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Correlations play an important rôle when estimating risk in the financial
markets. This is so from a systemic viewpoint when trying to assess the
stability of the markets, but also from a practical one when, e.g., optimizing
portfolios. The non-stationarity of the correlations in time poses challenges
for the modelling usually not encountered in the more traditional systems of
statistical physics. Three recent results are presented and discussed. First
it is shown how severely the exclusive look on the correlations can lead
to misjudgments of the mutual dependencies. Second, the identification
of distinct market states is reported and, third, generic features of return
distributions are shown to be well-captured by a random matrix model.
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1. Introduction

The use of random matrices already has a successful history in econo-
physics [1, 2] and finance [3–7]. In particular, the spectral density of indi-
vidual large empirical correlation matrices was found to be well-described
by a random matrix ansatz. More precisely, the Marchenko–Pastur formula
models the bulk of the spectral density, while those large eigenvalues which
give direct information about industrial sectors lie outside. These findings
had a considerable impact on portfolio optimization. Moreover, they also
caught the attention of many statistical physicists who then joined the field
of econophysics.

Here, I wish to present three recent results. Random matrices will appear
in a new application, conceptually different from the above one. In Sec. 2,
I begin with reporting a large-scale data analysis, carried out by Münnix
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and Schäfer [8], which shows, in a rather drastic fashion, that correlations
alone do not provide sufficient information. Copulas, a new concept from
statistics, are used to yield a much improved understanding of the mutual
dependencies. Nevertheless, as shown in Sec. 3, correlations may serve to
identify quasi-stationary states [9]. This is remarkable as the markets, in
particular the correlations, are non-stationary. Although it might at first
sound contradictory, the existence of these distinct states is still compatible
with generic features. This is demonstrated in Sec. 4 where a random matrix
model is discussed that can cope with the non-stationarity of the correla-
tions to yield universal return distributions [10]. In contrast to the above
mentioned application to individual correlation matrices, the random matri-
ces used here model the ensemble of correlation matrices that is generated
by the fluctuations, i.e., by the non-stationarity. This ensemble exists and is
not fictitious. The reason why the latter two findings are not contradictory
is given in the conclusions in Sec. 5.

2. Financial correlations and beyond

We consider K stocks with prices Sk(t), k = 1, . . . ,K measured at
times t = 1, . . . , T . One is interested in the statistical properties of the
returns Rk(t) = (Sk(t + ∆t) − Sk(t))/Sk(t). These are the dimensionless
price changes from time t to time t+ ∆t which depend on the chosen return
horizon ∆t. From the return time series Rk(t), one calculates the normalized
return time seriesMk(t) which have zero mean and unit standard deviation.
The Pearson correlation coefficient

Ckl =
1

T

T∑
t=1

Mk(t)Ml(t) (2.1)

is used to measure the linear mutual dependence of two stocks. The normal-
ized time seriesMk(t) form the rows of theK×T rectangular data matrixM
such that

C =
1

T
MM † (2.2)

is the K ×K correlation matrix. The dagger denotes the transpose.
Even though the Pearson correlation coefficients are successfully used

in a large variety of applications, they have severe limitations. The linear
correlation coefficient reduces a potentially much more complex statistical
dependence to a single number. Strictly speaking, this is only meaningful,
if the dependence is multivariate Gaussian, e.g., bivariate

fkl(x, y) =
1

2π
√

1− C2
kl

exp

(
−1

2

x2 − 2Cklxy + y2

1− C2
kl

)
, (2.3)
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where we use x = Rk(t), y = Rl(t) as a short-hand notation. If the de-
pendence is not of this simple Gaussian form, one has to retrieve better
information from the full joint pdf fkl(x, y). This can be done by using cop-
ulas as introduced by Sklar [11–13]. Here, I report a large scale analysis of
financial data recently carried out by Münnix and Schäfer [8]. To define cop-
ulas, we need some basic tools and, in particular, the marginal distribution
or probability density of the random variable x,

fk(x) =

+∞∫
−∞

fkl(x, y)dy (2.4)

and accordingly for y, as well as the cumulative distribution

Fk(x) =

x∫
−∞

fk(x
′)dx′ (2.5)

which is the probability to find the random variable in the interval (−∞, x].
Furthermore, we need the concept of quantiles. Inverting the cumulative
distribution, we can say that left of x = F−1k (u) are u percent of events.
This is referred to as u quantile, while u itself is the probability. The joint
probability is the double integral

