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We evaluate spectra of stochastic matrices defined on complex random
graphs, with edges (i, j) of a graph being given positive random weights
Wij > 0 in such a fashion that column sums are normalized to one. The
structure of the graphs and the distribution of the non-zero edge weights
Wij are largely arbitrary. We only require that the mean vertex degree
remains finite in the thermodynamic limit, and that the Wij satisfy a de-
tailed balance condition. The main motivation for this work derives from
the fact that knowing the spectra of stochastic matrices is tantamount to
knowing the complete spectrum of relaxation times of stochastic processes
described by them. One of the interesting new phenomena uncovered by
our study is the appearance of localization transitions and mobility edges
in the spectra of stochastic matrices of the type investigated in the present
study.
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1. Introduction

The principal aim of the present contribution is to describe ways in
which the spectral theory of sparse random matrices can be harnessed to
study random walks and relaxation phenomena in complex networks.

The study of complex networks and random graphs has gained consid-
erable momentum in the last 15 years [1–5]. This has, in no small part,
been driven by the rapid spread of network-based information and commu-
nication technologies, as well as pervasive trends towards increasing levels
of socio-economic and financial interdependencies, which are transforming
societies across the globe.
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One of the simplest dynamical processes than can be associated with
a random graph is a random walk [6], describing the hopping of a system
point between vertices of a graph, at each time step randomly selecting one
of the neighbouring vertices as the target vertex to jump to. This process
constitutes an example of a discrete Markov chain, and variants of it have
been used to analyse a very broad range of phenomena, including diffusion
[7], infection dynamics and the spread of diseases in social networks [8, 9],
the transmission of information in communication networks (e.g. [10]), the
dynamics of glassy systems at low temperatures as conceptualized in terms
of hopping between long-lived states in state space [11–13], or the dynamics
of conformational changes in macro-molecules [14]. Aspects of persistence
and memory were emphasised in [15], and in the context of search algorithms
[16, 17], random walks in complex networks have become the basis of multi-
billion dollar industries.

As succinctly pointed out by Lovász [18], there is, in fact, “not much
difference between the theory of random walks on graphs and the theory
of finite Markov chains” and so it will come as no surprise that properties
of random walks in complex networks have been studied in their own right
[18–20] or used as a tool to analyse network structure [21].

One of the most powerful and versatile general tools to study topologi-
cal properties of graphs has been Random Matrix Theory. Moments of the
spectral density of the adjacency matrix of a graph or network, for instance,
encode information of the number of closed walks of a given length in the
system [22–24]. There is clearly a close link to random walks and diffusion
[7], and properties of Laplacian spectra have indeed been advocated as pro-
viding diagnostic tools for network structure [25, 26]. The computation of
spectra for ensembles of sparse random matrices was pioneered more than
two decades ago by Bray and Rodgers [7, 27]. A complete evaluation of the
theory appeared to be impossible, however, and approximations [24, 28–30]
have been developed to obtain explicit results. Fairly complete analytic con-
trol, both for asymptotic spectra in the limit of large system sizes (N →∞)
[31], and for large single instances [32] has been obtained only fairly recently.

In the present paper, we adapt the techniques developed in [31, 32] to
study spectra of large Markov matrixes defined in terms of complex random
graphs. Our main motivation derives from the fact that knowing the spectra
of stochastic matrices is tantamount to knowing the complete spectrum of
relaxation times of stochastic processes described by them. Our methods
are fairly general and apply to arbitrary graph ensembles defined in terms
of a configuration model, i.e. to graphs that are maximally random, subject
only to a given degree distribution, for which we need to assume that the
mean degree remains finite in the thermodynamic limit. It is worth noting
at the outset, though, that systems defined on Erdős–Renyi graphs with
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diverging mean degree are within easy reach of our methods. The only
other restriction that we currently have to make is that the Markov matrices
under investigation satisfy a detailed balance condition with an equilibrium
distribution, hence that Markov chains under study are time reversible. This
would apply to most physical systems, but only to a subset of technical or
socio-economic systems one might be interested in.

