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An agent-based computational economical toy model for the emergence
of money from the initial barter trading, inspired by Menger’s postulate
that money can spontaneously emerge in a commodity exchange economy,
is extensively studied. The model considered, while manageable, is signifi-
cantly complex, however. It is already able to reveal phenomena that can
be interpreted as an emergence and collapse of money as well as the related
competition effects. In particular, it is shown that — as an extra emerging
effect — the money lifetimes near the critical threshold value develop mul-
tiscaling, which allow one to set parallels to critical phenomena and, thus,
to the real financial markets.
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1. Introduction

Extreme complexity of a phenomenon commonly termed as money stems
from several factors. Viewed in contemporary terms as a foreign exchange
(Forex) market, it can be considered the world’s largest and most important
financial market, entirely decentralized crossing all the countries, with the
highest daily trading volume extending to trillions of US dollars. There is
plenty of evidence [1] that the Forex’s dynamics is more complex than that
of any other market. The absence of an independent reference frame makes
the absolute currency pricing virtually impossible and a given currency’s
value is expressed by means of some other currency, which, in turn, is also
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denominated in currencies only. Moreover, in global terms, the Forex market
is exposed to current situation on other markets in all parts of the world,
which makes it particularly sensitive and unpredictable. These facts to-
gether with other Forex specific relationships like the triangle rule [2, 3] that
links mutual exchange rates of any three currencies are among the factors
responsible for a highly convoluted structure [4–6] of Forex.

Complexity of money as a general medium of exchange that allows to
avoid difficulties of barter trade requiring a “double coincidence of needs”
and constitutes a measure and a store of value, roots back even to its be-
ginnings. Menger [7] proposed that money can spontaneously emerge in a
commodity exchange economy. Accordingly, each commodity is character-
ized by its own marketability reflecting its status in the market. Money is
a commodity, which through the process analogous to the physical sponta-
neous symmetry breaking [8] receives a very high marketability and thus a
special status of a medium of exchange [9]. Katsuhito [10, 11] developed
a model along the original Menger’s idea and demonstrated that money is
governed by a kind of the so-called bootstrap mechanism, i.e., it is accepted
at any place at any time because it is in a position of money. Agent-based
variants of such a model have further been studied by Yasutomi [12, 13] and
Górski et al. [14] who by numerical simulations demonstrated that they are
able to reveal money emergence as well as its collapse. In general, agent-
based models [15, 16] find an increasing number of promising applications
in various areas of economics [12, 17–21] and in social sciences [22–26], and
the need for this kind of approaching the related phenomena, especially in
an economic context, is being expressed more and more forcefully [27–29].
For all these reasons, in the present contribution, we further pursue simula-
tions based on an agent-based model which from an initial barter trading is
able to spontaneously elevate one of the commodities to the money status.
We, in particular, focus on the transition region between the homogeneous
commodities and emerging money phases with the aim to identify the com-
plexity characteristics of this transition in terms of the multifractal scaling.
Below, we list the main ingredients of the model used.

2. Model

In the model [12, 14], we have N agents, each agent producing one type
of good enumerated by k = 1, . . . , N . For the sake of simplicity, we assume
that the agent number k is producing a type of good denoted by k. The
elementary interaction of two agents (“transaction”) consist of several steps
including search of the co-trader, exchange of particular goods, change of
the agent’s buying preferences and, finally, the production and consumption
phase. A sequence of N consecutive transactions is called a turn. In a single
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turn, each of the N agents has a chance to take part in exchange of goods,
production, and consumption. To each agent, say k, there are attributed
three N -dimensional vectors. The possession vector, P (k)

i , i = 1, . . . , N ,
with non-negative integer components that denote how many units of the
ith good has the kth agent at the moment. The demand vector, D(k)

i , is
actually a “shopping list”, i.e. it counts how many goods of the type i the
agent k is going to buy. Finally, the “world view” vector, V (k)

i , with non-
negative real components is related to the kth agent’s shopping preferences.
These preferences are evolving with time, depending on the preferences of
the other agents (co-traders) as well as according to success of the previous
transaction of the trader. The vector V (k)

i is normalized according to

N∑
i=1

V
(k)
i = N , ∀k , 0 ≤ V (k)

i ≤ N . (1)

The higher is the value of V (k)
i , the more willing is the agent k to buy

the good i. In addition, in each iteration for any kth agent, there is a
randomly attributed integer w(k) equal to the number j = 1, . . . , N pointing
a good produced by the jth agent that the kth agent urgently needs at the
moment. Such a good is included in the shopping list independently of
kth agent preferences (V (k)

i ). The other goods at the shopping list will be
added depending on the values of the “world view” (preference) vector. In
particular, if the value of a component i of the vector Vi is greater than the
only external parameter of the model, Thresh ∈ [0, N ], the good i will be
added to the shopping list.