Fkl(x, y) =

x∫
−∞

dx′
y∫

−∞

dy′fkl(x
′, y′) , (2.6)

which still contains all information about the mutual dependencies.
The idea is now to separate marginal distributions from the statistical

dependencies,

Fkl(x, y) = Copkl (Fk(x), Fl(y)) , (2.7)
Copkl(u, v) = Fkl

(
F−1k (u), F−1l (v)

)
, (2.8)

copkl(u, v) =
∂2

∂u∂v
Copkl(u, v) , (2.9)

where Cop is the copula and cop the corresponding copula density. The
mutual dependencies are measured as functions of the probabilities u and v.
This allows one to compare joint probabilities or joint probability densities
with different marginal distributions. This is similar to a “moving frame” or
to “unfolding” in quantum chaos.
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Münnix and Schäfer [8] thoroughly investigated how much the true, i.e.,
the empirical copula density copkl(u, v) differs from the Gaussian copula
density cop

(G)
kl (u, v) resulting from Eq. (2.3). They defined the distance

d(u, v) =
1

K(K − 1)/2

∑
k<l

(
copkl(u, v)− cop

(G)
kl (u, v)

)
(2.10)

as an average over all pairs constructed from a set of K stock returns. They
performed their empirical study for the U.S. stock market for K = 428
firms from the Standard & Poor’s TAQ data set between 2007 and 2010,
comprising more than 12 billion transactions. The results are shown in
Fig. 1, exhibiting a substantial difference from the Gaussian case. Münnix
and Schäfer [8] demonstrate that the bivariate Gaussian assumption dras-
tically underestimates simultaneous extreme events. The structure remains
unchanged even down to a return horizon of ∆t = 30 min.
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Fig. 1. Distance d(u, v) of copula densities for ∆t = 2h. Adopted from Ref. [8].

3. Market states

The volatilities, i.e., the standard deviations of the stock prices and the
returns are non-stationary because they reflect the trading activity. In hectic
times, the volatility is higher, and in calm times, lower. The correlations
provide detailed structural information about the market, but the Pearson
correlation coefficients are non-stationary, too. As the business relations
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between the firms as well as the traders’ market expectations change, there
is no reason for them to be constant. Thus, the structures visible in the
time correlation matrices also evolve with time. In Ref. [9], we used this fact
to identify states of the entire market characteristic for a finite but larger
period in time. Importantly, this structural information is in a very good
approximation the same when analysed with correlations or, alternatively,
with bivariate copulas. As the correlations are computed much faster, we
stick to them in the sequel.

To this end, we defined a similarity measure to quantitatively estimate
how much the correlation matrix C(T )(t1) extracted at time t1 with sampling
time T backwards differs from C(T )(t2) extracted from the data at time t2.
The distance of two correlation matrices is

ζ(T )(t1, t2) =
1

K(K − 1)/2

∑
k<l

∣∣∣C(T )
kl (t1)− C(T )

kl (t2)
∣∣∣ . (3.1)

These distances ζ(T )(t1, t2) yield an array or matrix in the (discretely chosen)
points (t1, t2), not to be confused with the correlation matrix itself. Empir-
ical results for the U.S. financial market from 1992 to 2010 are shown in
Fig. 2. The darker, the more different are the correlation matrices and thus
the correlation structure. Stripes emerge which mean that the correlation
matrices at all later times differ from the one at a given time.