The spectrum of fully connected Markov matrices satisfying a detailed
balance condition was shown to converge to a semi-circular law [33] in the
large system limit, and to a circular law, if the detailed balance condition is
dropped [34]. Asymptotic results related to the circular law were obtained
for Erdős–Renyi graphs with mean connectivity diverging in the thermody-
namic limit in [35]. There are a number of recent results concerning spectra
of graph Laplacians, which are simply related to those of Markov matri-
ces; see e.g. [36–38]. However, solutions do involve mean-field [36] or large
mean degree [37] approximations, or they rely on a strictly self-similar con-
struction of the underlying graph [38]. We are not aware of general exact
solutions of the spectral problem for Markov matrices or their corresponding
master-equation operators for the case where the mean connectivity stays
finite in the thermodynamic limit.

The remainder of this paper is organised as follows. In Sect. 2, we intro-
duce the general framework and specify the class of systems to be analysed in
what follows. Section 3 describes the calculation of spectra of sparse Markov
matrices using a cavity approach. We will develop the theory separately for
the case of unbiased random walks and for more general Markov matrices.
Although the latter constitute a special case of the former, there are simpli-
fications available in the case of random walk transition matrices, which are
not permitted in the more general case. An alternative calculation based on
the replica method will be relegated to an appendix. Section 4 will be de-
voted to the description of analytically tractable limiting cases which allow
to obtain results for spectral densities in closed form, viz. the case of unbi-
ased random walks on regular random graphs (or on Erdős–Renyi graphs in
the large mean connectivity limit), as well as the limiting behaviour of spec-
tra of more general Markov matrices in the limit of large mean connectivity
(for both regular random graphs and Erdős–Renyi graphs). In Sect. 5, we
present results for example cases, and we compare with simulations to assess
the quality of our findings. We conclude with a summary and discussion in
Sect. 6. A short summary of the main results and findings presented here
has appeared elsewhere [39].
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2. Markov chains and random walks on complex networks

2.1. General framework

We consider discrete Markov chains in an N -dimensional state space,
described by an evolution equation for a probability vector p(t) = (pi(t)) ∈
(R+)N of the form

p(t+ 1) = Wp(t) . (1)

In order that probability vectors remain non-negative and normalized at all
times, it is required that W be a stochastic matrix, with Wij ≥ 0 for all
(i, j), and

∑
iWij = 1 for all j. These conditions entail generally that the

spectrum of W is contained in the unit disc of the complex plane, σ(W ) ⊆
{z; |z| ≤ 1}). If W satisfies a detailed balance condition with an equilibrium
distribution, pi = peq

i , such that Wijpj = Wjipi for all pairs (i, j), then W
can be symmetrized by a similarity transformation —Wij = p

−1/2
i Wijp

1/2
j =

Wji — implying that the spectrum of W is real, and σ(W ) ⊆ [−1, 1].
The Theorems of Perron and Frobenius [40] imply that there is exactly

one eigenvalue λµ1 = +1 for every irreducible component µ of state space,
with all other eigenvalues satisfying |λµα| ≤ 1, for α 6= 1. If the system
is free of cycles, the last inequalities are, in fact, sharp. If, moreover, the
system is overall irreducible, the right eigenvector v1 corresponding to the
largest eigenvalue λ1 = 1 represents the (unique) equilibrium distribution
of the system, v1 = peq, with w1 = (1, . . . , 1) as the corresponding left
eigenvector.

