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We apply the flow analysis for multi-particle correlations used in heavy-
ion collisions to multi-particle production from a Pomeron. We show that
the nth order angular harmonic arising from anm particle correlation vn[m]
satisfies vn[m] ≈ vn[p] for n ≥ 1. We discuss some implications of this for
the Color Glass Condensate description of high energy hadronic collisions.

DOI:10.5506/APhysPolB.46.1513
PACS numbers: 12.38.Mh, 12.38.Aw

1. Introduction

The BFKL pomeron is presumably responsible for driving the high en-
ergy growth of cross sections in high energy hadronic collisions [1]. In
parton–parton scattering, the Pomeron would correspond to the ladder graph
diagram of Fig. 1. In Fig. 1, we will consider the imaginary part of this di-
agram corresponding to multi-gluon production. For such a process, the
momentum of the particles initiating the Pomeron exchange at the top and
the bottom of the diagram are equal in the initial and final state, so that the
momentum on the struts of the ladder are equal. If the momentum transfer
imparted to the struts, q, is large, this diagram can be evaluated in weak
coupling and gives the perturbative BFKL pomeron. The BFKL pomeron
leads to evolution of quark and gluons distribution functions through the
BFKL equation [1].
∗ Funded by SCOAP3 under Creative Commons License, CC-BY 3.0.
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Fig. 1. N -gluon production. The shaded blob denotes Lipatov vertex.

In theories of gluon saturation [2–5], the momentum scale associated
with Pomeron exchange is that of the saturation momenta, and the evolu-
tion equation for the saturation momentum is basically derivative of that
of evolution of the BFKL pomeron. The basic content of the Color Glass
Condensate description of such processes is that the sources at the top and
bottom of the ladder are replaced by a distribution of colored sources. These
color sources are coherent, so that the infrared integrations over momentum
transfer are cut-off at the saturation momenta of the upper and the lower
hadron participating in the collision. When computing multi-particle pro-
duction, one is determining inclusive particle production with such a dia-
gram, and one should look only over a finite range of rapidity between the
upper produced gluon and the lower produced gluon. The saturation mo-
mentum of the upper hadron is at that of the upper rapidity and similarly
for the lower hadron. The restriction on the total rapidity is that it is of
the order of αsNc∆y � 1. As we will show by explicit computation, the
rapidity distribution of the produced particles is flat in this case.

When one considers multi-gluon correlations, there are a variety of pos-
sible effects. In this paper, we will compute the contribution arising from
the Pomeron. In general, in hadron collisions, there are contributions from
final state interactions. In heavy-ion collisions, AA [6, 7] and also perhaps
high multiplicity pp [8] and pA [9] these may be the dominant effects [10]. In
addition, there are two-particle correlations generated by the initial state of
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such collisions. In particular, there is the two-particle correlation generated
in the CGC. The diagram of Fig. 2 generates such a correlation [11–13]. It
is of leading order in the classical approximation but suppressed by 1/N2

c in
the large number of colors limit.

Fig. 2. The Glasma graph.

The diagrams we consider arising from Pomeron exchange are of higher
order in αs than are the two-particle correlation diagrams usually considered
for the Color Glass Condensate. They are however a factor of N2

c larger.
Note also that in the case of pp or pA collisions, the Pomeron diagram is also
enhanced due to density factors associated with the coupling of the corre-
lated diagram to the CGC. For example, if one couples to a dilute projectile
with a classical field strength of the order of g, and a dense particle target
with strength 1/g, we have the following cases for two-gluon production:

System Pomeron graph Glasma graph

Dense–Dense 1 1/g4

Dilute–Dense g4 g4

Dilute–Dilute g8 g12

Such counting is, of course, simplistic, since if we are at small enough
momenta, we are in the region where the saturation momenta of the pro-
ton is important, and then the counting of powers of g in proton–proton
collisions is similar to that of heavy ions. Another subtlety for heavy-ion
collisions or high multiplicity events is that the overall normalization of the
flow contributions is scaled by the production cross section with no angular
dependence, and this contains contributions from multiple particle processes
that involve many gluon exchanges, and are in addition to the contribution
of the Pomeron. To properly compute the factors associated with the typical
Glasma diagram and that of the Pomeron is, of course, not so easy to do,
but our point is that we might expect the Pomeron to play an increasingly
important role in pp and pA collisions relative to AA.
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In any case, how one resolves the Pomeron and separates it from other
effects is not the goal of this paper. Our much more modest goal is to
explore the multi-particle correlations associated with the Pomeron decay
into gluons. We find that there is a rich structure of correlations, and in
particular, we find that the multi-particle moments satisfy vn[p] ≈ vn[m].
This approximate equality is a signature of the collectivity of motion of the
gluons produced from a single Pomeron. Its origin is not hydrodynamical
but is associated with the collectivity of the underlying emission process. It
might be possible to isolate and study such processes in electron–positron
annihilation experiments and in deep inelastic scattering experiments. These
correlations are induced by the transverse momentum conservation; however,
the collectivity comes in as a uniform distribution in rapidity originating
from the BFKL ladder. Another important aspect of the BFKL treatment
is that the transverse momentum conservation alone does not guarantee the
approximate equality vn[m] ≈ vn[p].

