
Vol. 46 (2015) ACTA PHYSICA POLONICA B No 7

INCREASED ILC SOFTWARE PERFORMANCE
USING CLOUD COMPUTING∗

B. Krupa, T. Lesiak, T. Wojtoń, L. Zawiejski

on behalf of the FCAL Collaboration

The Henryk Niewodniczański Institute of Nuclear Physics
Polish Academy of Sciences

Radzikowskiego 152, 31-342 Kraków, Poland

(Received May 22, 2015)

This work presents the speed up measurements of getting data for study
of e+e− → e+e−X process using Cloud Computing. The analysis contains
performance measurements and general review on the dependency between
the task size, the number of CPU cores and the time used to compute.

DOI:10.5506/APhysPolB.46.1337
PACS numbers: 89.20.Ff

1. Introduction

The physics simulation, reconstruction and analysis need the increasing
amount of computing power and consequently more time. The computing
models are evolving, trying to provide easy-to-use tools. The latest and most
reliable model is Cloud Computing. This model has many facilities. In this
work, the Cracow Cloud One platfrom [1, 2] was used.

The e+e− → e+e−X process [3] simulations for the ILC experiment
need high statistics for better analysis, also input parameters for detector
optimalization change frequently. This process takes a lot of time. The
problem is to decrease the waiting time for data to be analyzed to minimum.
Additionally, the measurements could be helpful at the final stage of data
production.

2. Cloud Computing

Cloud Computing provide computer infrastructure on-demand to end-
users. Additionally, the user can allocate resources and scale them when

∗ Presented at the Cracow Epiphany Conference on the Future High Energy Colliders,
Kraków, Poland, January 8–10, 2015.

(1337)

1338 B. Krupa et al.

needed — this means that hardware is really used, because if someone needs
more resources for computing — he/she just reserves more resources. Also,
if the resources are no longer needed, the user can release them. There are
a few models of Cloud Computing:

— Software as a Service (SaaS) — applications used by the users, for
example — webmail.

— Platform as a Service (PaaS) — a set of tools, services and software
ready to use.

— Infrastructure as a Service (IaaS) — a base for other models, this
includes hardware, network, storage.

Especially for High Energy Physics computation, which needs a lot of
resources for e.g. CPU cores and memory, a virtual cluster solution is pro-
posed. It is a set of fully controlled and configured virtual machines, which
are ready to use within minutes.

The Cracow Cloud One platform has the dedicated virtual clusters called
Farms. The Farms are a configured set of virtual machines with an access
to external storage for data which are easy to create and manage.

3. ILC software and virtual clusters

To demonstrate a real example and imagine the problem, 1000 events
of e+e− → e+e−X process at 500 GeV centre-of-mass energy have been
generated by PYTHIA [4] generator. The simulation and reconstruction of
this data in a sequential way takes more than 10 hours. But if this case has
been parallelized with 25 of CPU cores, the whole process takes 1 hour.

A typical processing chain of preparing data for analysis could be divided
into 3 parts:

— events generation,
— simulation,
— reconstruction.

As mentioned before, the physics processes were generated by Pythia.
The generated events are stored in ASCII files (HepEvt) and then simu-
lated using Mokka [5] software. The reconstruction is done by Marlin [6]
framework.

The use of virtual clusters requires the possibility of running more than
one instance of Mokka and Marlin. For this reason, the whole process must
be divided into smaller jobs.

The events are generated in a sequential mode without parallelization,
because this would require changing the generator code. Otherwise, the
generation takes only 0.1% of the total time.

Increased ILC Software Performance Using Cloud Computing 1339

Therefore, an event file is splitted into parts by specially developed
python script. The script accepts as a parameter the number of parts to
split the task.

Mokka and Marlin require some configuration files which contain a path
to input and output data, and the number of events to processing.

These files are created from the prepared template and then the jobs
could be sent to worker nodes. Automated checking will be done after the
jobs are finished.

The whole process is automated and is shown in figure 1. The user pro-
vides only the necessary information in the startup script:

— number of events,
— number of parts,
— path to the storage directory.

Fig. 1. Common scheme of automating processing of 3 000 events splitted into
3 jobs.