Fig. 2. Distance matrix ζ(T )(t1, t2) for 1992 ≤ t1, t2 ≤ 2010. Taken from Ref. [9].
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Employing this distance measure, we identified market states by a cluster
analysis [9]. All correlation matrices computed with a two-months backward
sampling time T from 1992 to 2010 form the set C(T )(t), t = 1992, . . . , 2010.
We divided it in two disjunct subsets where the distance ζ(T ) from the aver-
age within each set is smallest. In the same way, we further divided these two
subsets in two subsubsets each, and so on. We stopped when the distances
within the sub. . . subsets became comparable to the distances between the
sub. . . subsets. We refer to these remaining sub. . . subsets as clusters. The
average of the correlation matrices in each cluster grasps the typical corre-
lation structure which we interpret as a quasi-stationary market state. We
found eight such market states which are depicted in Fig. 3. The colour cod-
ing ranges from dark blue (highest correlation) over white (no correlation)
to red (highest anticorrelation). Market state number 8 belongs to a period
of crisis in which sheer panic makes the traders act in a highly correlated
fashion.
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Fig. 3. (Colour online) The eight market states which emerged between 1992 and
2010. Taken from Ref. [9].
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These states also provide rich information about the time evolution of
the market as demonstrated in Fig. 4. The subsequent formation and dis-
integration of the market states is clearly visible. The market can return
to a state and even jump back and forth between states. Eventually, each
state disappears. Old states die out, new ones emerge. Thus, market states
have a lifetime and it would be interesting to relate it to other time scales,
e.g., to the average time between crashes. Usually, stock market data are
analysed “as if they were thrown on the floor”, but the identification of the
market states yields a tool to study the time evolution of the entire market
in a much reduced parameter space.

Fig. 4. Time evolution of the market states, numbering as in Fig. 3. Taken from
Ref. [9].

4. Generic features

Although Fig. 3 features the averages in the eight clusters, it illustrates
the significant non-stationarity of the correlations. In Ref. [10], we showed
that the above mentioned set of all correlation matrices may be viewed
as an ensemble allowing for ensemble averages of observables. Clearly,
the strength of the fluctuations within this ensemble will be carried over
to the ensemble averaged observable. A particularly interesting observ-
able is the multivariate distribution of all K returns, ordered in the vector
R = (R1(t), . . . , RK(t)) at a given time t. We carefully checked that this
distribution is well-approximated by the multivariate Gaussian distribution

g(R|Σ) =
1√

det (2πΣ)
exp

(
−1

2
R†Σ−1R

)
(4.1)

under the condition that the backwards sampling time T is short enough to
leave the covariances constant. We recall that the K ×K covariance matrix
Σ = σCσ contains the correlation matrix C and the diagonal matrix σ
of the volatilities. The empirical multivariate return distribution for the
Standard & Poor’s data set is depicted in Fig. 5 for T = 1 a month after
the rotation into the eigenbasis of Σ and subsequent aggregation. As one
sees, the Gaussian yields a satisfactory description over several decades.
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Fig. 5. Aggregated multivariate return distribution (solid line) for short sampling
times compared to a Gaussian (circles). Taken from Ref. [10].

However, the available data set comprises 20 years, from 1992 to 2012.
What is the multivariate distribution for all the returns measured in this long
period in view of the fact that the covariances are non-stationary? We began
with assuming that the ensemble of the correlation matrices can be mod-
elled by a Wishart ensemble of random matrices σXX†σ where the K ×N
rectangular and real matrix X is drawn from the Gaussian distribution

w(X|C0) =
1

detN/2(2πC0)
exp

(
−N

2
trX†C−10 X

)
. (4.2)

Here, C0 is the empirically found mean correlation matrix in the entire period
from 1992 to 2012. The Gaussian (4.2) ensures that C0 is the resulting
ensemble average, 〈XX†〉 = C0. The matrix X is the model data matrix.
One of its dimensions, K, was dictated to us as we want to analyse returns
of K firms. The other dimension, N , is a free parameter which can be
interpreted as the length of the model time series. A first understanding of its
meaning within the model is achieved by realizing that it is also contained in
the exponent in Eq. (4.2) as an inverse variance. To obtain the multivariate
distribution for the entire period from 1992 to 2012, we perform the ensemble
average

〈g〉(R|C0, σ,N) =

∫
g
(
R|σXX†σ

)
w(X|C0)d[X] (4.3)

over the empirically confirmed multivariate Gaussian distribution (4.2) for
very short periods of time. The matrix integral can be computed in a closed
form and yields
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〈g〉(R|C0, σ,N) =
1

2N/2+1Γ (N/2)
√

det(2πΣ0/N)

×
K(K−N)/2

(√
NR†Σ−10 R

)
√
NR†Σ−10 R

(K−N)/2
, (4.4)

where Kν is the modified Bessel function of the second kind and of the order
of ν. Due to the invariances of the Wishart ensemble (4.2), the result only
depends on the bilinear form R†Σ−10 R with Σ0 = σC0σ being the mean
covariance matrix.