2. Angular correlations in gluon bremsstrahlung

We first analyze the two-particle correlation induced in a single Pomeron
decay. Our analysis parallels the insightful work of Gyulassy, Levai, Vitev
and Biro [14] of the underlying process of gluon bremsstrahlung first ana-
lyzed by Bertsch and Gunion [15].

The formula for multiple gluon production using the Lipatov vertex for-
malism valid in large Nc for high energy multi-gluon production is

d3Nσ

dy1d2k1dy2d2k2 . . . dyNd2kN

= f

∫
d2q⊥

1

q2⊥ + µ2
1(

~q⊥ −
∑n

j=1
~k⊥j

)2
+ µ2

N∏
i=1

1

k2⊥i
. (1)

The overall factor f depends on the particular system, for dilute–dilute
scattering f = 1

2(4g2)N+2CNA CFNc, where CA = Nc and CF = N2
c−1
2Nc

.
In this formula, N particles are produced with transverse momenta ki

and rapidity yi. The factors of µ2 in this cross section are infrared cutoff
squared, which in the saturation picture, is the saturation momentum, Qs.
In Eq. (1), we neglect virtual corrections which reggeize the gluons in the
struts of the ladder, because our main goal is to compute gluon produc-
tion in the rapidity region with the width much less than 1/αs, where αs

should be computed at the momentum scale of the interest — the satu-
ration momentum, Qs. This approximation was also used in Ref. [16] to
compute the two-particle correlation function. Also, in general, Eq. (1)
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involves unintegrated gluon distribution functions associated with the target
and projectile. To simplify computations, we approximate the distribution
functions by trivial ones.

A useful relation that later will be applied in our analysis is

1 =

∫
d2p⊥δ

(
~p⊥ + ~q⊥ −

∑
i

~k⊥i

)
=

∫
d2p⊥
(2π)2

∫
d2x⊥e

i~x⊥(~p⊥+~q⊥−
∑

i
~k⊥i) .

(2)
Use of this relation allows integration over the final-state momenta in a
way that exploits the fundamental factorization of the integrated N particle
production amplitude.

3. Two-particle production

Let us begin by computing vn for the two-particle amplitude. We first
write down a formula for the integrated two-particle correlation projected
onto an angular dependence einφ

d2σn
dy1dy2

= f

∫
d2k1⊥
k21⊥

eiφ1n
∫
d2k2⊥
k22⊥

e−iφ2n
∫

d2q⊥
q2⊥ + µ2

1(
~q⊥−~k1⊥−~k1⊥

)2
+ µ2

= f

∫
d2x⊥
(2π)2

(∫
d2q⊥

q2⊥ + µ2
ei~x⊥~q⊥

)2 ∫
dk1⊥
k1⊥

∫
dk2⊥
k2⊥

×
∫
dφ1e

i(φ1n−x⊥k1⊥ cos(φ1))eiφxn
∫
dφ2e

i(−φ2n−x⊥k2⊥ cos(φ2))e−iφxn

= f

∫
d2x⊥
(2π)2

(2πK0(µx⊥))2
∫
dk1⊥
k1⊥

×
∫
dk2⊥
k2⊥

[2π(−i)nJn(x⊥k1⊥)] [2π(−i)nJn(x⊥k2⊥))]

=
(2π)3f

2µ2
(−1)n

n2
. (3)

To derive this, we first applied Eq. (2) and then used the following well
known integrals ∫

d2q⊥
q2⊥ + µ2

ei~x⊥~q⊥ = 2πK0(µx⊥) , (4)∫
dφ1e

i(φ1n−x⊥k1⊥ cos(φ1)) = 2π(−i)nJn(x⊥k1⊥) , (5)
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where K and J are corresponding Bessel functions. For an integer n,
Jn(x) = (−1)nJ−n(x). Eq. (3) is only true for n > 0. For n = 0, the
integral