The model algorithm is defined by the following steps:
Step 1. An agent (“trader”) k is chosen randomly.
Step 2. The trader k chooses a co-trader (say, agent l) who has the largest
amount of wanted good, w(k).
Step 3. Both traders check what they have and what they want.
Step 4. The traders exchange their views. At first, they increase the value
of component V (n) (n = l, k) by 1.0 if their previous demands were not
satisfied, i.e.

D
(n)
j > 0 =⇒ V

(n)
j → V

(n)
j + 1 , n = l, k .

Then both traders accept an averaged view:

V
(n)
j →

[
V

(k)
j + V

(l)
j

]/
2 , n = l, k .

Finally, the new views are re-normalized according to condition (1).
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Step 5. The traders create their “shopping list” i.e. they decide what they
want to buy. For the trader k:
if P (l)

j > 0∧
(
w(k) = j ∨ V (k)

j > Thresh
)

=⇒D
(k)
j =P

(l)
j , otherwiseD(k)

j = 0.
The same is done symmetrically (k ↔ l) by the co-trader l and for all types
of goods, j = 1, . . . , N .
Step 6. The exchange procedure. The traders “buy” (exchange) goods
according to their shopping listsD(n)

j , n = l, k, j = 1, . . . , N . If total amount

of goods on both their shopping lists (demands) is identical,
∑

j D
(k)
j =∑

j D
(l)
j , then their demands are fully satisfied and the shopping lists are

zeroed.
If the shopping list of one trader (say, k) is bigger then the shopping list
of his co-trader, all demands of trader k cannot be satisfied. Hence, after
the exchange, the vector D(k)

j will have non-zero components for the goods
that could not be bought. In this case, the trader with a larger shopping
list (k) can satisfy his demands only partially. In particular, he selects from
his co-trader one unit of good j with the smallest component D(k)

j (i.e. the
agent prefers to get more rare goods). This procedure is repeated unit by
unit until the shopping list D(l)

j is zeroed.
If one of the traders has an empty shopping list (all components are zero),
there is no exchange at all and the whole transaction is finished without
any exchange. Notice, however, that in spite of this, the update of the world
view vectors was already done (Step 5). Also during this step, the possession
vectors P (k)

j , P
(l)
j of both traders are updated.

Step 7. The final step consists of consumption and production. The traders
k, l consume goods specified by the variable w(k), w(l), respectively. Then,
if P (k,l)

j = 0, the traders produce one unit of the good k, l. Finally, we
choose new wants for the traders: new values for the variables w(k), w(l) are
randomly selected w(k) 6= k. This ends the elementary transaction process.

The initial conditions are the following: P (k)
j = δkj , D

(k)
j = 0, V (k)

j = 1,
and w(k) are chosen randomly from the set {1, 2, . . . , N} for each k. In
particular, the initial shopping list is empty and the “views” of all traders
are identical and equally distributed for all goods.

In the model, money is defined as the good satisfying the following four
conditions: (i) that is most wanted by all agents, i.e.

∑
k V

(k)
j /N is maxi-

mized (= Vmax) for the value of j that corresponds to the good that plays
the role of money; (ii) the total trade should be non-zero; (iii) in comparison
to other goods, money should be relatively often exchanged; (iv) the money
lifetime should be sufficiently long (lasting for many trades).
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An example of time evolution of the principal characteristics of this
model for the population size N = 50 is shown in Fig. 1 for the follow-
ing dynamical variables: (a) Vmax, (b) production of goods, (c) supply of
the most wanted good, and (d) points of the “money switching”, i.e. the
points when the most wanted good is overtaken by another good. The dis-
tances between the consecutive time-points are thus to be interpreted as
“money lifetimes” within the present model. These plots are given for the
threshold value Thresh = 2.5 which for N = 50 marks a center of the region
where money start emerging. From the point of view of complexity science
and in relation to the financial reality, this is the most interesting region.
The structure of “money lifetimes” seen in panel (d) of Fig. 1 suggests their
fractal organization and thus critical character of the transition from the
phase with no money to the money phase, while increasing the parameter
Thresh value.
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Fig. 1. Model behavior for N = 50 and threshold Thresh = 2.5. (a) Time evolution
of Vmax; (b) production of goods; (c) supply of the most wanted good (“money”);
(d) vertical lines indicate when the “money switching” takes place for the first
104 turns.

