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We present the analysis of a time-inhomogeneous Markov chain model
based on the in vivo viral infection dynamics. The exact solution of a
general in-host model with time-dependent rates is obtained by using the
Lie-theoretic approach. The results provide both an improvement in nu-
merical efficiency and the potential for analytical solution of other biological
processes without clear symmetry.
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1. Introduction

Over the last few decades, in-host mathematical modeling has increas-
ingly been used in attempts to understand the pathogenesis of numerous
viruses such as hepatitis B virus (HBV), human immunodeficiency virus
type 1 (HIV-1), and human T-cell lymphotropic virus type 1 (HTLV-1)
[1–7]. Mathematical models describing the in vivo infection process of such
viruses are valuable for estimating virion clearance rate, infected cell life-
span, and viral generation time, and for probing the dynamics and mecha-
nism of the virus replication in vivo [5, 6]. A simple, while natural, in-host
viral model involves the interactions between: (i) healthy target cells, (ii) in-
fected cells producing viruses, and (iii) (matured) free viruses. More realistic
aspects such as intracelluar delays, immune responses, and mutation have
been incorporated into the models [8–11]. These models have led to a wealth
of theoretical research on global stability of the persistence equilibria and
infection-free equilibria of the systems, see [5, 8, 9, 11–15] to name but a
few. However, due to its coupled nonlinearity, deriving the exact solution
of the basic in-host model (even in the non-delay and constant coefficients
case) remains a long-standing open research problem.
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1568 Y. Shang

On the other hand, Markov chain models have proven to be useful in
exploring many biological stochastic processes ranging from disease trans-
mission and metapopulation evolution to gene induction [16–20]. From a
dynamical system perspective, analysis of such models means to consider the
Kolmogorov (master) equations, i.e., a system of linear ODEs, which char-
acterize the evolution of the probability of the process being in a given state
at a given time. In this paper, we aim to derive analytical solution for a gen-
eral viral model with time-dependent rates by using a time-inhomogeneous
Markov chain formalism. Here, the proposed Markov chain model describes
the in vivo infection process, and our battlefield naturally turns to its Kol-
mogorov equations. However, such a transformation, more often than not,
leads to a high-dimensional system not amenable to analytical treatment.
One would have to resort to some approximate techniques such as the mo-
ment closure method [21, 22].

Here, we circumvent this difficulty by employing the Lie algebraic ap-
proach borrowed from Wei and Norman [23]. To use the Wei–Norman
method, we need to construct a Lie algebra with a finite dimension. This
method has been applied recently to some simple biological population mod-
els, such as SIS and SIR epidemics [24–26], for obtaining exact solutions. It
is pointed out that, for more complicated biological dynamics, the selection
of an appropriate linearly independent basis to form a low-dimensional Lie
algebra is a challenging task [21]. In other applications, some restrictive
conditions turn out to be necessary. For example, to solve analytically a
time-inhomogeneous linear birth–death process with immigration, the im-
migration rate has to be proportional to the birth rate [27]. In this paper,
we manage to generate a Lie algebra of dimension 8 to solve the in-host
model, and no restriction is imposed on the involved time-dependent rates.

The rest of the paper is organized as follows. The basic viral dynamics
is delineated in Section 2, and the Wei–Norman method is briefly reviewed
in Section 3. In Section 4, we show the application of the Lie algebraic
approach to the in-host model. Concluding remarks are drawn in Section 5.

