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In this article, we show the existence of limiting spectral distribution of
a symmetric random matrix whose entries come from a stationary Gaussian
process with covariances satisfying a summability condition. We provide
an explicit description of the moments of the limiting measure. We also
show that in some special cases the Gaussian assumption can be relaxed.
The description of the limiting measure can also be made via its Stieltjes
transform which is characterized as the solution of a functional equation.
In two special cases, we get a description of the limiting measure — one
as a free product convolution of two distributions, and the other one as a
dilation of the Wigner semicircular law.
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1. Introduction

In his seminal paper, Wigner [1] showed that for a symmetric random
matrix with independent on and off diagonal entries satisfying some moment
conditions, the empirical spectral distribution (henceforth ESD) converges to
the Wigner semicircle law (defined in (5.2), henceforth WSL). Subsequent
work has tried to obtain a better understanding of the spectrum of such
matrices, which plays an important role in physics as well as other branches
of mathematics such as operator algebras. Recently, there has been interest
in how far the independence assumption and the moment conditions can be
relaxed. The reader may refer to the recent review article by Ben Arous
and Guionnet [2], and the references therein, for an overview of currently
available results.
∗ Presented at the Conference “Random Matrix Theory: Foundations and Applica-
tions”, Kraków, Poland, July 1–6, 2014.
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Relaxation of the independence assumption has been investigated by
Götze and Tikhomirov [3], Chatterjee [4], Rashidi Far et al. [5], and Hof-
mann-Credner and Stolz [6]. The sample covariance matrix has been studied,
imposing some dependence on the rows and columns, by Hachem et al. [7],
Adamczak [8], and Pfaffel and Schlemm [9]. However, the limiting spectral
distributions (henceforth LSD) obtained by considering symmetric matrices
with the independence assumption weakened have stayed within the WSL
regime for the most part. One exception is Anderson and Zeitouni [10], who
considered the LSD of Wigner matrices where on and off diagonal elements
form a finite-range dependent random field; in particular, the entries are
assumed to be independent beyond a finite range, and within the finite
range the correlation structure is given by a kernel function.

1.1. Motivation

We begin with a few examples to motivate the problem studied in this
article. In each of the following examples, a random field {Zi,j : i, j ≥ 1}
is developed. For n ≥ 1, let An be the n × n matrix whose (i, j)th entry is
Zi∧j,i∨j . The question is whether the ESD of An/

√
n converges as n → ∞,

and if so, can one identify the limit.
Example 1. Let {Zi,j : i, j ≥ 1} be a mean zero Gaussian process such that
E [Zi,jZi+k,j+l] = ρ|k|+|l| for integers i, j, k, l such that i, j, i + k, j + l ≥ 1,
where |ρ| < 1 is fixed. This process can be thought of as a “two-dimensional
AR(1) process”, because {Zi,j : j ≥ 1} is an AR(1) process for fixed i, as is
{Zi,j : i ≥ 1} for fixed j.
Example 2. Assume that {Gi,j : i, j ≥ 1} are i.i.d. standard Gaussian
random variables, and N is a fixed positive integer. Define

Zi,j :=
N∑
k=0

N∑
l=0

Gi+k,j+l, i, j ≥ 1 .

Example 3. Suppose that (Gn : n ∈ Z) is a mean zero variance one
stationary Gaussian process. Let (Gin : n ∈ Z) be i.i.d. copies of (Gn : n ∈ Z)

for i = . . . ,−2,−1, 0, 1, 2, . . . . Set Zi,j := Gi−ji , i, j ∈ Z .
Example 4. Let {ck,l} be real numbers such that

∞∑
k=−∞

∞∑
l=−∞

c2k,l < ∞ ,

ck,l = cl,k for all k, l ∈ Z ,
∞∑

l=−∞
ck,lck′,l = 0 for all k 6= k′ .
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As in Example 2, let {Gi,j : i, j ≥ 1} be i.i.d. standard Gaussian random
variables. Define

Zi,j :=
∑
k,l∈Z

ck,lGi−k,j−l , i, j ∈ Z .

It is shown later in Section 5 that for Examples 1 and 2, the LSD of An/
√
n

is the free product convolution of the WSL with a distribution supported
on a compact subset of [0,∞), and for Examples 3 (under the additional
assumption that

∑∞
n=1 |E(G0Gn)| < ∞) and 4, the LSD is a dilation of

the WSL. To the best of our understanding, Example 2 is the only one
of the above examples where the result follows from the work of Anderson
and Zeitouni [10], because that is the only example where two entries are
independent if their distance is above a threshold.