∫
dk⊥
k⊥
J0(x⊥k⊥) is divergent and should be properly regularized at

the saturation momentum µ

∞∫
µ

dk⊥
k⊥

J0(x⊥k⊥) = lim
ε→0

 ∞∫
0

kε
dk⊥
k⊥

J0(x⊥k⊥)−
µ∫

0

kε
dk⊥
k⊥

J0(x⊥k⊥)


= ln 2− γE − ln(µx⊥) . (6)

We assumed that at a momentum below the saturation momentum, µ, other
processes including multi-pomeron exchange would cut off the integration in
Eq. (6) at the saturation momentum. If such cut-off would not occur, then
one would need to replace µ with the natural QCD infrared cut-off ΛQCD.
This would bring logarithmic modification to Eq. (6), namely an additional
term ln µ

ΛQCD
. By carrying out an explicit computation, we checked that

for any reasonable value of Qs/ΛQCD, the nature of the conclusions of this
article does not change.

Using this result, we obtain for n = 0

d2σ0
dy1dy2

= f

∫
d2k1⊥
k21⊥

∫
d2k2⊥
k22⊥

∫
d2q⊥

q2⊥ + µ2
1(

~q⊥ − ~k1⊥ − ~k1⊥
)2

+ µ2

= f

∫
d2x⊥ (2πK0(µx⊥))2 (ln 2− γE − ln(µx⊥))2

= (2π)3f
1

µ2
. (7)

Here and later, we will use the following integral

Sm =

∫
dxx(K0(x))2(ln(2)− γE − ln(x))m . (8)

The analytic expression for S(m) is derived in Appendix A. Here, we note
that S0 = 1/2 and S2 = 1. In this article, we use Sm only for even m
motivated by the experiments which measure flow coefficients for even m;
however the generalization of our results to odd m is straightforward.

Thus, for 〈v2n〉, we have

〈
v2n
〉

=

d2σn
dy1dy2
d2σ0
dy1dy2

=
(−1)n

2n2
. (9)
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The flow cumulants for two-particle correlation are defined according vn[2] =√
〈v2n〉. Thus, e.g. for n = 2, vn[2] =

√
2
4 . The factor of −1 for the odd 〈v2n〉 is

a consequence of the backward peaking of the two-particle correlation, and
is distinctively different from hydrodynamical flow induced correlations.

We note that Eq. (9) is obtained for the integrated flow coefficients. The
analytical results was obtained owing to the integration with respect to the
momenta of the produced gluons, k1⊥ and k2⊥.

The two-particle correlation function C2(∆φ) defined by

C2(∆φ) =

(
d2σ0
dy1dy2

)−1∫
d2k1⊥
k21⊥

∫
d2k2⊥
k22⊥

δ(∆φ+φ1−φ2)
d6σ

dy1d2k⊥1dy2d2k⊥2
(10)

can be analytically computed using

δ(x) =
1

2π

∞∑
a=−∞

eiax . (11)

Applying the same transformations as for d2σn/dy1dy2, we arrive to

C(∆φ) = 1 +
1

2π

∞∑
a=1

(−1)a

a2
cos(a∆φ) = 1− π

24
+

1

8π
∆φ2 . (12)

This equation is correct for |∆φ| < π.

4. 2m-particle production

Analogously to Eq. (3)

d2mσn
dy1dy2 . . . dy2m

= f

∫
d2k1⊥
k21⊥

eiφ1n
∫
d2k2⊥
k22⊥

eiφ2n . . .

∫
d2km⊥
k2m⊥

eiφmn

×
∫
d2km+1⊥
k2m+1⊥

e−iφm+1n . . .

∫
d2k2m⊥
k22m⊥

e−iφ2mn

×
∫

d2q⊥
q2⊥ + µ2

1(
~q⊥ −

∑m
i=1

~ki⊥

)2
+ µ2

= (−1)nm
(

2π

n

)2m 2πf

2µ2
(13)
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for non-zero n. For n = 0, we get

d2mσ0
dy1dy2 . . . dy2m

= f

∫
d2k1⊥
k21⊥

∫
d2k2⊥
k22⊥

. . .

∫
d2km⊥
k2m⊥

×
∫
d2km+1⊥
k2m+1⊥

. . .