2. Description of in-host viral model

In the virus infection process, we consider three basic compartments: the
target uninfected cells (X), infected cells (Y ), and free viruses (V ). Denote
the number of cells or virus particles at time t in each compartment by
X(t), Y (t), V (t), respectively. We can write down a system of three cou-
pled nonlinear ordinary differential equations (ODEs) for the virus dynamics
[2–4, 6] according to the transition diagram (see Fig. 1)
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dX(t)

dt
= λ(t)− d(t)X(t)− β(t)X(t)V (t) ,

dY (t)

dt
= β(t)X(t)V (t)− a(t)Y (t) ,

dV (t)

dt
= k(t)Y (t)− u(t)V (t) , (1)

where λ(t) is the rate at which new target cells are generated from a pool of
precursor cells, d(t) is their specific death rate, and β(t) is the rate charac-
terizing their infection. Once cells are infected, we assume that they die at
rate a(t) either due to viral cytopathicity or the action of immune system,
and produce new virus particles at rate k(t) during their life. Finally, virus
particles are cleared from the system at rate u(t) per virion due to immune
elimination or binding and entry into cells. Other variant models have been
considered in the literature, we refer the interested reader to the book [10]
for more details.

Fig. 1. Illustration of virus infection process.

3. The Wei–Norman method
for time-inhomogeneous Markov chains

In this section, we review the Wei–Norman method [23] for solving time-
inhomogeneous Markov chains.

A Lie algebra is a vector space L over some field F together with a bilin-
ear map [·, ·] : L × L → L called the Lie bracket, which satisfies [A,A] = 0
and the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 , (2)

for all A,B,C ∈ L. For A ∈ L, we define an adjoint operator adA by

(adA)B = [A,B] , (3)
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for B ∈ L. Thus, (adA)2B = [A, [A,B]]. Every associate algebra gives rise
to a Lie algebra L by defining the Lie bracket as a commutator

[A,B] = AB −BA , (4)

where A,B ∈ L. In what follows, we will focus on this Lie product. The
classical Baker–Campbell–Hausdorff formula can be written as

eABe−A =
(
eadA)B , (5)

where eA =
∑∞

i=0A
i/i!.

Given a continuous-time Markov chain, taking values in a finite or count-
ably infinite state space S, its dynamical behavior is specified by a matrix
Q(t) = (qij(t), i, j ∈ S), where qij(t) is the rate of transition from state i to
state j, for j 6= i, and −qii(t) = qi(t) =

∑
j 6=i qij(t) is the total rate at which

we move out of state i at time t. Using the Kolmogorov forward equation,
the probability distribution of the process at time t, p(t) = (pi(t), i ∈ S), is
given by

dp(t)

dt
= H(t)p(t) , (6)

where H(t) = Q(t)T (here, T represents transpose), and p(t) is a column
probability vector with component pi(t) representing the probability of find-
ing the system in state i at time t. Using the ‘ket’ notation |·〉 [24, 25, 27, 28],
the probability vector can alternatively be written as

|p(t)〉 =
∑
i∈S

P (i|t)|i〉 , (7)

where P (i|t) is the probability that the Markov chain in question taking the
value of i at time t, and |i〉 is a basis vector, linearly independent of any
other basis vector with different value. It is worth mentioning that H(t)
in (6) is time-dependent implying that the process is time inhomogeneous.

In addition, the operator H(t) is assumed to be written as

H(t) =

m∑
i=1

ai(t)Hi , (8)

where ai(t) are real-valued functions, and Hi are linearly independent con-
stant operators generating a Lie algebra L = span{H1, . . . ,Hm} by imple-
menting a Lie bracket

[Hi, Hj ] = HiHj −HjHi =
m∑
k=1

ξkijHk (9)
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for some real ξkij . The Wei–Norman method looks for a solution of system (6)
taking the form of a product of exponentials

p(t) = eg1(t)H1 . . . egm(t)Hmp(0) := U(t)p(0) , (10)

where gi(t) are real-valued functions and gi(0) = 0 for all i = 1, 2 . . . ,m.
Substituting (8) and (10) into (6), we obtain

dp(t)

dt
=

m∑
i=1

ai(t)HiU(t)p(0)

=

m∑
i=1

ġi(t)

i−1∏
j=1

egj(t)Hj

Hi

 m∏
j=i

egj(t)Hj

 p(0) . (11)

Performing a post-multiplication by the inverse operator U−1 and repeatedly
applying the Baker–Campbell–Hausdorff formula, we are led to

m∑
i=1

ai(t)Hi =
m∑
i=1

ġi(t)

i−1∏
j=1

egj(t)adHj

Hi (12)

since equation (11) holds for any p(0). Since the operators Hi are chosen to
be linearly independent, we can compare the coefficients of each Hi in both
sides of (12) to derive a set of ODEs for gi(t) with initial values gi(0) = 0
(involving ξkij).