The execution of the startup script will split events to smaller parts and
distribute then to worker nodes. After this procedure, Mokka and Marlin
could run in parallel, when each instance of software processes one part of
events. In the end, the parts are merged together to provide files for analysis.

4. Results

For testing purposes, the computation has been made for 100 000, 500 000
and 1 000 000 events. Each run was precisely measured and performance data
was collected to evaluate parallel computing speed-up (Fig. 2).

1340 B. Krupa et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600 700 800 900 1000

s
p
e
e
d
u
p

number of parts

100k
500k

1M

Fig. 2. Speed-up of 100 000, 500 000 and 1 000 000 events parallelization.

The time necessary to execute a single operation was estimated and
shown in Table I.

TABLE I

Single operation time estimations.

Type Time [s] Depend on

Generating Seq. 0.036 event
Splitting Seq. 0.0004 event
Preparing files Seq. 0.0008 part
Mokka init Seq. 38.5 part
Mokka compute Par. 36 event
Marlin init Seq. 4.8 part
Marlin compute Par. 3.35 event
Merge Seq. 0.1 event

The operations depend on the number of events or the number of parts.
This means that an increasing number of parts relatively extends the time
of processing. The operations were categorized into two types: sequential
and parallel. Parallel operations could be executed simultaneously.

At this point, it is important to mention that Mokka and Marlin initializa-
tion time are treated as a sequential-only operation, because software needs
to be connected to shared database. A simultaneous access could cause er-
rors, thus a decision was made not to parallelize this operation. Therefore,
here is some area to optimize. One of the possibilities is to create a local
mirrored database.

Increased ILC Software Performance Using Cloud Computing 1341

The total time of the whole process from this measurements and combi-
nations of the number of events and number of parts are evaluated.

CPU core usage over full computation time for 100k, 500k and 1M events
is shown in figure 3. Respectively the shortest time for each dataset is
correlated with the corresponding number of CPU cores. For dataset of
100k events, computing time is 11 h with 301 CPU cores usage (Table II).
A further increase of the number of cores increases time. But decrease
number of cores by factor 2 takes less than 2 hours more. In other words,
the decreasing number of cores by factor 2 needs waiting for results about
10–15% longer.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900 1000

ti
m

e
 [
h
]

number of parts

100k
500k

1M

Fig. 3. Total time of processing 100 000, 500 000 and 1 000 000 events.

TABLE II

An example of the changing the computing time according to the number of the
CPU cores.

Events CPU Time [h]

100k 301 11.0
500k 674 35.2
1M 953 60.8
100k 150 12.9 (11.0 + 17.3%)
500k 337 39.2 (35.2 + 11.4%)
1M 476 66.6 (60.8 + 9.5%)

100k 100 15.9 (11.0 + 44.5%)
500k 224 46.0 (35.2 + 30.7%)
1M 317 76.2 (60.8 + 25.3%)

1342 B. Krupa et al.

5. Summary

The main conclusion of this work is that the number of CPU cores should
be properly selected. Also processing a large amount of data should be
preceded by some performance measurements to optimize the whole process.
The described system could be used as a kind of benchmark to select how
many events could be processed at a specific time with the defined number
of CPU cores. Otherwise, it could be helpful to estimate how much time
takes processing of a certain number of events with a specified number of
CPU resources.

REFERENCES

[1] J. Chwastowski et al., Comput. Sci. 13, 103 (2012).
[2] Cloud Computing One website: http://cc1.ifj.edu.pl
[3] B. Krupa et al., Acta Phys. Pol. B 46, 1329 (2015), this issue.
[4] Pythia 6.4 Physics and Manual, arXiv:hep-ph/0603175.
[5] Mokka webpage: http://mokka.in2p3.fr/
[6] F. Gaede et al., Marlin webpage:

http://ilcsoft.desy.de/portal/software_packages/marlin/

http://dx.doi.org/10.7494/csci.2012.13.2.103
http://dx.doi.org/10.5506/APhysPolB.46.1329

	1 Introduction
	2 Cloud Computing
	3 ILC software and virtual clusters
	4 Results
	5 Summary

