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Recent work of Belinschi, Mai and Speicher resulted in a general algo-
rithm to calculate the distribution of any self-adjoint polynomial in free
variables. Since many classes of independent random matrices become
asymptotically free if the size of the matrices goes to infinity, this algorithm
allows then also the calculation of the asymptotic eigenvalue distribution
of polynomials in such independent random matrices. We will recall the
main ideas of this approach and then also present its extension to the case
of the Brown measure of non-self-adjoint polynomials.
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1. Introduction

Recent work of Belinschi, Mai and Speicher [1] resulted in a general
algorithm to calculate the distribution of any self-adjoint polynomial in
free variables. Since many classes of independent random matrices become
asymptotically free if the size of the matrices goes to infinity, this algorithm
applies then also to the calculation of the asymptotic eigenvalue distribu-
tion of polynomials in such independent random matrices. Here we will,
after first recalling the main ideas of this approach, also address the non-
self-adjoint situation and present the results of work of Belinschi, Sniady and
Speicher [2]. There, it is shown that the combination of the ideas from the
self-adjoint case with the hermitization method allows to extend our algo-
rithm also to the calculation of the Brown measure of arbitrary polynomials
in free variables. It is expected that this Brown measure is then also the
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limiting eigenvalue distribution of corresponding random matrix problems;
however, since the convergence of ∗-moments does not necessarily imply the
convergence of Brown measures in the non-normal case, this has to remain
as a conjecture for the moment.

2. The case of one matrix

We are interested in the limiting behaviour of N ×N random matrices
for N →∞. Let us first recall the well-known situation of one matrix.

Typical phenomena for basic random matrix ensembles are that we have
almost sure convergence of the eigenvalue distribution to a deterministic
limit and, furthermore, this limit distribution can be effectively calculated.

The common analytic tool for calculating this limit distribution is the
Cauchy transform. For any probability measure µ on R, we define its Cauchy
transform

G(z) :=

∫
R

1

z − t
dµ(t) .

This is an analytic function G : C+ → C− and we can recover µ from G by
Stieltjes inversion formula

dµ(t) = − 1

π
lim
ε→0
=G(t+ iε)dt .

Quite often, one prefers to work with −G, which is called the Stieltjes trans-
form.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

x 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 1. Left: histogram of the eigenvalues of a 4000 × 4000 Wigner matrix, com-
pared to Wigner’s semicircle, determined by its Cauchy transform G(z) = z−

√
z2−4
2 ;

Right: histogram of the eigenvalues of a Wishart matrix XX∗ for a 3000× 12000

matrixX, compared to the Marchenko–Pastur distribution for λ = 1/4, determined

by its Cauchy transform G(z) =
z+1−λ−

√
(z−(1+λ))2−4λ
2z .
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For the basic matrix ensembles, the Gaussian and the Wishart random
matrices, one can derive quadratic equations for the respective Cauchy trans-
forms and thus get an explicit formula for G(z). In figure 1, we show the
comparison between histograms of eigenvalues and the theoretical limit re-
sult given by the Cauchy transform.

3. The case of several independent matrices

Instead of one random matrix, we are now interested in the case of sev-
eral independent random matrices. Since there is no meaningful notion of
joint eigenvalue distribution of several non-commuting matrices, we are look-
ing instead for the eigenvalue distribution of polynomials in those matrices.
For the moment, we restrict to self-adjoint polynomials in self-adjoint ma-
trices. Later, we will look on the non-self-adjoint case. So we are interested
in the limiting eigenvalue distribution of general self-adjoint polynomials
p(X1, . . . , Xk) of several independent self-adjoint N × N random matrices
X1, . . . , Xk.

Again, one observes the typical phenomena of almost sure convergence to
a deterministic limit eigenvalue distribution. However, this limit distribution
can be effectively calculated only in simple situations.

