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Multipole matrix of the Green function of the Laplace equation defined
by double convolution of two spherical harmonics with the Green function
of the Laplace equation is calculated. The multipole matrix elements in
electrostatics describe potential on a sphere which is produced by a charge
distributed on the surface of a different (possibly overlapping) sphere of
the same radius. We calculate the multipole matrix from its Fourier trans-
form. An essential part of our considerations is simplification of the three-
dimensional Fourier transformation of a multipole matrix by its rotational
symmetry to the one-dimensional Hankel transformation.
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1. Introduction

Metallic spheres in a vacuum, minute spherical particles in a fluid, and
spherical inclusions in a solid body are often considered in statistical physics
of dispersive media [1]. Equations which describe those systems are linear
and have spherical symmetry. It is the case of Laplace equation in dielectrics
[2], Stokes equations in suspensions [3] and Lamé equations [4] describing
solid body. The first step in considerations of dispersive media is often to
solve a single particle problem. In dielectrics, it means to find distribution of
charge on the surface of a single metallic sphere in an external electrostatic
potential. To find the solution of a single particle problem, it is convenient
to take spherical symmetry into account [5]. To this end, one introduces
a set of scalar functions on the sphere which is invariant under rotations.
That is how spherical harmonics Y}, (7) enter calculations.

(1487)
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To pass from considerations of a single particle to the analysis of many
particles in a dispersive medium, it demands to answer the following ques-
tion. What is the electrostatic potential produced by a charge distributed
on one spherical surface in the area occupied by a different sphere? The
answer to the above question can be inferred from the following multipole
matrix

1
(G (R, 0 = /d3r / 1 L5 (7~ R| — ) 6y (r — R)G (1 — ')
R3 3

<15 (|r' — R| ~ ) guw ('~ R) (1)

In the above definition, G (7) is the Green function of Laplace equation [2],

a is radius of particles, and one-dimensional Dirac delta distribution ¢ (x) is
used. Moreover, ¢y, (r) are solid harmonics defined by

Dim (T) = Tﬁlil)/lm ('f') )

with spherical harmonics Y}, (#) numbered by order [ = 0,1,... and az-
imuthal number m = —I,...,[ [6]. In our notation, an argument of spherical
harmonics is a versor 7 (6, ¢) in direction described by angles 6, ¢ in spherical
coordinates. Dirac delta distributions in equation (1) reduce three-dimen-
sional integrations to integrals over the surface of the spheres with radius a
centered at positions R and R'.

We can differentiate between two situations. The first situation corre-
sponds to non-overlapping spheres, i.e. when |R — R| > 2a. In this case,
the matrix elements defined by equation (1) can be inferred from the re-
sults in the literature |7]. They have application e.g. in numerical sim-
ulations. The second situation is the case of overlapping configurations,
|R— R/| < 2a. Even if the particles in the system cannot overlap, there
may appear a need of calculation of overlapping configurations of the multi-
pole matrix elements [G (R, R')];,,, iy~ For example, it has been recognized
that overlapping configurations apf)ear in microscopic explanation of the fa-
mous Clauius-Mossotti formula for dielectric constant [8]. In this context,
integral f‘RfR"<2a d®R'[G (R, R)]exp (—ik (R — R)) , for low mul-

Im,l'm

tipole numbers [,{’ has been considered. Therefore, the multipole matrix
elements [G (R, R)],,,, y,v for overlapping configurations play an important
role in statistical physics considerations of dispersive media.
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The multipole matrix for overlapping configurations calculated in our
article potentially has another very important application. In nature and in
industry, there are plenty of dispersive media composed of spherical particles.
Numerical calculations in this context are simplified by spherical symmetry.
But there are also plenty of dispersive media composed of non-spherical
objects for which, due to lack of spherical symmetry of the particles, the
numerical approach is more difficult. One of the possible extensions from
spherical to non-spherical objects in numerical approach is to build a non-
spherical particle from conglomerate of spherical particles. This approach
is well known in the literature when particles in a conglomerate do not
overlap. The result of our paper allows to generalize this approach to build
a conglomerate made of overlapping particles. This can be of great interests
for scientists interested in modelling of dispersive media of non-spherical
objects.

In this article, we give general expression for the multipole matrix ele-
ments [G (R, R')];,,, y, defined by equation (1). The method of calculation
of the multipole matrix elements defined by equation (1) is the following.
We observe that [G (R, R')];,, y,,y has the form of a double convolution of
three functions — two solid harmonics and the Green function. Therefore,
we calculate the Fourier transform of the three functions, take their prod-
uct, and then perform the inverse Fourier transform to obtain G (R, R'). An
important element of our calculations is to use spherical symmetry which
allows to reduce the three-dimensional Fourier transform of the multipole
matrix to the one-dimensional Hankel transform.