∫
d2k2m⊥
k22m⊥

×
∫

d2q⊥
q2⊥ + µ2

1(
~q⊥ −

∑m
i=1

~ki⊥

)2
+ µ2

= (2π)2m+1 fS2m
µ2

. (14)

Thus

〈
v2mn

〉
=

(
d2mσ0

dy1dy2 . . . dy2m

)−1
d2mσn

dy1dy2 . . . dy2m
=

1

2S2m

(−1)nm

n2m
. (15)

The corresponding cumulants vn[2m] can be computed using expressions
given in Appendix B. Here, we provide the numerical values:

v2[2] = 0.353553 , (16)
v2[4] = 0.404931 , (17)
v2[6] = 0.40857 , (18)
v2[8] = 0.408991 , (19)
v2[10] = 0.409049 , (20)
v2[12] = 0.409057 . (21)

5. Inclusive production

Until this point, we consider exclusive production of gluons. In experi-
ment, however, one measures m particles out of many N � m created in a
collision. The equations presented in the previous sections can be straightfor-
wardly generalized to the case of the inclusive production. First, we consider
two-particle production and then generalize it for m-particle production. To
obtain the inclusive cross section, we need to integrate our gluons produced
in three rapidity windows ymin < y′ < y1, y1 < y′ < y2 and y2 < y′ < ymax.
We assume that in each rapidity window, we produce i, j and l gluons cor-
respondingly. One necessarily needs to some up i, j and k over all possible
number of gluons. The momenta of the gluons we integrate out are de-
noted by ~κ⊥. Hence, the inclusive cross section for two-gluon production is
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given by

d6σinc

d2k1dy1d2k2dy2
=

∞∑
i=0

∞∑
j=0

∞∑
l=0

1

i!

1

j!

1

l!

1

(2π)2(i+j+k)

×
i+j+l∏
i′=0

∫
d2κi′⊥d

2y′i′
d3(2+i+j+l)σ

d2k1⊥dy1d2k2⊥dy2d2κ1⊥dy
′
1 . . . d

2κ(i+j+l)⊥dy
′
(i+j+k)

= f

∫
d2x⊥

∫
d2q⊥

ei~x⊥~q⊥

q2⊥ + µ2

∫
d2p⊥
(2π)2

ei~x⊥~p⊥

p2⊥ + µ2
e−i~x⊥

~k1⊥

k21⊥

e−i~x⊥
~k2⊥

k22⊥

×
∞∑
i=0

∞∑
j=0

∞∑
l=0

1

i!

1

j!

1

l!

(
αNc

π

)i+j+k i+j+l∏
i′=0

∫
d2κi′⊥d

2y′i′
ei~x⊥~κi′⊥

~κ2i′⊥

= f

∫
d2x⊥

(
2e−γE

µx⊥

)β
K2

0 (µx⊥)
e−i~x⊥

~k1⊥

k21⊥

e−i~x⊥
~k2⊥

k22⊥
, (22)

where β = αNc
π ∆y and ∆y = ymax − ymin. Thus for 〈v2n〉, we have

〈
v2n
〉

=
S̃0

S̃2

(−1)n

n2
. (23)

Here,

S̃m =

∫
dxx1−βK2

0 (x) (ln 2− ln(x)− γE)m (24)

and can be computed by the help of the second part of Appendix A.
Similar and more tedious, but straightforward computations along the

lines shown above result in

〈
v2mn

〉
=

S̃0

S̃2m

(−1)nm

n2m
. (25)

Using Appendix A and Appendix B, the flow coefficients can be com-
puted for different values of β, here we provide the number for β = 1/2

v2[2] = 0.242046 , (26)
v2[4] = 0.275329 , (27)
v2[6] = 0.277706 , (28)
v2[8] = 0.277986 , (29)
v2[10] = 0.278025 , (30)
v2[12] = 0.278031 . (31)
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We want to point out that the selected value of β lies beyond the applica-
bility of our model which is defined by αsNc∆y � 1; nonetheless our result
vividly demonstrates that even for extreme values of β the higher order flow
coefficients are equal to each other and the main conclusion of this article
remain true. For smaller β, the absolute values of v2{m} will be closer to
those listed in the previous section, where β = 0.

6. Summary and conclusions

We have shown that the flow analysis of the Pomeron indicates a pattern
which certainly indicates collective motion of its decay products. We have
been careful to restrict our consideration to processes where single Pomeron
exchange is the dominant contribution. One might ask if it might be relevant
for heavy-ion collisions. In the two-particle correlations of pA or pp collisions,
the jet contribution is explicitly subtracted. If this is properly done, the
Pomeron contribution should be removed, and the remainder is the diagram
of Fig. 2. In addition, in pA or pp collisions, there are all possible manners
of final state interactions which might generate collective effects.