In figure 2, we show two such typical situations. The first is the poly-
nomial p(X,Y ) = X + Y , for independent Wigner matrix X and Wishart
matrix Y ; in this case, one can derive quite easily the implicit equation
G(z) = GWishart(z − G(z)) for the Cauchy transform G(z) of the limiting
distribution of p(X,Y ); this subordinated form of equation is quite amenable
to numerical solutions via iterations and serves as the model what we can
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Fig. 2. Histogram for a generic realization of a 3000×3000 random matrix p(X,Y ),
where X and Y are independent Gaussian and, respectively, Wishart random ma-
trices: p(X,Y ) = X +Y (left); p(X,Y ) = XY +Y X +X2 (right). In the left case,
the asymptotic eigenvalue distribution is relatively easy to calculate; in the right
case, no such solution was known, this case will be reconsidered in figure 3.
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hope for in more general situations. The second case is the polynomial
p(X,Y ) = XY + Y X + X2, for which no theoretical result has existed up
to now.

There existed a huge literature on special cases of such polynomials in
independent matrices (see, for example, [3–11]), but up to [1], there has been
no algorithm for addressing the general problem.

4. Asymptotic freeness of random matrices

The problem of the asymptotic eigenvalue distribution of random matri-
ces became linked to free probability theory by the basic result of Voiculescu
[12] that large classes of independent random matrices (like Wigner or
Wishart matrices) become asymptotically freely independent.

The conclusion of this is: calculating the asymptotic eigenvalue distri-
bution of polynomials in such matrices is the same as calculating the distri-
bution of polynomials in free variables. The latter is an intrinsic problem
within free probability theory.

We want to understand the distribution of polynomials in free variables.
What we understand quite well, by the analytic theory of free convolution,
is the sum of free self-adjoint variables. So we should reduce the problem of
arbitrary polynomials to the problem of sums of self-adjoint variables.

This sounds like a quite ambitious goal, but it can, indeed, be achieved.
However, there is a price to pay: we have to go over to an operator-valued
frame.

5. The operator-valued setting

Let A be a unital algebra and B ⊂ A be a subalgebra containing the
unit. A linear map E : A → B is a conditional expectation if

E[b] = b , ∀b ∈ B
and

E[b1ab2] = b1E[a]b2 , ∀a ∈ A , ∀b1, b2 ∈ B .
An operator-valued probability space consists of B ⊂ A and a conditional

expectation E : A → B. Then, random variables xi ∈ A (i ∈ I) are free
with respect to E (or free with amalgamation over B) if E[a1 . . . an] = 0,
whenever ai ∈ B〈xj(i)〉 are polynomials in some xj(i) with coefficients from
B and E[ai] = 0 for all i and j(1) 6= j(2) 6= · · · 6= j(n). For more details,
see [13].

For a random variable x ∈ A, we define the operator-valued Cauchy
transform

G(b) := E
[
(b− x)−1

]
, (b ∈ B) ,

whenever (b− x) is invertible in B.
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In order to have some nice analytic behaviour, we will, in the following,
assume that both A and B are C∗-algebras; B will usually be of the form
of B = MN (C), the N × N -matrices. In such a setting and for x = x∗,
this G is well-defined and a nice analytic map on the operator-valued upper
half-plane

H+(B) := {b ∈ B | (b− b∗)/(2i) > 0}
and it allows to give a nice description for the sum of two free self-adjoint
elements. In the following, we will use the notation

h(b) :=
1

G(b)
− b .

Theorem 1. [1] Let x and y be self-adjoint operator-valued random variables
free over B. Then, there exists a Fréchet analytic map ω : H+(B)→ H+(B)
so that

Gx+y(b) = Gx(ω(b)) for all b ∈ H+(B) .

Moreover, if b ∈ H+(B), then ω(b) is the unique fixed point of the map

fb : H+(B)→ H+(B) , fb(w) = hy(hx(w) + b) + b ,

and
ω(b) = lim

n→∞
f◦nb (w) for any w ∈ H+(B) .

6. The linearization philosophy

As we just have seen, we can deal with the sum of free self-adjoint ele-
ments, even on the operator-valued level. However, what we are interested
in are polynomials in free variables, on a scalar-valued level. The relation
between these two problems is given by the linearization philosophy: in or-
der to understand polynomials p in non-commuting variables, it suffices to
understand matrices p̂ of linear polynomials in those variables.