The new contribution of the current article is the calculation of
|G (R, R')),,, yny for overlapping configurations |R — R/| < 2a. It is worth
mentioning that the reduction of the three-dimensional Fourier transform
of the multipole matrix to the one-dimensional Hankel transform which we
perform in this article is of general character. It means that the reduction
can be performed with minor changes in the context of multipole matrices of
the Green function for other differential equations like, e.g., Stokes equations
in hydrodynamics.

2. Multipole matrix in the Fourier space

The aim of this article is calculation of integral (1). We can simplify it
using homogeneity of the Laplace equation which implies that the multipole
matrix (G (R, R')]},, yny depends on the relative positions R — R'. There-

fore, from now on, we consider multipole matrix [G (R)],,,, ;r,,,, defined by

(G (R-R)] = [¢(R.R)]

Im,'m’ Im,'m’

depending on the relative positions.
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Next, we observe that the multipole matrix given by formula (1) has
a form of a double convolution of three functions. The three functions are
Wyme (1) = 6 (|r] — a) gy (1) /a, conjugated function wj, (r), and the
Green function G (7). The Fourier transform of a double convolution of the
three functions is given by the product of their Fourier transforms, therefore

G, = i (k) G (K) G ()

In our calculations, we use the following definition of the three-dimensional
Fourier transform

G (k) = / @R exp (—ikR) Gimyme (R) | (2)

with the inverse transformation given by the formula

1

Glm,l’m’ (R) - (271')3

/ Bk exp (ikR) Gy (K) .

In this situation, the Fourier transforms of wy, () and G () are given re-
spectively by

and
S (k) = dma™t (i)' 5, (ka) Vi (k:) .

The last expression can be calculated with the use of equation (5.8.3) from
Ref. [6] and with the use of orthonormality of spherical harmonics. The ex-
pression contains spherical Bessel functions j; (z) of the order of [. Finally,
the Fourier transform of multipole matrix (1) is given by the following for-
mula

Gw)], = it I Dy (v (8).
®)

According to the above expression, the Fourier transform of [G (R)];,,, ., 18
given by the spherical harmonics and the spherical Bessel functions. At this
point, we face the main difficulty in our calculations of [G (R)],,, .- The
inverse Fourier transform of the above formula has to be calculated. To this
end, we consider rotational symmetry of the multipole matrix.
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3. Rotational symmetry of a multipole matrix

In the definition of the multipole matrix (1), there appear solid harmonics
¢im () and the Green function G (7). Transformation of solid harmonics
under rotation is given by the formula

l

b (D (0,3, 8)m) = > [PV (@B)] (1) (@)
mmi
mi=-—I

The above expression can be inferred from Ref. [6] from which we adopt
notation in this article. There, formula (4.1.1) defines three-dimensional
rotation matrix D (a, 3,7) characterized by the Euler angles «, 3,~. More-
over, Dgﬂ, (a, B,7) denotes the Wigner matrix. Isotropy of the Laplace
equation implies that its Green function G (r) is invariant under rotation,

i.e. G (D (a,B,v)r) =G (7).
Changing the variables in the integrals in Eq. (1) and the above proper-
ties of the solid harmonics and the Green function leads us to the following

transformation of the multipole matrix elements under rotation

Glm,l’m’ (D (04, /87 PY) R)
= Z Dgl@),ml (avﬂ/}/) Dirl:/{mfl (Ol,ﬁ,’)/)] Glml,l’mll (R) : (5)

/
mi,mj

It is worth mentioning here that the above transformation applied for R in
z direction, R = Ré,, and for any rotations around axis z, thus for 8 =0
and any other Euler angles, implies that the multipole matrix is diagonal in
indexes m, i.e.

C;’lm,l’m’ (Réz) = 5m,m’Glm,l’m (Réz) ;

where Kronecker delta 6, v appears. It is easy to prove similar diagonality
in the case of the Fourier transform,

élm,l’m’ (kéz) = 5m,m/élm,l/m (kéz) ) (6)

which appears as a result of Fourier transformation of equation (5) and
considerations for proper rotations and wave vector k = ké,.
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4. Fourier transform of multipole matrix — simplification
by rotational symmetry

The key point of our calculations is simplification of the Fourier trans-
form of a matrix satisfying symmetry property given by equation (5). We
simplify the Fourier transform for a wave vector along z direction because
then the multipole matrix is diagonal in indexes m, as is shown by equa-
tion (6). For the case k = ké., expression (2) written in spherical coordi-
nates reads