4. Lie algebra solution of in-host population dynamics

According to the description in Section 2, the probability vector for the
viral model can be written as

|p(t)〉 =
∑
X,Y,V

P (X,Y, V |t)|X,Y, V 〉 , (13)

where P (X,Y, V |t) denotes the probability that there are X uninfected tar-
get cells, Y infected cells, and V free virus particles at time t. |X,Y, V 〉 is
a basis vector, linearly independent of other basis vectors with different cell
and virus particle numbers. The state space S is a countable set.

Let Ô signify an endomorphism of the vector space spanned by the above
basis vectors. The Kolmogorov forward equation governing the in-host dy-
namics can be written as

d

dt
|p(t)〉 = H(t)|p(t)〉 , (14)
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with the time-evolution operator

H(t) = λ(t)Ê − d(t)X̂ + β(t)
(
X̂ − τ̂

)
+ k(t)ρ̂− a(t)Ŷ − u(t)V̂ , (15)

where

Ê|X,Y, V 〉 = |X + 1, Y, V 〉 ,
X̂|X,Y, V 〉 = X|X,Y, V 〉 ,
τ̂ |X,Y, V 〉 = X|X − 1, Y + 1, V − 1〉 ,
Ŷ |X,Y, V 〉 = Y |X,Y, V 〉 ,
ρ̂|X,Y, V 〉 = Y |X,Y − 1, V + 1〉 ,
V̂ |X,Y, V 〉 = V |X,Y, V 〉 . (16)

According to the Wei–Norman method reviewed in Section 3, it is applicable
only if the operatorsHi in (8) generate a finite dimensional Lie algebra. Now,
we introduce two more operators σ̂ and Îd, defined as

σ̂|X,Y, V 〉 = X|X − 1, Y, V 〉 and Îd|X,Y, V 〉 = |X,Y, V 〉 , (17)

so that the Lie algebra L = span{Ê, X̂, τ̂ , Ŷ , ρ̂, V̂ , σ̂, Îd} is closed under
the action of the Lie bracket. In Table I, we show the complete set of
Lie brackets. The eight operators defined above are all linear operators
acting on basis vectors. They are interpreted as follows: Ê increases the
uninfected target cell population by one; X̂ returns the number of uninfected
target cells; τ̂ returns the number of uninfected cells, reduces the uninfected
cell population and the virus population by one, and increases the infected
cell population by one; Ŷ returns the number of infected cells; ρ̂ returns

TABLE I

Values of [Ô1, Ô2] for the viral model.

Ô1

[
Ô1, Ê

] [
Ô1, X̂

] [
Ô1, τ̂

] [
Ô1, Ŷ

] [
Ô1, ρ̂

] [
Ô1, V̂

] [
Ô1, σ̂

] [
Ô1, Îd

]
Ê 0 −Ê 0 0 0 0 −Îd 0

X̂ Ê 0 −τ̂ 0 0 0 −σ̂ 0
τ̂ 0 τ̂ 0 −τ̂ −σ̂ τ̂ 0 0

Ŷ 0 0 τ̂ 0 −ρ̂ 0 0 0
ρ̂ 0 0 σ̂ ρ̂ 0 −ρ̂ 0 0

V̂ 0 0 −τ̂ 0 ρ̂ 0 0 0

σ̂ Îd σ̂ 0 0 0 0 0 0

Îd 0 0 0 0 0 0 0 0
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the number of infected cells, depletes these by one, and increases the virus
population by one; V̂ returns the number of free viruses; σ̂ returns the
number of uninfected cells and depletes these by one; Îd is the identity
operator which returns the number one.