In the context of free probability, this idea can be traced back to the
early papers of Voiculescu; it became very prominent and concrete in the
seminal work [14] of Haagerup and Thorbjørnsen on the largest eigenvalue of
polynomials in independent Gaussian random matrices. A more streamlined
version of this, based on the notion of Schur complement, which also has
the important additional feature that it preserves self-adjointness, is due to
Anderson [15].

Actually, those ideas were also used before in the context of automata
theory and formal languages or non-commutative rational functions, where
they go under different names, like descriptor realization. Some relevant
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literature in this context is [16–18]. Actually, from this context it becomes
clear that we cannot only linearize polynomials, but also non-commutative
rational functions.

The crucial point is that for any self-adjoint polynomial p, there exists a
linearization p̂, which is also self-adjoint. Since p̂ is linear, it is the sum of
operator-valued variables.

We will present the details of this procedure with the help of a concrete
example. Let us consider the polynomial p(x, y) = xy + yx+ x2 in the free
variables x and y.

This p has a linearization

p̂ =

 0 x y + x
2

x 0 −1
y + x

2 −1 0

 ,

which means that the Cauchy transform of p can be recovered from the
operator-valued Cauchy transform of p̂, namely we have

Gp̂(b) = id⊗ ϕ
(
(b− p̂)−1

)
=

(
ϕ
(
(z − p)−1

)
· · ·

· · · · · ·

)

for b =

z 0 0
0 0 0
0 0 0

 .

But this p̂ can now be written as

p̂ =

0 x x
2

x 0 −1
x
2 −1 0

+

0 0 y
0 0 0
y 0 0

 = X̂ + Ŷ

and hence is the sum of two self-adjoint variables X̂ and Ŷ , which are, by ba-
sic properties of freeness, free over M3(C). So we can use our subordination
result in order to calculate the Cauchy transform of p(

ϕ
(
(z − p)−1

)
· · ·

· · · · · ·

)
= Gp̂(b) = GX̂+Ŷ (b) = GX̂(ω(b)) ,

where we calculate ω(b) via iterations as in Theorem 1. Figure 3 shows
the agreement between the achieved theoretic result and the histogram of
eigenvalues from figure 2.

Conclusion: the combination of linearization and operator-valued sub-
ordination allows to deal with the case of self-adjoint polynomials in free
variables, and thus with self-adjoint polynomials in asymptotically free ran-
dom matrices.
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Fig. 3. Plots of the distribution of p(x, y) = xy+yx+x2 (left) for free x, y, where x
is semicircular and y Marchenko–Pastur, and of the rational function r(x1, x2)

(right) for free semicircular elements x1 and x2; in both cases, our theoretical limit
curve is compared with the histogram of the corresponding eigenvalue problem; for
the left case, compare figure 2.

7. The case of rational functions

As we mentioned before, this linearization procedure works as well in the
case of non-commutative rational functions (and this was actually the main
object of interest in the work of Schützenberger). This is work in progress
with Mai, let us here just give an example for this.

Consider the following self-adjoint rational function

r(x1, x2) = (4−x1)−1+(4−x1)−1x2
(
(4−x1)− x2(4−x1)−1x2

)−1
x2(4−x1)−1

in two free variables x1 and x2. The fact that we can write it as

r(x1, x2) :=
(
1
2 0

)(1− 1
4x1 −1

4x2

−1
4x2 1− 1

4x1

)−1(1
2

0

)

gives us immediately a self-adjoint linearization of the form

r̂(x1, x2) =

0 1
2 0

1
2 −1 + 1

4x1
1
4x2

0 1
4x2 −1 + 1

4x1


=

0 1
2 0

1
2 −1 + 1

4x1 0

0 0 −1 + 1
4x1

+

0 0 0

0 0 1
4x2

0 1
4x2 0

 .
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In figure 3, we compare the histogram of eigenvalues of r(X1, X2) for
one realization of independent Gaussian random matrices X1, X2 of size
1000× 1000 with the distribution of r(x1, x2) for free semicircular elements
x1, x2, calculated according to our algorithm.