The relation between eigenvalues of W and the spectrum of relaxation
times of the process it describes is easily understood by following the evolu-
tion of an initial probability vector p(0) over t time steps, i.e. by evaluating
p(t) = W tp(0). Assuming the system to be overall irreducible, one obtains

p(t) = peq +
∑
α(6=1)

λtα vα (wα,p(0)) (2)

in terms of a spectral decomposition of W , where we have used that λ1 = 1,
and where vα and wα are the right and left eigenvectors of W , respectively,
with v1 corresponding to the equilibrium distribution as mentioned above. If
the system is free of cycles, relaxation to equilibrium is exponential (as long
as the system size N is finite), with relaxation times related to eigenvalues
via

τα = − 1

ln |λα|
, α 6= 1 . (3)

We are interested in the behaviour of Markov chains for large N , and
specifically in Markov transition matrices describing stochastic dynamics in
complex systems. We construct them in terms of unnormalized transition
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matrices Γ = (Γij) = (cijKij), in which c = (cij) with cij ∈ {0, 1} de-
notes a symmetric connectivity matrix that specifies a network of possible
transitions, while the edge weights Kij encode their relative strengths by
setting

Wij =

{
Γij
Γj
, i 6= j ,

1 , i = j and kj = 0 ,
(4)

where
Γj =

∑
i

Γij (5)

and kj =
∑

i cij denotes the degree of vertex j. The above construction
associates an irreducible component of the Markov chain with each distinct
cluster, and thus in particular also with each of the isolated sites in the
graph.

A closely related operator is the corresponding master-equation operator

Mij =


Γij
Γj
, i 6= j ,

−1 , i = j and kj 6= 0 ,
0 , otherwise ,

(6)

in terms of which we have the continuity equation

pi(t+ 1)− pi(t) =
∑
j

[Wijpj(t)−Wjipi(t)] =
∑
j

Mijpj(t) . (7)

Taking for simplicity the unnormalized transition matrices Γ = (Γij) to
be symmetric to begin with, the equilibrium distribution1 corresponding to
W is pi = peq

i = Γi
Z , so that the corresponding symmetrized Markov matrices

take the form
Wij = p

−1/2
i Wijp

1/2
j =

Γij√
ΓiΓj

(8)

for Γij > 0, hence Γi > 0 and Γj > 0, and Wii = 1 for isolated sites.
This is the point to note that, while (4), (5) may be thought of as a

‘natural’ way of constructing random Markov matrices in terms of complex
networks, random Markov matrices defined on complete graphs have alter-
natively been constructed by taking squared moduli of elements of random

1 This construction is unique only for systems that are irreducible. For systems with
several irreducible components (including those with isolated sites), an equilibrium
distributions of this structure can be constructed for each irreducible component,
and any convex combination of these is a valid equilibrium distribution for the entire
system.
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orthogonal or random unitary matrices. Due to the orthogonality or uni-
tarity constraints, these matrices are, however always bistochastic, i.e. both
column sums and row sums are normalized to one. Ensembles of such matri-
ces have been discussed, for instance, in the context of quantum graphs [41].
Their spectral properties were looked at in [42], while ways of generating
them efficiently as well as properties of the probability measure of the en-
semble of these matrices over the Birkhoff polytope were investigated in [43].

2.2. Unbiased random walks

It is worthwhile to record the main identities for the important special
case of unbiased random walks. In this case, the edge-weights are uniform,
Kij = 1, so that transitions to neighbouring vertices with equal probability.
This gives rise to

Wij =

{ cij
kj
, i 6= j ,

1 , i = j and kj = 0 ,
(9)

in which kj =
∑

i cij is the degree of vertex j. The corresponding master-
equation operator is

Mij =


cij
kj
, i 6= j ,

−1 , i = j and kj 6= 0 ,
0 , otherwise .

(10)

The equilibrium distribution in the present case is pi = ki
Z , and the sym-

metrized version of the Markov matrix takes the form

Wij =

{ cij√
kikj

, i 6= j ,

1 , i = j and kj = 0 .
(11)

The symmetrized master equation operator in this case is the so-called nor-
malized graph Laplacian

Lij =


cij√
kikj

, i 6= j ,

−1 , i = j and kj 6= 0 ,
0 , otherwise .

(12)

Our calculation of spectra below will be performed for Markov matrices,
assuming that they satisfy a detailed balance condition, and hence can be
symmetrized by a similarity transformation as described above. The spectra
of the corresponding master-equation operators are related to those of the
Markov matrices through a simple shift by −1.