In multi-particle correlations with numbers of particles greater than 2,
no subtraction of the jet contributions done for pA collisions, so the Pomeron
might make a significant contribution. However, it is important to remember
that the collectivity of the Pomeron is really associated with a backwards
recoil peak for the Pomeron as is shown in Fig. 3. This means that the
computed (vn(4p+ 2))4p+2 would be negative for odd n. The first place this
would appear would be in v3 [6]. A measurement of such a correlation would
give a solid measure of whether or not the collectivity in pA collisions arises
from collectivity of Pomeron decays or other effects.

C
2(
Δφ
)

0.9

1.0

1.1

1.2

1.3

Δφ
0 1 2 3 4 5 6

Fig. 3. C2(∆φ) for two-particle production.
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The collectivity seen in the Pomeron decay suggests that there will be
entirely non-trivial patterns in other multi-particle processes. We would
associate such collectivity with an initial state effect. Perhaps something
along the lines of Ref. [14] or of Ref. [17] are steps in the correct direction
for making a theory.

Even if there is little impact of these results for pA or pp collisions,
the collectivity of the decay products observed for the Pomeron may have
implications for elementary processes such as jet decay in e+e− annihilation
of in deep inelastic scattering. A proper determination of such effects would
require an analysis of the fragmentation of the gluons produced in such
collisions.

We also note that the main result of this article vn[m] ≈ vn[p] holds for
exclusive and inclusive gluon production.

The research of L.M. is supported under D.O.E. Contract No. DE-AC02-
98CH10886. We thank Francois Gellis and Eugene Levin for very useful
comments and discussions. Lary McLerran acknowledges very useful con-
versations with Miklos Gyulassy on this subject, and a most stimulating talk
he gave at Quark Matter 2014, where these ideas were initiated.

Appendix A

Sm =

∫
dxxK2

0 (x) (ln 2− ln(x)− γE)m . (32)

This integral can be taken analytically

Sm =

m∑
i=0

(
m

i

)
(ln 2− γE)m−iIi , (33)

where

Ii = (−1)i
∫
dxxK2

0 (x) lni(x) = (−1)i
di

dαi

(√
π

4

Γ 3
(
α+1
2

)
Γ (α/2 + 1)

)∣∣∣∣∣
α=1

. (34)

This integral can be derived from∫
K2

0 (x)xαdx =

√
π

4

Γ 3
(
α+1
2

)
Γ (α/2 + 1)

. (35)
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Some values for Sm are

S0 = 1/2 , (36)
S1 = 1/2 , (37)
S2 = 1 , (38)

S4 = −2ζ(3) + 12− π4

40
, (39)

S6 = −60ζ(3) + 5ζ(3)2 − 63ζ(5) + 360− 3π4

4
− 5π6

84
. (40)

All factors of ln 2 appearing on the right-hand side of Eq. (32) cancel in the
final expressions for Sm.

Similarly, for the inclusive cross section, we compute

S̃m =

∫
dxx1−βK2

0 (x) (ln 2− ln(x)− γE)m =
m∑
i=0

(
m

i

)
(ln 2− γE)m−iĨi ,

(41)
where

Ĩi = (−1)i
∫
dxx1+βK2

0 (x) lni(x) = (−1)i
di

dαi

(√
π

4

Γ 3
(
α+1
2

)
Γ (α/2 + 1)

)∣∣∣∣∣
α=1−β

.

(42)

Appendix B

For completeness, here we also list the expressions for the cumulants

vn[2]2 =
〈
v2n
〉
, (43)

vn[4]4 = 2
〈
v2n
〉2 − 〈v4n〉 , (44)

vn[6]6 = 1
4

(
12
〈
v2n
〉3 − 9

〈
v4n
〉 〈
v2n
〉

+
〈
v6n
〉)

, (45)

vn[8]8 = 1
33

(
144

〈
v2n
〉4 − 144

〈
v4n
〉 〈
v2n
〉2

+ 16
〈
v6n
〉 〈
v2n
〉

+18
〈
v4n
〉2 − 〈v8n〉) , (46)

vn[10]10 = 1
456

(
2880

〈
v2n
〉5 − 3600

〈
v4n
〉 〈
v2n
〉3

+ 400
〈
v6n
〉 〈
v2n
〉2

+ 25
(

36
〈
v4n
〉2 − 〈v8n〉) 〈v2n〉− 100

〈
v4n
〉 〈
v6n
〉

+
〈
v10n
〉)

. (47)
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