8. The Brown measure for non-normal operators

The main point of this note is that we can actually also extend the
previous method to deal with not necessarily self-adjoint polynomials in free
variables.

The first problem in this situation is that we need to describe a measure
on the complex plane by some analytic object. Let us first have a look on
this.

For a measure µ on C its Cauchy transform

Gµ(λ) =

∫
C

1

λ− z
dµ(z)

is well-defined everywhere outside a set of R2-Lebesgue measure zero, how-
ever, it is analytic only outside the support of µ.

The measure µ can be extracted from its Cauchy transform by the for-
mula (understood in distributional sense)

µ =
1

π

∂

∂λ̄
Gµ(λ) .

A better approach to this is by regularization

Gε,µ(λ) =

∫
C

λ̄− z̄
ε2 + |λ− z|2

dµ(z)

and is well-defined for every λ ∈ C. By subharmonicity arguments

µε =
1

π

∂

∂λ̄
Gε,µ(λ)

is a probability measure on the complex plane and one has the weak con-
vergence limε→0 µε = µ.

Our general polynomial in free variables will not, in general, be self-
adjoint nor normal. Thus, we need a generalization of the distribution of
a self-adjoint operator to a non-normal situation. This can be done, in a
tracial setting, by imitating essentially the ideas from above.
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Thus let us consider a general (not necessarily normal) operator x in
a tracial non-commutative probability space (A, ϕ). (We need some nice
analytic frame here, so A should be a von Neumann algebra.) We put

Gε,x(λ) := ϕ
(

(λ− x)∗
(
(λ− x)(λ− x)∗ + ε2

)−1)
.

Then
µε,x =

1

π

∂

∂λ̄
Gε,µ(λ)

is a probability measure on the complex plane, which converges weakly for
ε → 0. This limit µx := limε→0 µε,x is called the Brown measure of x; it
was introduced by L. Brown in 1986 and revived in 2000 by Haagerup and
Larsen [19], who made a decisive use of it for their investigations around the
invariant subspace problem.

9. Hermitization method

The idea of the hermitization method is to treat non-normal operators (or
random matrices) x by studying sufficiently many self-adjoint 2×2 matrices
built out of x. A contact of this idea with the world of free probability was
made on a formal level in the works of Janik, Nowak, Papp, Zahed [20] and
of Feinberg, Zee [21]. We show in [2] that operator-valued free probability
is the right frame to deal with this rigorously. By combining this with our
subordination formulation of operator-valued free convolution, we can then
calculate the Brown measure of any polynomial in free variables.

In order to get the Brown measure of x, we need

Gε,x(λ) = ϕ
(

(λ− x)∗
(
(λ− x)(λ− x)∗ + ε2

)−1)
.

Let

X =

(
0 x
x∗ 0

)
∈M2(A) .

Note that X is self-adjoint. Consider X in the M2(C)-valued probability
space with respect to E = id⊗ ϕ : M2(A)→M2(C) given by

E

[(
a11 a12
a21 a22

)]
=

(
ϕ(a11) ϕ(a12)
ϕ(a21) ϕ(a22)

)
.

For the argument

Λε =

(
iε λ
λ̄ iε

)
∈M2(C)
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consider now the M2(C)-valued Cauchy transform of X

GX(Λε) = E
[
(Λε −X)−1

]
=

(
gε,λ,11 gε,λ,12
gε,λ,21 gε,λ,22

)
.

One can easily check that (Λε −X)−1 is actually given by(
−iε((λ− x)(λ− x)∗ + ε2)−1 (λ− x)

(
(λ− x)∗(λ− x) + ε2

)−1
(λ− x)∗

(
(λ− x)(λ− x)∗ + ε2

)−1 −iε((λ− x)∗(λ− x) + ε2)−1

)
,

and thus we are again in the situation that our quantity of interest is actually
one entry of an operator-valued Cauchy transform

gε,λ,12 = Gε,x(λ) .