1.2. Outline of our contribution

Motivated by these examples, this article considers a random matrix
model where on and off diagonal entries form a stationary Gaussian field,
with the covariance of the entries being summable. Specifically, let (Zi,j :
i, j ∈ Z) be a stationary, mean zero, variance one Gaussian process. Sta-
tionarity here means that for k, l ∈ Z,

(Zi+k,j+l : i, j ∈ Z)
d
= (Zi,j : i, j ∈ Z) .

For i, j ≥ 1, set
Xi,j := Zi∧j,i∨j ,

and let
An := ((Xi,j))n×n , n ≥ 1 . (1.1)

Let λ1 ≤ · · · ≤ λn be the eigenvalues of An, which are real because An is
symmetric, and denote

µn :=
1

n

n∑
i=1

δ{λi/√n} . (1.2)

The main result of this article is Theorem 2.1, stated in Section 2 along with
an outline of the proof, which gives a set of conditions on the covariance
of {Xi,j} under which the ESD µn converges weakly in probability. The
assumption of Gaussianity, although important in the proof, can be relaxed
to allow for a fairly general class of input sequences using the Lindeberg type
argument developed in Chatterjee [11]. This is done in Section 3, where we
show that by specializing on an infinite order moving average process with
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independent inputs satisfying the Pastur condition (see (3.1)), Theorem 2.1
and an invariance principle can be used to establish the convergence of the
ESD. An interpretation of the limiting moments in terms of functions of
non-crossing pair partitions is used to derive the Stieltjes transform of the
measure in Section 4. There, an explicit description of the Stieltjes transform
is provided using the moment formula and some properties of the Kreweras
complement. The form of the Stieltjes transform indicates a relationship
with operator-valued semicircular variables studied in Speicher [12] (for the
application of free probability to random matrices, see the recent review by
Speicher [13]). Finally, in Section 5, two explicit examples are described
where we get better descriptions of the limit: Theorem 5.1 gives conditions
under which the LSD is the free multiplicative convolution of the WSL and
another distribution. Theorem 5.2 gives conditions under which the LSD is
the WSL. Detailed proofs of these results have been omitted for brevity and
can be found in a longer version of this paper available on arXiv.org [14].

2. The main result

In this section, we state the main result, and give an outline of the proof.
Let the n× n random symmetric matrix An be as in (1.1), and set µn to be
ESD of An/

√
n, as defined in (1.2). Before stating the main result, we need

a few more notations and assumptions. Define

R(u, v) := E [Z0,0Z−u,v] , u, v ∈ Z . (2.1)

The assumptions are the following.
Assumption 1. R(·, ·) is symmetric, that is,

R(u, v) = R(v, u) for all u, v ∈ Z . (2.2)

Assumption 2. R(·, ·) is absolutely summable, that is,

R̄ :=
∑
u,v∈Z

|R(u, v)| <∞ . (2.3)

An immediate consequence of Assumption 1 and stationarity is that

R(u, v) = R(−v,−u) , u, v ∈ Z . (2.4)

Fix σ ∈ NC2(2m), the set of non-crossing pair partitions of {1, . . . , 2m}.
Let (V1, . . . , Vm+1) denote the Kreweras complement of σ, which is the max-
imal partition σ of {1, . . . , 2m} such that σ ∪ σ is a non-crossing partition
of {1, 1, . . . , 2m, 2m}. For 1 ≤ i ≤ m+ 1, denote

Vi :=
{
vi1, . . . , v

i
li

}
. (2.5)
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Denote

S(σ) :=

(k1, . . . , k2m) ∈ Z2m :

ls∑
j=1

kvsj = 0 , s = 1, . . . ,m+ 1

 , (2.6)

and define

β2m :=
∑

σ∈NC2(2m)

∑
k∈S(σ)

∏
(u,v)∈σ

R(ku, kv) , m ≥ 1 . (2.7)

Indeed, if σ = {(u1, um+1), . . . , (um, u2m)}, then∑
k∈S(σ)

∏
(u,v)∈σ

|R(ku, kv)| <∞ .

That is, as a consequence of Assumption 2, (2.7) makes sense.
The main result of this article is the following.