This is even more suggestive in Fig. 2 showing the consecutive “money
lifetimes” for Thresh = 1.0 and Thresh = 2.5 measured in terms of the
number of trading turns. While in the former case we see a white noise-like
structure with very short lifetimes, in the latter case the commodity fulfilling
the criterion of money often happens to reign for up to 35 000 trading turns.
The overall structure in this latter case displays a characteristic ‘volatility
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clustering’, which is a hallmark of criticality and multiscaling [17, 30]. In
the following we, therefore, perform a more systematic quantitative study of
this particular aspect of the present model using the modern formalism of
multifractality [1].
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Fig. 2. Consecutive “money lifetimes” measured in terms of the number of trading
turns, during which a given commodity fulfills criterion of being money, for two
values of the model’s threshold parameter Thresh = 1.0 (top panel) and Thresh
= 2.5 (bottom panel). Note different scales.

3. Multifractal analysis of “money switching” dynamics

Multiscaling [31, 32] represents a commonly accepted concept to grasp
the most essential characteristics of complexity. Indeed, the related mea-
sure in terms of multifractal spectra offers an attractively compact frame to
quantify the hierarchy of scales and specificity of their interwoven organiza-
tion. This, in particular, applies to the temporal aspects of complexity and,
thus, well suits the present issue of “money switching” dynamics. Up to now,
there exist two main types of algorithms to determine the multifractal spec-
tra. The one that typically delivers the most stable results [33] constitutes a
natural extension of Detrended Fluctuation Analysis (DFA) [34, 35] and is
known as Multifractal Detrended Fluctuation Analysis (MFDFA) [36]. The
other algorithm — Wavelet Transform Modulus Maxima (WTMM) [37, 38]
— is based on the wavelet decomposition of a signal. This algorithm re-
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quires more care as far as stability of the result is concerned. It, at the same
time, offers better visualization of the relevant structures, however. For this
reason, and also as a consistency test, below we use both these algorithms
in parallel to analyze the same time series.

3.1. MFDFA and results

The MFDFA algorithm consists of several steps as sketched below. At
first, for a time series xi, a signal profile is calculated according to the
equation

Y (j) =

j∑
i=1

[xi − 〈x〉] , j = 1 . . . N , (2)

where 〈 〉 denotes averaging over a time series of length N . Then the profile
is divided into 2Ms disjoint segments ν of length s starting both from the
beginning and from the end of the time series. For each box, the assumed
trend is estimated by least-squares fitting a polynomial P (m)

ν of the order
of m. Based on our own experience [33], in the present analysis, we use
m = 2 as optimal. Next, variance of the detrended data is calculated

F 2(ν, s) =
1

s
Σs
k=1

{
Y ((ν − 1)s+ k)− P (m)

ν (k)
}
, (3)

and finally, by averaging the F 2(ν, s) function over all the segments ν, a qth
order fluctuation function is derived according to the equation

Fq(s) =

{
1

2Ms
Σ2Ms
ν=1

[
F 2(ν, s)

]q/2}1/q

, q ε< \ {0} . (4)

In order to determine the statistical properties of the Fq(s) function, the
above steps are repeated for different values of s. In the case of a fractal time
series, fluctuation funtion Fq(s) reveals power law dependence: Fq ∼ sh(q),
where h(q) denotes the generalized Hurst exponent. For monofractal time
series, h(q) is independent of q and equals the well-known Hurst exponent
h(q) = H. In the case of multifractal correlations however, h(q) depends
on q and the Hurst exponent is obtained for q = 2. From h(q) exponents,
one can calculate the multifractal spectrum according to the equations: α =
h(q) + qh