The remaining task is to apply theWei–Norman method to equation (14).
In other words, we need to look for a solution of the form

|p(t)〉 = eg1(t)Îdeg2(t)σ̂eg3(t)Êeg4(t)X̂eg5(t)τ̂eg6(t)ρ̂eg7(t)Ŷ eg8(t)V̂ |p(0)〉 . (18)

Thanks to (12) and the action of exponential operators shown in Table II,
we are led to the following linear relation

λ(t)Ê − (d(t)− β(t)) X̂ − β(t)τ̂ + k(t)ρ̂− a(t)Ŷ − u(t)V̂

= ġ1(t)Îd + ġ2(t)σ̂ + ġ3(t)
(
Ê + g2(t)Îd

)
+ġ4(t)

(
X̂ + g2(t)σ̂ − g3(t)Ê − g2(t)g3(t)Îd

)
+ ġ5(t)e

−g4(t)τ̂

+ġ6(t)
(
ρ̂− g5(t)e−g4(t)σ̂ + g3(t)g5(t)e

−g4(t)Îd

)
+ġ7(t)

(
Ŷ − g5(t)e−g4(t)τ̂ + g6(t)ρ̂− g5(t)g6(t)e−g4(t)σ̂

+g3(t)g5(t)g6(t)e
−g4(t)Îd

)
+ġ8(t)

(
V̂ + g5(t)e

−g4(t)τ̂ − g6(t)ρ̂+ g5(t)g6(t)e
−g4(t)σ̂

−g3(t)g5(t)g6(t)e−g4(t)Îd
)
. (19)

TABLE II

Values of eg(adÔ1)Ô2 with a scalar g for the viral model.

Ô1 e
g(adÔ1)Ê eg(adÔ1)X̂ eg(adÔ1)τ̂ eg(adÔ1)Ŷ eg(adÔ1)ρ̂ eg(adÔ1)V̂ eg(adÔ1)σ̂ eg(adÔ1)Îd

Ê Ê X̂ − gÊ τ̂ Ŷ ρ̂ V̂ σ̂ − gÎd Îd
X̂ egÊ X̂ e−g τ̂ Ŷ ρ̂ V̂ e−gσ̂ Îd
τ̂ Ê X̂ + gτ̂ τ̂ Ŷ − gτ̂ ρ̂− gσ̂ V̂ + gτ̂ σ̂ Îd
Ŷ Ê X̂ eg τ̂ Ŷ e−g ρ̂ V̂ σ̂ Îd
ρ̂ Ê X̂ τ̂ + gσ̂ Ŷ + gρ̂ ρ̂ V̂ − gρ̂ σ̂ Îd
V̂ Ê X̂ e−g τ̂ Ŷ eg ρ̂ V̂ σ̂ Îd
σ̂ Ê + gÎd X̂ + gσ̂ τ̂ Ŷ ρ̂ V̂ σ̂ Îd
Îd Ê X̂ τ̂ Ŷ ρ̂ V̂ σ̂ Îd
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Solving the set of ODEs derived from (19) for each basis operator in L gives

g1(t) =

t∫
0

λ(s)e−Ψ(s)

×

 s∫
0

k(w)eΛ(w)−Γ (w)

 w∫
0

β(z)eΨ(z)+Γ (z)−Λ(z)dz

 dw

 ds
+

t∫
0

k(s)

 s∫
0

λ(w)e−Ψ(w)dw

 eΛ(s)−Γ (s)