Theorem 2.1. Under Assumptions 1 and 2, µn converges weakly in proba-
bility to a distribution µ. The distribution µ is even and compactly supported.

Remark 1. As is common in the literature, the phrase “µn converges weakly
in probability to a distribution µ” means that

L (µn, µ)
P−→ 0 ,

as n→∞, where L, the Lévy distance, is defined by

L(ν1, ν2) := inf {ε > 0 : ν1 ((−∞, x− ε])− ε ≤ ν2 ((−∞, x])

≤ ν1 ((−∞, x+ ε]) + ε for all x ∈ R} , (2.8)

for probability measures ν1, ν2 on R.

We end this section with a brief outline of the proof of the above result.
Sketch of the proof of Theorem 2.1. As is standard in a proof by the
method of moments, what needs to be shown is that for fixed m ≥ 1,

lim
n→∞

n−(m+1)
n∑

i1,...,i2m=1

E
[
Xi1,i2 . . . Xi2m−1,i2mXi2m,i1

]
= β2m . (2.9)

Note that the expectation of the odd moments vanish anyway, and hence
it suffices to consider only the even ones. As in the proof of the classi-
cal Wigner’s result, the first step is to get rid of the “non-pair matched”
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tuples i = (i1, . . . i2m) in the above sum. Fix N ≥ 1, and say that a tu-
ple i ∈ {1, . . . , n}2m is N -pair matched if there exists a pair partition π of
{1, . . . , 2m} such that for all (u, v) ∈ π,

|iu−1 ∧ iu − iv−1 ∧ iv| ∨ |iu−1 ∨ iu − iv−1 ∨ iv| ≤ N ,

with the convention i0 := i2m. It needs to be shown that if CN,n denotes
the set of tuples in {1, . . . , n}2m which are not N -pair matched, then

lim
N→∞

lim sup
n→∞

n−(m+1)

∣∣∣∣∣∣
n∑

i∈CN,n

E
[
Xi1,i2 . . . Xi2m−1,i2mXi2m,i1

]∣∣∣∣∣∣ = 0 . (2.10)

Unlike in the classical Wigner’s result, this is a non-trivial step in our sit-
uation because not only does the above sum not vanish for N large, even
showing that the expectation in modulus is less than some ε is not enough
because #CN,n ∼ n2m as n → ∞, and the sum is scaled only by n(m+1).
This is precisely the step where Assumption 2 plays an important role.

Once (2.10) is established, what remains to be shown for (2.9) is that for
fixed N ,

lim
n→∞

n−(m+1)
n∑

i∈CcN,n

E
[
Xi1,i2 . . . Xi2m−1,i2mXi2m,i1

]
=

∑
σ∈NC2(2m)

∑
k∈S(σ):maxj |kj |≤N

∏
(u,v)∈σ

R(ku, kv) . (2.11)

By standard combinatorial arguments, the sum over CcN,n can be shown to
be asymptotically equivalent to the sum over all tuples that are Catalan with
respect to some σ ∈ NC2(2m), that is, whenever (j, k) ∈ σ,

|ij−1 − ik| ∨ |ij − ik−1| ≤ N .

The final step is to show that for fixed σ ∈ NC2(2m), if Dσ denotes the set
of tuples in {1, . . . , n}2m which are Catalan with respect to σ, then

lim
m→∞

∑
i∈Dσ

E
[
Xi1,i2 . . . Xi2m−1,i2mXi2m,i1

]
=

∑
k∈S(σ):maxj |kj |≤N

∏
(u,v)∈σ

R(ku, kv) .

This follows by computing the expectation via Wick’s formula, and observing
that in that formula, the contribution of all the pair partitions excluding σ
is asymptotically negligible. This final step establishes (2.11). �
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3. The linear process

In this section, we study the ESD of a random matrix whose entries are
generated from a linear process with independent random variables as the
input sequence. In particular, let {εi,j : i, j ∈ Z} be independent, mean zero,
variance one random variables which satisfy the Pastur condition

lim
n→∞

1

n2

n∑
i,j=1

E
[
ε2i,j1

(
|εi,j | > ε

√
n
)]

= 0 for all ε > 0 . (3.1)

Let {ck,l : k, l ∈ Z} be a collection of deterministic real numbers such that

0 <
∑
k,l∈Z

|ck,l| <∞ (3.2)

and
ck,l = cl,k , k, l ∈ Z . (3.3)

