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1. Introduction

In this contribution, we report on the calculation of the next-to-leading
order (NLO) DGLAP evolution kernels that was started in Refs. [1, 2]. The
inclusive DGLAP splitting functions at NLO have been known for a long
time, they were first calculated in early 1980s [3–6]. Today also the next-
to-next-to-leading order (NNLO) corrections have been known for over ten
years [7, 8] so why there is the interest in NLO splitting functions? The
reason for this is the fact that all the above mentioned calculations were
performed in the MS scheme and by their nature are inclusive. A direct
motivation for the current work comes from Monte Carlo simulations of
parton cascades in a form of parton shower (PS) generators. In particular,
from the effort of the Cracow group that aims to include full NLO corrections
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in the parton shower simulations [9–12]. This means not only corrections to
the hard matrix element, as is done in approaches like MC@NLO [13] and
POWHEG [14], but also the full NLO corrections to the parton cascades.

The big difficulty with including NLO corrections in parton shower al-
gorithms is connected with the nature of parton shower generators. Specifi-
cally, in PS approach, all the subsequent parton emissions need to be treated
in fully exclusive way, meaning that their 4-momenta are not integrated (in-
cluding transverse degrees of freedom). For comparison, in a standard in-
clusive QCD calculations there are two elements, Wilson coefficient (parton
level hard matrix element) and parton distribution functions (PDFs) that
sum up all the above mentioned emissions in an inclusive way. Moreover, if
we go beyond LO in PS approach, we need additional prescription to avoid
double counting of contributions in hard matrix element and in the shower.
This is referred to as the NLO matching and it was a major improvement for
PS in the last decade. It was originally done with MC@NLO method and
shortly after the POWHEG method was introduced. Recently, an alterna-
tive solution from the Cracow group is also available referred to as KrkNLO
method [12]. This new solution is distinct from the earlier methods in a
number of ways, one of them being the use of different factorization scheme.
Instead of using traditional MS scheme that was designed for simplicity of
inclusive calculations, this method uses a dedicated factorization scheme,
referred to as Monte Carlo (MC) scheme, which was designed especially for
Monte Carlo simulations of parton cascades. The purpose of introducing
this scheme was not only NLO matching but rather simplification of a more
difficult task that is including NLO corrections in the shower and maybe
even later matching of the NLO shower with an NNLO matrix element.
One of the necessary ingredients needed for this purpose are NLO evolution
kernels calculated in the MC scheme. We first calculated the real emission
corrections to the non-singlet NLO splitting functions [1] as these were re-
quired for proof of concept of the methodology to include NLO corrections
in the shower [9, 10]. Recently, we complemented the scheme by providing
prescriptions for computing virtual corrections and also calculated them for
the non-singlet case [2]. Currently, we are finishing the calculation of the
NLO splitting functions and in this contribution, we are reporting on the
progress.

2. Monte Carlo friendly regularization scheme

The regularization prescription for computing NLO splitting functions
is one of the ingredients of the Monte Carlo factorization scheme [12]. It
is based on the prescription of Curci, Furmanski and Petronzio (CFP) in-
troduced in [5] during the first NLO kernel calculation in x space. The
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most important features of the CFP scheme are: (i) the use of axial gauge;
and (ii) principal value (PV) regularization for the axial gluon propagators
[leading to infrared (IR) singularities], namely

gµν − l
µnν + lνnµ

ln
→ gµν − l

µnν + lνnµ

[ln]PV
,

1

[ln]PV
=

ln

(ln)2 + δ2(pl)
, (1)

where n is the axial gauge vector, p is an external reference momentum and δ
is the PV geometrical regulator. Unfortunately, the use of PV prescription
in this way leads to complicated patterns for cancellation of singularities
between real and virtual diagrams, which is unacceptable if we want to use
them for the construction of PS Monte Carlo.