×

 s∫
0

β(w)eΨ(w)+Γ (w)−Λ(w)dw

 ds ,

g2(t) = −e−Ψ(t)
t∫

0

k(s)eΛ(s)−Γ (s)

 s∫
0

β(w)eΨ(w)+Γ (w)−Λ(w)dw

 ds ,

g3(t) = eΨ(t)
t∫

0

λ(s)e−Ψ(s)ds ,

g4(t) = Ψ(t) ,

g5(t) = −eΛ(t)−Γ (t)
t∫

0

β(s)eΨ(s)+Γ (s)−Λ(s)ds ,

g6(t) = eΓ (t)−Λ(t)
t∫

0

k(s)eΛ(s)−Γ (s)ds ,

g7(t) = −Γ (t) ,
g8(t) = −Λ(t) , (20)

where Γ (t) :=
∫ t
0 a(s)ds, Λ(t) :=

∫ t
0 u(s)ds, and Ψ(t) :=

∫ t
0 (β(s)− d(s))ds.

Example. To check the result, we consider a scenario examining the
effects of drug treatment on HIV-1 viral load [6, 7]. Assume that the sys-
tem is at quasi steady state before drug treatment and that the uninfected
cell number X remains at approximately its steady-state value X0. After
treatment, we assume that no new infections occurs. Therefore, to see the
effect of treatment, we set |p(0)〉 = |X0, Y0, V0〉, λ(t) = d(t) = β(t) = 0,
k(t)/c = a(t) ≡ a, and u(t) ≡ u for some c > 0. Note that c can
be interpreted as the total number of virus particles produced from one
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cell. Denote by |V(t)〉 =
∑

X,Y,V V |X,Y, V 〉. It follows from (20) that
V (t) = 〈V(t)|p(t)〉 = V0e

−ut+ caY0
u−a (e

−at−e−ut) is the number of mature free
viruses in the system at time t, and that the number of infected cells varies
as Y (t) = Y0e

−at. These are in line with the analytical results obtained in
[6, 7].

In Fig. 2 and Fig. 3, we show the variation of V (t) and Y (t) for a < u
and a > u, respectively, with different values of c. V (t) is higher for larger c,
indicating the larger number of virus particles generated. We observe from
Fig. 3 that the curves of V (t) for c = 1 and 2 will first increase and then
decrease exponentially. This discrepancy is due to the second term in the
expression of V (t) above, which compensates the decay if a > u, namely,
d( exp(−at)−exp(−ut)u−a )/dt > 0.
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Fig. 2. Viral dynamics for V0 = 10, Y0 = 5, a = 0.5, u = 1.
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Fig. 3. Viral dynamics for V0 = 10, Y0 = 5, a = 2, u = 0.5.
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5. Conclusion

In this paper, we have investigated the solution of viral infection dy-
namics in vivo (1) through a time-inhomogeneous Markov chain character-
ization. Based on the Kolmogorov equation and the Wei–Norman method,
the analytical solution for the in-host model is obtained in terms of matrix
exponentials. The computational efficiency is another benefit of the Wei–
Norman method since p(t) can be calculated in O(1) operations through
(12) rather than O(t) by means of incremental direct integrations.

A variant of system (1) in biology consists of replacing the first equa-
tion by

dX(t)

dt
= λ− dX(t) + rX(t)

(
1− X(t)

K

)
− βX(t)V (t) ,

where the newly added logistic term represents the rate cells increase through
mitosis [9]. It is known that such addition gives rise to Hopf bifurcations
and periodic orbits. When it comes to algebraic approach, new operators
describing the quadratic X2 would be essential. We may have another mod-
erate goal, namely to solve the system (1) with an additional immune cells
(such as Cytotoxic T-cells) dynamics described by an ODE involving Y [9].
A simple trick employed in [29] may be useful in creating a Lie algebra in
this case.

However, as pointed out in [24], lack of symmetry in generic biological
or ecological models largely precludes the construction of an appropriate
Lie algebra as compared with many physical processes. It is hoped that the
method offered in this study could lead to further progress in pursue of exact
solution of more realistic biological population dynamics.

The author would like to thank the anonymous referee for his or her
useful comments that have improved the presentation of the paper. The
author would also like to acknowledge support from the Program for Young
Excellent Talents in the Tongji University (Grant No. 2014KJ036).
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