Define
Zi,j :=

∑
k,l∈Z

ck,lεi−k,j−l , i, j ∈ Z , (3.4)

where the sum on the right-hand side converges in L2 because ck,l are square
summable, which is a consequence of (3.2). While the family of random
variables {Zi,j : i, j ∈ Z} need not be stationary because the distributions
of εi,j are not necessarily identical, it is easy to see that

E(Zi,j) = 0 , i, j ∈ Z ,

E(Zi,jZi−u,j+v) =
∑
k,l∈Z

ck,lck−u,l+v =: R(u, v) , i, j, u, v ∈ Z . (3.5)

Define the n× n symmetric random matrix An and µn, the ESD of An/
√
n

by (1.1) and (1.2) respectively. The assumption (3.2) ensures that

∑
u∈Z

∑
v∈Z
|R(u, v)| ≤

∑
k∈Z

∑
l∈Z

[
|ck,l|

∑
u∈Z

∑
v∈Z
|ck−u,l+v|

]
=

∑
k,l∈Z

|ck,l|

2

<∞ .

Therefore, we define β2m by (2.7). Let µ be the unique probability mea-
sure whose odd moments are all zero, and for m ≥ 1, the 2mth moment
equals β2m.

The content of this section is the following result.

Theorem 3.1. Under assumptions (3.1) to (3.3), µn converges weakly in
probability to µ.
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Sketch of the proof. Fix m ≥ 1 and let

Z
(m)
i,j =

m∑
k,l=−m

ck,lεi−k,j−l for i, j ≥ 1 .

Define
A(m)
n :=

((
Z

(m)
i,j

))
n×n

, n ≥ 1 .

We next define a similar random matrix model, but with Gaussian entries.
Let (Gi,j : i, j ∈ Z) be i.i.d. standard Gaussian, and set

Y
(m)
i,j =

m∑
k,l=−m

ck,lGi−k,j−l for i, j ≥ 1 .

Denote
B(m)
n :=

((
Y

(m)
i,j

))
n×n

, n ≥ 1 .

For a finite linear process, it can be shown that the Stieltjes transform of the
ESD of a matrix made up of Gaussian random variables and another with
general entries satisfying (3.1) are close to each other using the Lindeberg
type argument, developed in [11], of “replacing εi,j by Gi,j one at a time”.
That is,

1

n

Tr

(zIn − A
(m)
n√
n

)−1− Tr

(zIn − B
(m)
n√
n

)−1 P−→ 0 , (3.6)

as n→∞, for all z in the complex plane with non-zero imaginary part. The
arguments for the above are very similar to those in Subsections 2.3 and 2.4
of [11] and hence are omitted.

It is easy to see that

R(m)(u, v) := E
(
Y

(m)
i,j Y

(m)
i−u,j+v

)
=

m∑
k,l=−m

ck,lck−u,l+v , u, v ∈ Z .

By Theorem 2.1, it follows that for fixedm, as n→∞, the ESD of B(m)
n /
√
n

converges weakly in probability to the probability measure µ(m) whose odd
moments are all zero and for l ≥ 1, the 2lth moment is β(m)

2l defined by

β
(m)
2l :=

∑
σ∈NC2(2l)

∑
k∈S(σ)

∏
(u,v)∈σ

R(m)(ku, kv) , l ≥ 1 ,
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with S(σ) being as in (2.6). This, along with (3.6), implies that as n→∞,

1

n
Tr

(zIn − A
(m)
n√
n

)−1 P−→
∫

1

z − x
µ(m)(dx) , z ∈ C \ R .

Recalling from (2.8) the definition of L, a restatement of the above is that

L
(
µ(m)
n , µ(m)

)
P−→ 0 , (3.7)

as n→∞, where µ(m)
n denotes the ESD of A(m)

n /
√
n. Notice that

lim
m→∞

R(m)(u, v) = R(u, v) , u, v ∈ Z .

By using (3.2) to interchange limit and sum, it follows that

lim
m→∞

β
(m)
2l = β2l , l ≥ 1 .

Therefore,
lim
m→∞

L
(
µ(m), µ

)
= 0 . (3.8)

In view of (3.7) and (3.8), to complete the proof of the result, it suffices to
show that

lim
m→∞

lim sup
n→∞

E
[
L3
(
µ(m)
n , µn

)]
= 0 , (3.9)

recalling that µn is the ESD of An/
√
n.

