j=1

Aij(x, ε)Jj(x, ε) , i, j = 1 . . . n , (3.4)

where matrix Aij(x, ε) is obtained by reducing the l.h.s. of Eq. (3.4) using
IBP reduction rules. In the case of masters from Fig. 4, we obtain the
following matrix
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+
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+
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+
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+
1
)2

2
(6
ε−
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−
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+
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Solutions of this system can be found in terms of harmonic polylogarithms
(HPL), implemented in the harmpol [26] package for FORM or in the HPL
[27] package for Mathematica.

J1 = {} J2 = {1} J3 = {1, 2} J4 = {1, 1, 2} J5 = {1, 2, 3, 5}

J6 = {2, 6} J7 = {2, 4, 6} J8 = {1, 2, 6, 7} J9 = {3, 5, 6, 7}

Figure 1: Master integrals for the real emission contributions to the time-like splitting functions at
NLO (cf. fig. ??). The fat line denotes a propagator raised to second power.

1

Fig. 4. Master integrals for the real emission contributions to the time-like splitting
functions at NLO (cf. Fig. 2 (b)). The thick line denotes a propagator raised to
second power.

3.3. Boundary conditions for master integrals

The last step in solving for masters is to fix integration constants which
appear in solutions of differential equations. Such constants can be deter-
mined conveniently from the inclusive integrals calculated in [17, 25].

In the inclusive case, there are only 4 master integrals (Fig. 5), hence
IBP rules exist in order to reduce the 9 masters integrated in the x variable

Ji(ε) =

1∫
0

dx Ji(x, ε) , (3.5)

which is basically the first Mellin moment.

J1(ε) J3(ε) J8(ε) J9(ε)

Figure 1: Masters for the phase-space integrals at NLO

1

Fig. 5. Masters for the phase-space integrals at NLO.
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Such rules can be found with the help of LiteRed and read

J2(ε) =
3− 4ε

1− 2ε
J1(ε) , J4(ε) = −(2− 3ε)(3− 4ε)

ε
J1(ε)− (1− 3ε)J3(ε) ,

J5(ε) = J8(ε) , J6(ε) = −2(2− 3ε)(3− 4ε)

ε(1− 2ε)
J2(ε) ,

J7(ε) =
(1− 3ε)(1− 4ε)(2− 3ε)(3− 4ε)

2ε4
J1(ε) , (3.6)

which are exact in m dimensions, i.e., to all orders in ε.

4. Summary

In these proceedings, we have motivated the necessity for a NNLO QCD
computation of the time-like splitting functions from first principles. We
have outlined a strategy how to calculate the required three-loop contribu-
tions. Based on the physical process e+ + e− → γ∗ → g + 〈n partons〉, we
have analyzed the transverse fragmentation function FT(x, ε) in x-space us-
ing dimensional regularization. The most challenging part of our approach
lies in the evaluation of the final-state integrals with a projection to x-space.
For the NNLO case, this corresponds to four-loop integrals with one massive
leg and cut internal propagators. Thanks to an analysis in Mellin space and
to partial results available in the literature, the number of topologies, and
hence the integrals to calculate, can be largely reduced. Despite such sim-
plifications there are, however, still about 80 integrals left to calculate and
we employ the integration-by-parts technique and the method of differential
equations to obtain the master integrals. The latter method has become
widely used in the last years and we have described its application to our
calculations.
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