′
(q) and f(α) = q[α − h(q)] + 1, where α denotes the Hoelder

exponent and f(α) is the fractal dimension of the set of points with this
particular α. For multifractal time series, the singularity spectrum typically
assumes, shape similar to an inverted parabola whose width is considered a
measure of the degree of multifractality and it thus shrinks to one point in
the case of monofractal.
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By using this method, we then address the problem of correlations in
the time series of money lifetimes. For this time series (as the ones shown
in Fig. 1 (d) or in Fig. 2), the scale s dependence for the set of the so-
evaluated fluctuation functions Fq(s) (−4 ≤ q ≤ +4) around the critical
threshold value for the emergence of money, starting with Thresh = 1.0 up
to Thresh = 3.5 with the step of 0.5, is shown in Fig. 3. As it can clearly be
seen, these functions develop a power law form over the scale range of about
two orders of magnitude. However, the q-dependence of the corresponding
power-law indices significantly varies with the threshold parameter Thresh
and around Thresh = 2.5 this dependence (here shown for −4 ≤ q ≤ +4) is
the most prominent, which signals nontrivial multifractality. The degree of
multifractality systematically increases while approaching this Thresh value
from below, but then it sharply degrades when exceeding it.
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Fig. 3. Fluctuation functions Fq(s) (for q = −4 . . .+4) for the time series of money
lifetimes generated from the model presented for the threshold parameter ranging
from Thresh = 1.0 to Thresh = 3.5 with the step of 0.5.

The resulting singularity spectra f(α) are presented in Fig. 4 for the
same sequence of the parameter Thresh values as in Fig. 3. Indeed, the
broadest spectrum — reflecting the hightest complexity of the underlying
dynamics [1] — corresponds to Thresh = 2.5 and departing from this value
in either direction makes f(α) narrower with the maximum moving towards
α = 0.5 like for the monofractal uncorrelated signals. Comparison of these
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singularity spectra to the analogous quantities for the randomized (shuffled)
data, shown in the inset to Fig. 4, clearly demonstrates significance of this
result. After such a destruction of temporal correlations, all the spectra
become narrow and located in the vicinity of α = 0.5. This comparison thus
indicates that multifractal nature of the time series representing consecutive
money lifetimes is primarily due to the long-range temporal correlations.
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Fig. 4. Singularity spectra f(α), calculated by means of MFDFA algorithm, for the
same sequence of the original time series of money lifetimes as in Fig. 3 and (inset)
for the same but randomized (shuffled) time series of money lifetimes.

3.2. WTMM and results

As already mentioned above, the WTMM method is an alternative tech-
nique of detecting the fractal properties of a signal. The core of the algorithm
is wavelet transform Tψ that is a convolution of a signal x(i) and a wavelet
ψ [39]

Tψ(n, s) =
1

s

N∑
i=1

ψ

(
i− n
s

)
x(i) , (5)

where n denotes a shift of the wavelet kernel and s is a scale. In particular,
the wavelet kernel ψ can be chosen arbitrarily. The only criterion is its good
localization in space and in frequency domains. For the purpose of our anal-
ysis, we choose the third derivative of the Gaussian ψ(3)(x) = d3

dx3
(e−x

2/2),
because it removes the trends that can be approximated by polynomials up
to the second order. In the presence of singularity in the data, the scaling
relation of Tψ coefficients can be observed

Tψ(n0, s) ∼ sα(n0) . (6)
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However, this relation can be unstable in the case of densely packed singu-
larities. Therefore, it is suggested to identify the local maxima of Tψ and
then to calculate the partition function according to the equation

Z(q, s) =
∑
l∈L(s)

|Tψ(nl(s), s)|q , (7)

where L(s) denotes a set of all maxima for scale s and nl(s) is the position of
a particular maximum. In order to preserve the monotonicity of the family
of the Z(q, s) functions, the additional condition needs to be imposed

Z(q, s) =
∑
l∈L(s)

(
sup
s′≤s

∣∣Tψ (nl (s′) , s′)∣∣
)q

. (8)

In the case of fractal signals, the τ(q) exponents characterize the power-law
behavior of the partition function

Z(q, s) ∼ sτ(q) . (9)

For multifractal time series, τ(q) is a nonlinear function of q, whereas it is
linear otherwise. The singularity spectrum is obtained by Legendre trans-
forming τ(q) according to the following formula

α = τ ′(q) and f(α) = qα− τ(q) . (10)

Two examples of the maps representing the wavelet transforms Tψ(n, s)
calculated from the same time series of money lifetimes as before for our
model with Thresh = 1.0 and Thresh = 2.5 are shown in Fig. 5.