To that end, we shall use the fact that for n×n (deterministic) symmetric
matrices C and D with ESD νC and νD respectively,

L3(νC , νD) ≤ 1

n
Tr
(
(C −D)2

)
,

which is a consequence of the Hoffman–Wielandt inequality; see Corollary
A.41, page 502 in Bai and Silverstein [15]. Using this inequality, it is imme-
diate that

E
[
L3
(
µ(m)
n , µn

)]
≤ 1

n
E

[
Tr

[(
An
/√

n−A(m)
n

/√
n
)2]

=
∑

k,l∈Z:|k|∨|l|>m

c2k,l . (3.10)

The assumption (3.2) ensures, of course, that {ck,l} is square summable, and
thus establishes (3.9). Combining this with (3.7) and (3.8) completes the
proof. �
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4. Stieltjes transform

In this section, a characterization of the Stieltjes transform of µ, the LSD
in Theorems 2.1 and 3.1, is given via a functional equation. As the reader
may have already noticed, in both the above results, µ is defined via the
correlations R(u, v) which is as in (2.1) or (3.5). For this section, let R(·, ·)
be the correlations of a weakly stationary mean zero variance one process
(Yij : i, j ∈ Z), that is,

E(Yi,j) = 0 , i, j ∈ Z ,
E
(
Y 2
i,j

)
= 1 , i, j ∈ Z ,

E(Yi,jYi−u,j+v) =: R(u, v) , i, j, u, v ∈ Z .

As before, we assume (2.2) and (2.3). As before, let µ be the unique even
probability measure whose 2mth moment equals β2m which is as defined in
(2.7). Recall that the Stieltjes transform of the probability measure µ on R
is denoted by

G(z) =

∫
R

1

z − x
µ(dx) , z ∈ C \ R .

The main result of this section is Theorem 4.1 below.
Let the Fourier transform of covariance function {R(k, l)}k,l∈Z be given by

f(x, y) =
∑
k,l∈Z

R(k, l) exp(2πi(kx+ ly)) for (x, y) ∈ [0, 1]× [0, 1] .

Note that by (2.2), it follows that f(x, y) is a real, symmetric function. For
stating the main result, we need the following proposition.

Proposition 4.1. Suppose that H1 and H2 are functions from C× [0, 1] to
C satisfying the following for i = 1, 2:

1. for all x ∈ [0, 1] and z ∈ C,

zHi(z, x) = 1 +Hi(z, x)

1∫
0

Hi(z, y)f(x, y)dy , (4.1)

2. there exists a neighbourhood Ni (independent of x) of infinity such that
for all x ∈ [0, 1], Hi(·, x) is analytic on Ni,

3. for all x ∈ [0, 1],
lim
z→∞

zHi(z, x) = 1 , (4.2)
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4. and
H(−z, x) = −H(z, x) , z ∈ C , x ∈ [0, 1] . (4.3)

Then
H1 ≡ H2 on N1 ∩N2 .

The following is the main result.

Theorem 4.1. There exists a function H satisfying the assumptions of the
Proposition 4.1. The Stieltjes transform G of the LSD µ is given by

G(z) :=

 1∫
0

H(z, x)dx

 , z ∈ C .

Sketch of the proof. Fix σ ∈ NC2(2m), and denote its Kreweras comple-
ment by (V1, . . . , Vm+1). Although the Kreweras complement is a partition
of {1, . . . , 2m}, for the ease of notation, V1, . . . , Vm+1 will be thought of as
subsets of {1, . . . , 2m}, that is, the overline will be suppressed. In order
to ensure uniqueness in the notation, we impose the requirement that the
blocks V1, . . . , Vm+1 are ordered in the following way. If 1 ≤ i < j ≤ m+ 1,
then the maximal element of Vi is strictly less than that of Vj . Let Tσ be
the unique function from {1, . . . , 2m} to {1, . . . ,m+ 1} satisfying

i ∈ VTσ(i) , 1 ≤ i ≤ 2m.

For example, if σ := {(1, 4), (2, 3), (5, 6)}, then Tσ(1) = 2, Tσ(2) = 1,
Tσ(3) = 2, Tσ(4) = 4, Tσ(5) = 3, Tσ(6) = 4. Define the function Lσ from
Rm+1 to R by

Lσ(x) :=
∏

(u,v)∈σ

f
(
xTσ(u), xTσ(v)

)
, x ∈ Rm+1 .