10. Calculation of the Brown measure

So in order to calculate the Brown measure of some polynomial p, we
should first hermitize the problem by going over to self-adjoint 2×2 matrices
over our underlying space, then we should linearize the problem on this
level and use finally our subordination description of operator-valued free
convolution to deal with this linear problem. It might be not so clear whether
hermitization and linearization go together well, but this is indeed the case.
Essentially, we do here a linearization of an operator-valued model instead
of a scalar-valued one: we have to linearize a polynomial in matrices. But
the linearization algorithm works in this case as well.

Let us illustrate this with an example.
Consider the polynomial p = xy in the free self-adjoint variables x = x∗

and y = y∗.
For the Brown measure of this, we have to calculate the operator-valued

Cauchy transform of

P =

(
0 xy
yx 0

)
.

In order to linearize this, we should first write it as a polynomial in
matrices of x and matrices of y. This can be achieved as follows:

P =

(
0 xy
yx 0

)
=

(
x 0
0 1

)(
0 y
y 0

)(
x 0
0 1

)
= XYX .

P = XYX is now a self-adjoint polynomial in the self-adjoint variables

X =

(
x 0
0 1

)
and Y =

(
0 y
y 0

)
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and has thus a self-adjoint linearization 0 0 X
0 Y −1
X −1 0

 .

Plugging in back the 2 × 2 matrices for X and Y , we get finally the self-
adjoint linearization of P as

0 0 0 0 x 0
0 0 0 0 0 1
0 0 0 y −1 0
0 0 y 0 0 −1
x 0 −1 0 0 0
0 1 0 −1 0 0

 ,

which can be written as the sum of two M6(C)-free matrices
0 0 0 0 x 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 −1
x 0 −1 0 0 0
0 1 0 −1 0 0

+


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 y 0 0
0 0 y 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

For calculating the Cauchy transform of this sum, we can then use again
our subordination algorithm for the operator-valued free convolution from
Theorem 1. Putting all the steps together gives an algorithm for calculating
the Brown measure of p.

Of course, we expect that in nice cases the eigenvalue distribution of our
polynomial evaluated in independent Wigner or Wishart matrices should
converge to the Brown measure of the polynomial in the corresponding free
variables. However, in contrast to the self-adjoint case, this is not automatic
from the convergence of all relevant moments and one has to control prob-
abilities of small eigenvalues during all the calculations. Such control have
been achieved in special cases (in particular, the circular law and the single
ring theorem), but in general it has to remain open for the moment.

In the following figures, we give for some polynomials the Brown measure
according to our algorithm and compare this with histograms of the com-
plex eigenvalues of the corresponding polynomials in independent random
matrices.
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As before, this algorithm can also be extended to rational functions in
our variables. An example for the outcome of our algorithm in the case of
the non-self-adjoint rational function given by

q(x1, x2) :=
(
0 1

2

)(1− 1
4x1 −ix2

−1
4x2 1− 1

4x1

)−1(1
2

0

)
is shown in figure 7.

Fig. 4. Brown measure (left) of p(x, y, z) = xyz − 2yzx + zxy with x, y, z free
semicircles, compared to histogram (right) of the complex eigenvalues of p(X,Y, Z)

for independent Wigner matrices with N = 1000.

Fig. 5. Brown measure (left) of p(x, y) = x+ iy with x, y free semicircles, compared
to histogram (right) of the complex eigenvalues of p(X,Y ) for independent Wigner
matrices X and Y with N = 1000.
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Fig. 6. Brown measure (left) of p(x1, x2, x3, x4) = x1x2 + x2x3 + x3x4 + x4x1
with x1, x2, x3, x4 free semicircles, compared to histogram (right) of the complex
eigenvalues of p(X1, X2, X3, X4) for independent Wigner matrices X1, X2, X3, X4

with N = 1000.

Fig. 7. Brown measure of the non-self-adjoint rational function q(x1, x2) for free
semicircular elements x1 and x2.
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