We compared the result (4.4) with the return data from 1992 to 2012,
again by rotating in the eigenbasis, now of Σ0, and subsequent aggregation.
We used daily and monthly returns. In both cases, the distribution clearly
has much heavier tails than a Gaussian, but the tails for the daily data
are even heavier than those for the monthly data. This simply reflects the
heaviness for the individual return distribution which are the heavier, the
smaller the return horizon ∆t. The important observation, however, is that
our analytical result (4.4) can grasp that for the multivariate return distri-
bution over some decades. Here, the parameter N comes into play again. It
crucially determines the width of the analytical result (4.4). We also showed
that there is roughly a linear dependence between N and ∆t. Thus, we
find that the smaller N , the stronger are the correlations and the heavier
are the tails. In Fig. 6, a fit gives N = 5 for the daily and N = 14 for
the monthly data. The message is that the fluctuation of the correlations
lift the Gaussian tails in the distribution (4.1). Furthermore, the ensemble
approach drastically reduces the parameters needed to describe the mul-
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Fig. 6. Aggregated multivariate return distribution (solid line) for the 20 year
sampling time from 1992 to 2012 compared to Eq. (4.4) (circles), daily (left) and
monthly (right) returns. Taken from Ref. [10].
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tivariate return distribution to the empirical mean correlation matrix, the
empirical volatilities and the width parameter N which is the only free one.
This implies that we have identified generic features of return distributions
resulting from non-stationary correlations.

5. Conclusions

Financial correlation provides important information about the markets,
but it was previously too little appreciated that the strongly non-Gaussian,
heavy-tailed distributions observed for the returns of a single stock render it
questionable to solely rely on the linear Pearson correlation coefficient when
trying to quantitatively assess the mutual dependencies between different
stocks. Copulas provide the full picture, demonstrating how drastically the
correlations underestimate simultaneous large events. Having this caveat in
mind, we may proceeded with the correlations to gather overall structural
information.

The claimed coexistence of distinct market states on the one hand and of
generic features on the other hand might sound contradictory. When Wigner
put forward the Random Matrix Theory in the nuclear physics context, he
was heavily criticized. It was rightfully pointed out that the selection rules
lead to many zero matrix elements in the nuclear Hamiltonian when repre-
sented in a shell model basis, say. Nevertheless, the embedded ensembles of
random matrices (see, e.g., Ref. [14]) which take those selection rules into
account yield the same local fluctuations as Wigner’s original model. This
is so because of the unfolding that removes the dependence on the level
density. As there are no scales competing with the mean level spacing, no
deviations from the standard random matrix fluctuations are seen.

A similar line of reasoning solves the above puzzle. The truly existing,
empirically found ensemble of correlation matrices has a fine structure re-
vealing itself in the market states which may be viewed as distinct attractors
in the set of the correlation matrices. The considered multivariate distribu-
tions mix returns in linear combinations when rotated in the eigenbasis of
the covariance matrix. This implies some self-averaging that washes out the
information about the fine structure and the plain Gaussian Wishart model
yields a good description of the data. Here, it is of crucial importance that
the ensemble averaged return distribution that we found is, by no means, an
artificial object, it is of direct relevance, e.g., for portfolio optimization [15]
and credit risk [16].

Finally, we mention the conceptual difference of our ensemble approach
to the previous application of Random Matrix Theory in econophysics
[3, 4]. In the latter studies, an ergodicity argument was implicitly used
when comparing the eigenvalue density of a single, but large empirical cor-
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relation matrix to that of a Wishart ensemble. Put differently, the ensemble
was fictitious. In our study, we identified a really existing ensemble that
models the non-stationarity. The issue of ergodicity does not arise.
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