Finally, set

hσ(y) :=

1∫
0

. . .

1∫
0

Lσ(x1, . . . , xm, y)dxm . . . dx1 , y ∈ R .

We start with defining the functions

H0(x) = 1 , H2m(x) =
∑

σ∈NC2(2m)

hσ(x) .

Since #NC2(2m) ≤ 4m, it can be shown that the power series

H(z, x) :=
∞∑
m=0

H2m(x)

z2m+1
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converges on {z ∈ C : |z| > 2R̄1/2} for every fixed x ∈ [0, 1]. Note that this
neighborhood around infinity is independent of x ∈ [0, 1]. It is easy to see
that zH(z, x) has a power series expansion with the leading term as 1 and
hence zH(z, x) → 1 as |z| → ∞. It follows from the definition of H(z, x)
that H(−z, x) = −H(z, x). It is easy to check that the Stieltjes transform
G of µ satisfies

G(z) =

1∫
0

H(z, x)dx .

Equation (4.1) with Hi replaced by H is all that remains to be checked.
To that end, we derive a recursion for H(z, x) using the properties

of hσ(x). Recall that there is a natural one–one correspondence between
NC2(2m) and the set of Catalan words of the length of 2m with the under-
standing that two words will be considered identical if one can be obtained
from the other by a relabelling of letters. Keeping this correspondence in
mind, by an abuse of notation, we shall now consider hw(x) for Catalan
words w, and denote by NC2(2m) the set of Catalan words of the length of
2m. Note that any Catalan word w of the length of 2m can be written as
w = aw1aw2, for some w1 ∈ NC2(2k − 2) and w2 ∈ NC2(2m− 2k). So if

H2m,k(x) :=
∑

w1∈NC2(2k−2)

∑
w2∈NC2(2m−2k)

haw1aw2(x) ,

then

H2m(x) =
m∑
k=1

H2m,k(x) .

Notice that

H2m,k(x) =
∑

w1∈NC2(2k−2)

haw1a(x)
∑

w2∈NC2(2m−2k)

hw2(x)

=
∑

w1∈NC2(2k−2)

1∫
0

[f(x, y)hw1(y)] dy
∑

w2∈NC2(2m−2k)

hw2(x)

=

1∫
0

[
f(x, y)H2(k−1)(y)H2(m−k)(x)

]
dy ,

the equalities in the first two lines following from standard tricks with Cata-
lan words. From here, an easy computation completes the proof. One can
refer to the arXiv version for the complete details [14]. �
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5. Special cases and examples

In this section, we attempt to give a better description of the proba-
bility measure µ, which appears as the LSD in Theorems 2.1 and 3.1, in
some special cases. As in Section 4, R(·, ·) are the correlations of a weakly
stationary mean zero variance one process (Yij : i, j ∈ Z). As always, (2.2)
and (2.3) are assumed, and µ is the unique even probability measure whose
2mth moment equals β2m which is as defined in (2.7). The first main result
of this section is the following.

Theorem 5.1. Assume that

R(u, v) = R(u, 0)R(0, v) , u, v ∈ Z . (5.1)

Then, the function r(·) defined on [−π, π] by

r(x) :=
∞∑

k=−∞
R(k, 0)e−ikx , −π ≤ x ≤ π ,

is a well-defined function, that is the sum on the right-hand side converges
absolutely, and its range is a compact subset of [0,∞). Furthermore,

µ = µr � µs ,

where µr denotes the law of r(U), U being a Uniform (−π, π) random vari-
able, µs denotes the WSL whose density is given by

µs(dx) :=

√
4− x2
2π

1(|x| ≤ 2)dx , (5.2)

and “ �” denotes the free product convolution.

Remark 2. In order that µr � µs be defined, it is required that both µr
and µs are compactly supported, and the support of at least one of them is
a subset of the positive half line. Hence, in the above result, the claim that
the range of r(·) is a compact subset of [0,∞) is needed. For this and other
results on the free product convolution, the reader is referred to Chapter 14
of [16].

The next result is the other main result of this section.

Theorem 5.2. If
R(k, 0) = 0 for all k 6= 0 , (5.3)

then µ = µs, where µs is the WSL as defined in (5.2).