élm,l’m’ (kéz>
o m 27

= /dR/d@/dgsz sin @ exp (—ikR cos 0) G iy (R (R, 0, 9)) . (7)
0 0

0

We express vector R (R, 0, ¢) by a product of the vector Ré, and the rotation
matrix D («, 8,7) characterized with proper Euler angles. The angles can
be deduced from formula (4.1.1) in Ref. [6]. These angles are § = —0,
v = —¢, and any «, e.g. « = 0. Therefore, R(R,0,¢) = D (0,—0, —¢) Ré,.
For this rotation and R =Ré., we use symmetry property (5) which leads
to the following expression for multipole matrix G

Gim,m (R (R, 0,9))
4 * N
= Z Dm m1 0 *eyfgb) [D1(n’),m’1 (Oa *97*¢)} C:lml,l’m’1 (Rez) . (8)
mi,m]
In the next step, we represent exp (—ikRcos#) from expression (7) in

the form of an infinite series of spherical Bessel functions

o0

exp (—ikRcos#) = > (—i)" (20 + 1) ji, (kR) D’ (0,60, ~¢) ,
11=0

which is deduced from formula (5.8.1) and (4.1.26) in reference [6]. Taking
into consideration the last two formulae in expression (7) yields

élm,l’m’ (kez = /dRR2 Z ll 2l1 + 1)]l1 (kR) Glm1 U'm (Réz)
11=0

> /ﬂdH/dgésm@D ) (0,0,¢) DY, (0,6 ¢)[ Y 3(0,0,¢)}*.(9)

mymiG o0
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Integration over variables 6, ¢ in the above formula is performed with the
use of formulae (4.6.2), (4.1.12) and (4.2.7) from reference [6]. They lead to
the expression

T 27
/d&/dqﬁsin&D( (0,0,¢) DY, (0,0, 6) [ (0,9,¢)r
0 0

_ m’ —m)| l I I l 4 l1
—477(_1) ! < m _m/ 0 > < mi _Tnl1 0 )7

which contains Wigner 3-j symbols. Taking into account the above integral
in expression (9) yields

14+ !

Gy (ké2) = 4 > Z )™ (20 + 1)

l1 ‘l l/| ml_fl ml——

a A I I
m —-m 0 mi —mj 0
x (—i)" / dRR?j, (kR) Gy s, (RE2) (10)
0

In this way, the three-dimensional Fourier transform is reduced to the one-
dimensional Hankel transform [9].

It is convenient to introduce different representation of matrix G (Ré.).
Namely, instead of Gy, 1y (RE-), we consider gi y (R) defined in the follow-
ing way

l A

m —m

g (R =@+ Y (1 (

m,m’

/ {) > Glm 'm/ (Rez) (11)
with the inverse transformation

I+ .
N m l v j
Glm,l’m’ (Rez) = 5m,m’ (_1) Z ( m / 6 ) gl{l/ (R) . (12)

—m
J=1=r]

Let us notice that only integer j which satisfies the condition |l — 1| < j <
I+ needs to be considered in the above equations. It follows from properties
of Wigner 3-j symbols. The multipole matrix elements Gy, 7 (R) for any
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R are then related to glj y (R) by equation

Glm,l’m’ (R (R, 97 ¢))

1+ .
m'+m - j j
=SS S (2 00000 dl ()
mi j=li-v]

(13)

which follows from equation (8) and relation (12).

Different representations of the multipole matrix G,y (RE-) in posi-
tional space given by equations (11) and (12) can be similarly introduced
also in Fourier space, i.e.

i
m —m’ 0

Gy k) = (2j+1) > <—1>m<

m,m/’

> Glm I'm/ (kéz) ) (14)

R I+ I 1 X '
Glm,l/m’ (kéz) = 5m,m’ (_1)m Z < o J ) glj,l/ (k) . (15)

J=1=v|

By equations (10), (12), and (14) and orthogonality of Wigner 3-j sym-
bols [6], we get that in the new basis the Fourier transform of the multipole
matrix is expressed in the following form

g{,l,( ) =4m (—i ]/dRR Jj (ER) gl v (R) . (16)
0

In this way, the three-dimensional Fourier transform given by expression (2)
of a multipole matrix satisfying rotational symmetry (5) is reduced to rele-
vant Hankel transform given by expression (16).