The fractal character of these signals can be seen already on the visual
level to manifest itself quite convincingly from the bifurcation structure of
the maxima of the wavelet transform. For Thresh = 2.5 (right-hand side of
Fig. 5), the intensities of maxima vary with the scale, while for Thresh = 1.0
(left-hand side of Fig. 5), they remain largely homogeneous, which signals a
more involved fractal composition in the former case. Of course, we already
know from our previous MFDFA analysis that the Thresh = 2.5 case is
strongly multifractal, while the Thresh = 1.0 case is essentially monofractal,
and here we find an alternative indication for this fact. Determining the
singularity spectra according to the above-described WTMM algorithm for
the same six cases of the model’s threshold parameter Thresh as in Fig. 4
gives the results shown in Fig. 6. Comparing both MFDFA and WTMM re-
sults indicates basically the same tendency even on a fully quantitative level:
the broadest singularity spectrum characterizes the dynamics at around the
critical threshold value for the emergence of money. These comparisons are



Multiscaling Edge Effects in an Agent-based Money Emergence Model 1589

summarized globally in Fig. 7 in terms of the threshold parameter depen-
dence of the maximum span ∆α of the corresponding singularity spectra
obtained within the MFDFA and WTMM methods. Both methods consis-
tently point to Thresh = 2.5 as this value of the model’s threshold parameter
(for N = 50) where the money switching dynamics is the most complex.

Fig. 5. (Color online) The wavelet transform Tψ of time series of money lifetimes.
Left and right panels refer to time series generated with treshold value Thresh
= 1.0 and Thresh = 2.5, correspondingly. The wavelet coefficients were coded, in-
dependently at each scale, by means of 128 colors ordered according to spectrum of
natural light from blue (min Tψ) to red (max Tψ). The wavelets used in calculation
were third derivative of Gaussian (ψ(3)).
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Fig. 6. Singularity spectra f(α), calculated by means of WTMM algorithm, for the
same sequence of the original time series of money lifetimes as in Fig. 3 and (inset)
for the same but randomized (shuffled) time series of money lifetimes.
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Fig. 7. Width of singularity spectrum ∆α as a function of model’s threshold param-
eter. Black circles and grey/red squares refer to MFDFA and WTMM algorithm,
respectively.

4. Concluding remarks

We have performed extensive numerical simulations using the agent-
based computational economic model for the creation of money, developed
along the lines originally proposed by Menger [7] that money can sponta-
neously emerge in a commodity exchange economy. Money in this model is
defined as the most wanted good. A variant of this model studied in the
present paper allows emergence as well as collapse of money. This model’s
ability is ruled by the only external parameter Thresh whose magnitude re-
flects agents tendency to act collectively and it induces memory effects. The
most interesting situation takes place just at the edge between a phase with
no money emergence and a phase with stable money. In this intermediate re-
gion, one of the commodities spontaneously becomes universally wanted and
retains such a status for sufficiently long time so that it can be considered
money. Under these edge conditions, the dynamics of trade is characterized
by a permanent competition which leads to collapse of that particular money
and another commodity overtaking. An interesting related effect that we
were witnessing at the course of simulations is that such overtaking often al-
ternates within one particular pair of commodities. In contemporary terms,
this can perhaps be interpreted as this model’s ability to induce effects in the
spirit of competition of two currencies to become world’s leading ones (like
USD versus EUR). From a theoretical point of view, the most interesting
effect is that lifetimes of the consecutive money emerging within the model
at the edge, form time series that develop remarkable multifractal character-
istics as verified by the two independent algorithms: Multifractal Detrended
Fluctuation Analysis (MFDFA) and Wavelet Transform Modulus Maxima
(WTMM). The width of the corresponding singularity spectra (Fig. 7) con-
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sidered as a function of the threshold parameter resembles the λ-shaped
continuous phase transitions in physical systems, recently identified even in
the complex networks dynamics [40]. That this transition can be paralleled
to the critical phenomena is primarily indicated by an increasing span of the
multifractal spectrum (and thus an increasing complexity) when approach-
ing the transition point. The ability of the present model to generate the
above effects seems very demanding since the most creative acts of Nature
are commonly considered to be associated with criticality [41]. There also
exists empirical evidence [42] that the consecutive intertransaction times on
the stock market form time series that are multifractal. One may speculate
that there is some analogy between the present “money lifetime” issue and
the stock market intertransaction times: during a given “lifetime”, money is
the same; similarly, price may change only during transaction. From this
perspective, intertransaction time can be considered “price lifetime”.
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