Now, we shall see the relevance of the two main results proved above in
the light of Theorem 3.1.
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5.1. Corollary of Theorem 5.1

Let {εi,j : i, j ∈ Z} be as in Section 3; in particular, the Pastur condition
(3.1) holds. Let {ck : k ∈ Z} be a sequence of real numbers such that

∞∑
k=−∞

|ck| <∞ (5.4)

and
∞∑

k=−∞
c2k = 1 . (5.5)

Set
ck,l := ckcl , k, l ∈ Z .

Define Zi,j and R(·, ·) by (3.4) and (3.5) respectively. Clearly, (3.2) and (3.3)
hold, and the process (Zi,j : i, j ∈ Z) is weakly stationary with mean zero
and variance one. Also,

R(u, v) =

(∑
k

ckck−u

)(∑
l

clcl+v

)

=

(∑
k

∑
k′

ckck−uc
2
k′

)(∑
l

∑
l′

clcl+vc
2
l′

)
= R(u, 0)R(0, v) ,

the second equality following from (5.5). Let An and µn be as in (1.1) and
(1.2) respectively, that is, the former is the n×n matrix whose (i, j)th entry
is Zi∧j,i∨j , and the latter is the ESD of An/

√
n. Let µr and µs be as in

the statement of Theorem 5.1. Then, as a corollary of the result mentioned
above and Theorem 3.1, it follows that, µn converges weakly in probability
to µr � µs.

5.2. Corollary of Theorem 5.2

Once again, let {εi,j : i, j ∈ Z} be as in Section 3 satisfying (3.1). Assume
that {ck,l : k, l ∈ Z} ⊂ R is such that (3.2) and (3.3) hold, and furthermore

∞∑
l=−∞

ck,lck′,l = 1
(
k = k′

)
for all k, k′ ∈ Z . (5.6)

As before, let Zi,j , An and µn be as in (3.4), (1.1) and (1.2) respectively. It
is easy to see that the conditions imposed above ensure that (Zi,j : i, j ∈ Z)
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is a mean zero variance one weakly stationary process, and that (5.3) holds.
Then by Theorem 3.1 and Theorem 5.2, it follows that µn converges weakly
in probability to µs which is the WSL defined in (5.2).

We end this section by revisiting Examples 1 to 4 mentioned in Section 1.
Example 1. To start with, one needs to argue the existence of a stationary
centred Gaussian process {Zi,j : i, j ∈ Z} satisfying

E[Z0,0Zu,v] = ρ|u|+|v| , u, v ∈ Z .

That, however, is obvious from the observation that

ρ|u|+|v| =

∫
(−π,π]2

ei(ux+vy)F (dx)F (dy) , u, v ∈ Z ,

where F is the spectral measure of the autocovariance function (ρ|h| : h ∈ Z);
see Herglotz theorem (Theorem 4.3.1 in Brockwell and Davis [17]). By The-
orem 5.1 and results about the AR(1) process, it follows that µn converges
in probability to µr � µs, where µr is the law of 1−ρ2

1−2ρ cosU+ρ2
, U being an

Uniform (−π, π) random variable.
Example 2. Notice that the (i, j)th entry of An is given by

(N + 1)
∑
k,l∈Z

ckclGi−k,j−l =: (N + 1)Yi,j ,

where ck := (N + 1)−1/21(−N ≤ k ≤ 0). Then (5.4) and (5.5) hold, and
therefore, the ESD of ((Yi,j/

√
n))n×n converges to µr � µs, where µr is the

law of

1 + 2(N + 1)−2
N∑
k=1

(N − k + 1)2 cos(kU) ,

U being distributed as Uniform (−π, π). Hence, the LSD of An/
√
n is the

free product convolution of µs with the law of

N + 1 + 2(N + 1)−1
N∑
k=1

(N − k + 1)2 cos(kU) .

Example 3. By Theorem 5.2, it follows that under the additional assump-
tion that

∑∞
n=1 |E(G0Gn)| <∞, the LSD of An/

√
n is µs.

Example 4. Setting

σ :=

( ∞∑
k=−∞

∞∑
l=−∞

c2k,l

)1/2

,
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it is easy to see from the Corollary of Theorem 5.2 that the LSD of
σ−1An/

√
n is µs. Therefore, the LSD of An/

√
n is µ̃s given by

µ̃s(dx) :=

√
4− x2/σ2

2πσ
1(|x| ≤ 2σ)dx ,

which is a dilation of the WSL.

The authors are grateful to Parthanil Roy for helpful discussions.
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