We illustrate it on the example of the non-singlet diagram NLO-qq-d
displayed in Fig. 1. If calculated using CFP (MS ) prescription, the virtual
graph gives (we provide here only the singular terms)

Γ virt PV
NLO-qq-d ∼

1

ε3
[−pqq(x)]

+
1

ε2

[
pqq(x)

(
−6I0 − 2 ln(1− x)− ln(x) +

3

2

)
+ (1− x)

]
+
1

ε
[pqq(x) (−2I1 + 6I0 ln(1− x) + 2I0 ln(x)) + 6(1− x)I0] , (2)

and the corresponding real graph reads

Γ real PV
NLO-qq-d ∼

1

ε3
[pqq(x)] +

1

ε2
[pqq(x) (2I0)− (1− x)]

+
1

ε
[pqq(x) (−2I1 + 4I0 − 2I0 ln(1− x) + 2I0 ln(x))− 2(1− x)I0] , (3)

where pqq(x) = 1+x2

1−x is the LO qq kernel, and I0 and I1 represent single and
double logarithmic singularities regulated by the PV regulator δ

I0 =

1∫
0

dx
1

[x]PV
= − ln δ +O(δ) ,

I1 =

1∫
0

dx
lnx

[x]PV
= −1

2
ln2 δ − π2

24
+O(δ) . (4)

We can see that higher order ε poles cancel between the corresponding
real and virtual graphs, which is probably impossible to implement in a MC
shower program.
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(NLO-qq-d-real) (NLO-qq-d-virt)
Fig. 1. Selected non-singlet diagrams contributing to the Pqq kernel.

Because of this fact, we have modified the CFP prescription by changing
the way PV regularization is applied. Instead of applying it only to the gluon
propagators, we apply it to all the singularities in the plus variable, l+ =
nl/np, see [2]. This results in simplification of the real–virtual cancellations
which can be seen by examining results for NLO-qq-d graphs in the new
prescription (referred as NPV). The virtual graph is given by

Γ virt NPV
NLO-qq-d ∼

1

ε2

[
pqq(x)

(
−4I0 − 2 ln(1− x)− ln(x) +

3

2

)]
+
1

ε
[pqq(x) (−6I1 + 6I0 ln(1− x) + 2I0 ln(x)) + 4(1− x)I0] , (5)

and the real graph is

Γ real NPV
NLO-qq-d ∼

1

ε
[pqq(x) (2I1 + 4I0 − 2I0 ln(1− x) + 2I0 ln(x))] . (6)

One can easily check that adding real and virtual graphs in both prescrip-
tions leads to the same final results. However, from the MC point of view,
the situation in the NPV prescription is hugely improved. There are no
triple ε poles, the double poles occur only in the virtual graph and the real
one is free of them1.

Actually, a general statement is valid2. In the case of the NPV regu-
larization: (i) ε3 poles in virtual and real graphs are absent (replaced by
1/ε ln2 δ-type structures), and (nearly) all ε2 poles originate from the virtual
graphs alone, (ii) all real emission graphs (contributing to NLO splitting
functions) feature only single ε poles, (iii) sum of real and virtual graphs for
the same topology reproduces the corresponding sum calculated using CFP
prescription.

1 More specifically, the 1/ε3 terms have been replaced by 1/ε ln2 δ-type terms, regulated
simultaneously by ε and δ.

2 With some exceptions related to running of the coupling constant and CFP projection
operators.
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There are some additional subtleties connected to the graphs contribut-
ing to the running of the strong coupling (e.g. NLO-gg-f), these are partly
discussed in Ref. [2].

Using NPV regularization prescription is the first step on the way to
the results in the Monte Carlo scheme. For the MC shower simulations,
we need purely 4-dimensional calculations and, as we can see above, the
presented results still feature single (and partly double) ε poles. This can
be, however, avoided by introducing additional cut-off regularization for the
overall scale integration. It was already done in [1] when we calculated real
emission contributions to the non-singlet splitting functions and will not be
discussed here.