Calculations performed in this section can be repeated with very minor
modification in order to reduce the inverse three-dimensional Fourier trans-
form of a multipole matrix to the one-dimensional Hankel transform. We
omit the derivation giving only the result for the inverse Fourier transform
of a multipole matrix satisfying rotational symmetry,

g{l, - /dk k%j; (kR) g} (k) . (17)
0
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5. Multipole matrix in positional space

To calculate the inverse Fourier transform of [G’ (k:)L l with the use
m,l'm/’

of equation (17), g{l, (k) is needed. We calculate it by means of transforma-
tion (14) and expression (3) for Gpmims (k€.). The calculations yields

gil’ (k) = 4m (—1i)” —14l (25 +1) [(21 +1) (2l’ + 1)]1/2 ol

(35 b

It is worth noting that the Wigner 3-j symbol is not vanishing only when the
I, j satisfy triangular inequality, |l —'| < j < |l +1'|. In calculations of
the above formula, we used the following property of the spherical harmonics,
Yim () = 0mo (24 +1) 4m)'/2.

With the above expression for g, (k), equation (17) yields

gl (R) = pja” / dk j; (kR) ji (ka) ju (ka) (19)
0
with
9 (—i) M+ () 12115
Wiy = (=9) - (=1) (25 +1) [(2l+1)(2l’+1)]/ (006)‘ (20)

It demands to calculate integral of three spherical Bessel functions. That
has already been considered in the literature [10]. For R > 2a, the integral
is given as follows

/dk Ji, (ER) ji (ka) jy (ka)
0

_iﬂ(s (g)l-&-l/-l-l F(%+l+l/)
" 8¢ THhAR rEG+nri+ry’
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with Euler Gamma function I" (z). Whereas for R < 2a, we have

/ dk j; (kR) ji (ka) ji (ka)
0

/2 R
= Wgag‘,l,l' 4F3
" =V Il 104V 24041 1 35 4+ R
2 7 2 2 2 22 " 2 42
7.(.3/2 R J
+E (a) Biiu aFs
y J=l=U =1 j4+1=V j+U =1 1+U+j+1 14j j §+..R72
2 o T 2 2 o o g2
7T3/2R2
T oa 2 b 4F3
'+1+1 -0 -1 I+1+1 3 J j+1 R?
1— 1 1 1 29 ) g Jrt
X( R R R A B S L v
(22)

with coefficients o1/, 81, and 70 given by

- r(s)

AR (=t p (k= po(4) ]
(1) 1 (L) 1 (52)
s 1+I++5
Biy = 2732 ra-nr 2 )
gLl = ' ! ' ’
r(v+ B (14 SR (14 ) 1 (5 )
(i)
vy = =272 (23)

r(Gh ) r(z+ 4
Symbol 4F3 stands for hypergeometric function

ZOO (o), (a2)y, (az)g () a®
F . . — -
4 3(a17a27a37a47ﬂ17527537x) — (/Bl)k (/BQ)k (ﬁ,?))k k! )

where (@), denotes Pochhammer symbol defined by

(a)y =1 for k=0,
(), = ala+1)...(a+k—1) for k=1,2,...
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For non-overlapping configurations R > 2a, the multipole matrix ele-
ments are given by formulae (19), (20), and (21). Therefore, in this regime,
g7, (R) is proportional to 1/RHV+L,

For overlapping configurations, R < 2a, the multipole matrix elements
are given by formulae (19), (20), and (22) with equations (23). For small
and [’, analysis of the poles in Euler Gamma functions and in Pochhammer
symbols (which may also be expressed by Euler Gamma functions) reveals
that for overlapping configurations gj, (R) is a polynomial with respect to
R. We observe that the degree of the polynomial is [ + 1’ + 1. For example,

0 1 (=2a+ R)? (4a + R)

gl,l (R < 2&) ab 16\/3 ) (24)
; 7 (—4a2R + R3)?

92,3 (R < 20’) - al2 256\/§ : (25)

6. Summary

In this article, we calculate the multipole matrix elements of the Green
function of the Laplace equation. The elements are defined by equation
(1). The expression for non-overlapping configurations, i.e. for |[R — R'| >
2a, is known in the literature and can be inferred e.g. from reference [7].
The new contribution is the calculation of expression (1) for overlapping
configurations, i.e. for |[R — R'| < 2a. In this case, one can find related
considerations for the lowest multipole numbers [8].

It is worth mentioning that the method which we use to calculate the
multipole matrix for Laplace equation can be generalized for other cases
because the considerations rely on simplification of the Fourier transform.
For example, the method can be generalized to the multipole matrix elements
of the Green function for Stokes equations in hydrodynamics [11-13|. In
this case, overlapping configurations of the multipole Green function for the
lowest multipoles have been considered recently in the literature [14]. We
are going to use the result of this article for overlapping configuration in
our further research on statistical physics of dispersive media. It should be
emphasized that our result can also be of great interest in the context of
numerical simulations of non-spherical objects which are constructed from
overlapping spherical particles.
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