3. Status of the calculation

Currently, we are finishing the calculation of the singlet splitting func-
tions using the prescription described in the previous section and introduced
in [1, 2]. At the moment, we have recalculated the full Pgg and Pqg kernel
on the inclusive level and we have obtained a perfect agreement with the lit-
erature. Below, we present the inclusive “parton density” (defined as in [15])
for the case of Pgg. It is obtained as a sum of contributions from individual
diagrams in Fig. 2

Γgg =
C2
A

2ε

(αS

2π

)2
{
1

ε

[
pgg(x)

(
11

3
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)
+
44

3

(
1

x
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)
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]
+ 2pgg(−x)S2(x)
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(
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3
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9

)
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−
(
44

3
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3
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3
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2
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9

(
x2 − 1

x
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+
CATf
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3

1
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9
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9
− 2x+ 2− 26

9x

−4

3
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]
+
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1
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(
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3
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x
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)
+
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3
+ 8x− 16 +

4

3x
− 2(1 + x) ln2(x)− (10x+ 6) ln(x)

]
, (7)
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where

pgg(x) =

(
1− x+ x2

)2
x(1− x) , (8)

S2(x) =

1
1+x∫
x

1+x

dz

z
ln

(
1− z
z

)
. (9)

The kernel is now easily extracted from Γgg by taking twice its residue (twice
as we use n = 4 + 2ε); additionally, we exclude factor

(
αS
2π

)2 which is the
usual convention, then

P (1)
gg = 2Res (Γgg)

/(αS

2π

)2

= C2
A

[
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3
+

67

9
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(
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3
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3

)
ln(x)

+
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2
(1− x) + 67

9

(
x2 − 1

x
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[
− 20

9
pgg(x) +

26x2

9
− 2x+ 2− 26

9x
− 4

3
(1 + x) ln(x)

]
+CFTf

[
20x2

3
+ 8x− 16 +

4

3x
− 2(1+x) ln2(x)− (10x+6) ln(x)

]
.

(10)

This result reproduces the well known Pgg kernel that can be found in
Ref. [16] or in the original Furmanski and Petronzio paper [6]. The literature
provides the single ε terms defining the splitting functions but some of the
double pole terms from the inclusive densities can also be cross-checked with
the results in [17].
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−

(NLO-gg-h) − (NLO-gg-i) (NLO-gg-b) (NLO-gg-k) (NLO-gg-j)

(NLO-gg-d) (NLO-gg-e) (NLO-gg-f) (NLO-gg-s1) (NLO-gg-s2)

−

(NLO-gg-hF) − (NLO-gg-iF) (NLO-gg-bF)

(NLO-gg-dF) (NLO-gg-eF) (NLO-gg-fF)

Figure 1: List of diagrams contributing to the Pgg kernel. The graphs d,f,s1,dF
and fF contribute in two versions, depending on the location of the cut.

1

Fig. 2. List of diagrams contributing to the Pgg kernel. The graphs d, f, s1, dF and
fF contribute in two versions, depending on the location of the cut.
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Similarly for the case of Pqg, the inclusive density is given by (the con-
tributing diagrams are listed in Fig. 3)

Γqg =
CFTf
2ε

(αS

2π

)2
{

1

2ε

[
pqg(x) (−16I0 − 8 ln(1− x)− 8 ln(x) + 12)

−4(1− 2x) ln(x)− 8x+ 2

]
+ pqg(x)

[
2 ln2(1− x) + 2 ln2(x)

−4 ln(x) ln(1− x)− 4 ln(1− x) + 4 ln(x)− 2π2

3
+ 10

]
−(1− 2x) ln2(x)− (1− 4x) ln(x) + 4 ln(1− x)− 9x+ 4

}
+
CATf
2ε

(αS

2π

)2
{

1

2ε

[
pqg(x)

(
−8 ln(1− x) + 62

3

)
+

28x

3
− 74

3
− 16

3x

−(32x+ 8) ln(x)

]
+ pqg(x)

[
− 2 ln2(1− x)− ln2(x) + 4 ln(1− x)

+
44

3
ln(x) +

π2

3
− 218

9

]
+ 2pqg(−x)S2(x) +

14x

9
+

40

9x
+

182

9

−(8x+ 2) ln2(x)−
(
38

3
− 136x

3

)
ln(x)− 4 ln(1− x)

}
, (11)

where pqg(x) = x2 + (1− x)2 is the corresponding LO kernel. The resulting
splitting function is equal to

P (1)
qg = 2Res (Γqg)

/(αS

2π

)2

= CFTf

[
pqg(x)

(
2 ln2(1−x) + 2 ln2(x)− 4 ln(x) ln(1−x)− 4 ln(1−x)

+4 ln(x)− 2π2

3
+ 10

)
− (1−2x) ln2(x)− (1−4x) ln(x) + 4 ln(1−x)

−9x+ 4

]
+ CATf

[
pqg(x)

(
− 2 ln2(1− x)− ln2(x) + 4 ln(1− x)

+
44

3
ln(x) +

π2

3
− 218

9

)
+ 2pqg(−x)S2(x) +

14x

9
+

40

9x
+

182

9

−(8x+ 2) ln2(x)−
(
38

3
− 136x

3

)
ln(x)− 4 ln(1− x)

]
, (12)

which agrees with the literature [6, 16].
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−

(NLO-qg-h1) − (NLO-qg-i1)

−

(NLO-qg-h2) − (NLO-qg-i2)

(NLO-qg-b) (NLO-qg-d1) (NLO-qg-d2) (NLO-qg-f) (NLO-qg-e)

Figure 1: List of diagrams contributing to the Pqg kernel. The graphs d1, d2
and f contribute in two versions, depending on the location of the cut.

1

Fig. 3. List of diagrams contributing to the Pqg kernel. The graphs d1, d2 and f
contribute in two versions, depending on the location of the cut.

The double ε pole terms in the inclusive densities Γ originate from two
sources. The first is building up of the running coupling constant, the second
is artificial and connected with the subtraction defined through the projec-
tion operator (P in CFP [5]), entering via countergraphs like NLO-qg-i1 or
NLO-gg-i. In the inclusive calculations, the higher ε poles are not important
as splitting functions do not depend on them (they are defined by the residue
— single pole part), making this kind of projection operator perfectly well
suited for the inclusive computation. However, if we want to use the uninte-
grated distributions (exclusive version of Γ ) in the Monte Carlo program this
will become a problem. We can solve it by using a dedicated Monte Carlo
factorization scheme [9, 12] which redefines projection operators, however,
this is beyond the scope of this work and we will not investigate it here. Let
us just mention that similar idea has been investigated by Oliveira et al.
[18, 19] in the context of physical factorization scheme allowing for better
convergence of perturbative series.

Currently, we are working to complete the calculation for Pgq and Pqq̄
kernel. Diagrams contributing to these calculations can be seen in Figs. 4
and 5. Computation for Pgq is analogical to the one for Pqg. In the case of
Pqq̄, the first (Born) level contributions appear only at the order of O(α2

S)
making this calculation very easy.
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−

(NLO-gq-h1) − (NLO-gq-i1)

−

(NLO-gq-h2) − (NLO-gq-i2) (NLO-gq-b)

(NLO-gq-d1) (NLO-gq-d2) (NLO-gq-f) (NLO-gq-e1) (NLO-gq-e2)

Figure 1: List of diagrams contributing to the Pgq kernel. The graphs d1, d2
and f contribute in two versions, depending on the location of the cut.

1

Fig. 4. List of diagrams contributing to the Pgq kernel. The graphs d1, d2 and f
contribute in two versions, depending on the location of the cut.

−

(NLO-qqb-h1) − (NLO-qqb-i1) (NLO-qqb-b)

Figure 1: List of diagrams contributing to the Pqq̄ kernel.

1

Fig. 5. List of diagrams contributing to the Pqq̄ kernel.

4. Summary

We have reported on the progress of re-calculation of the NLO splitting
function using new NPV regularization prescription [2]. We have already
calculated the Pgg and Pqg (and earlier Pqq) NLO splitting functions and we
have reproduced the known inclusive results from the literature. The calcu-
lations for the Pgq splitting function are already advanced and the partial
results we have obtained so far are also in agreement with the literature.

The inclusive results presented here are not our main interest and serve
us mainly as a cross-check of our calculations. The main interest for us
are the unintegrated distributions in the new scheme that will be better
suited for the Monte Carlo simulations. These distributions will be presented
elsewhere.
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