Random Matrix Spectra and Relaxation in Complex Networks 1659

3. Spectra of Markov matrices

To compute spectra of the random Markov matrices introduced above,
we follow Edwards and Jones [44] and express the resolvent identity

ρW (λ) =
1

πN
lim
ε→0

Im Tr [λεI−W ]−1 , λε = λ− iε (13)

for the spectral density ρW (λ) of the stochastic matrix W in terms of a
derivative

ρW (λ) = − lim
ε→0

2

πN
Im

∂

∂λ
logZW (λ) (14)

of the logarithm of the Gaussian integral

ZW (λ) =

∫ N∏
i=1

dui√
2π/i

exp

− i2 ∑
i,j

(λεδij −Wij) uiuj

 . (15)

Here, W is the symmetrized version of W , obtained via a similarity trans-
form that involves the equilibrium distribution peq as discussed above. The
representation (14), (15) expresses the spectral density as a sum over “single
site variances”

ρW (λ) = Re
1

πN

∑
i

〈
u2
i

〉
(16)

of the complex Gaussian measure

PW (u) =
1

ZW
exp

− i2 ∑
i,j

(λεδij −Wij) uiuj

 . (17)

Here and in the following, we shall omit explicitly writing the limε→0, and
take it to be implied.

At this point, there are two principal ways to proceed. One can move di-
rectly to computing the non-random density of states for the thermodynamic
limit N →∞ of a given system by averaging Eq. (14) over the ensemble of
Markov matrices in question, using the replica method to perform averages
as proposed in [44], and appropriately adapting the sparse matrix techniques
developed in [31]. We will present this calculation in an appendix. Alter-
natively, one can use the cavity approach proposed in [32] to evaluate the
single instance spectral density in terms of variances of single-site marginals,
as in (16). In the thermodynamic limit, recursion relations for the cavity
variances obtained within that approach can be interpreted as stochastic
recursions, allowing to formulate self-consistency relations for their distri-
butions, which are found to be equivalent to those obtained using replica.
This is the approach we shall describe here.
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In order to compute the single-site marginals of (17) required to eval-
uate ρW (λ) according to (16), we need to distinguish between single-site
marginals on isolated sites and those for sites that are not isolated. Refer-
ring to the structure of W, we find single-site marginals on isolated sites to
be of the form

P is
i (ui) ∝ e−

i
2

(λε−1)u2i . (18)

On the non-isolated sites, we perform a transformation of variables, ui√
Γi
→ ui.

In terms of the transformed variables, we have

ρW (λ) = pN (0)δ(λ− 1) + Re
1

πN

∑
i

Γi
〈
u2
i

〉
, (19)

with pN (0) = N is

N denoting the fraction of isolated sites, and only non-
isolated sites with Γi > 0 contributing to the second sum.

The marginal Pi(ui) of a (transformed) variable on a non-isolated site
can be expressed in terms of joint cavity marginal P (i)(u∂i) of the degrees
of freedom on sites in the neighbourhood ∂i of i as

Pi(ui) ∝ e−
i
2
Γiλε u

2
i

∫
du∂i e

i
∑
j∈∂iKijuiujP (i)(u∂i) . (20)

If i were the root of a tree-graph, the joint cavity marginal P (i)(u∂i) would
factor

P (i)(u∂i) =
∏
j∈∂i

P
(i)
j (uj) (21)

in terms of single-site cavity marginals on sites adjacent to i. While this kind
of factorization is only approximate on a locally tree-like graph, it becomes
asymptotically exact for finitely coordinated graphs in the thermodynamic
limit. For sufficiently large graphs then, the integration over degrees of
freedom in the neighbourhood of i can be taken to factor, and be expressed
in terms of single-site cavity marginals as

Pi(ui) ∝ e−
i
2
Γiλε u

2
i

∏
j∈∂i

∫
duj e

iKijuiujP
(i)
j (uj) . (22)

By the same line of reasoning, the single-site cavity marginals themselves
satisfy a set of self-consistency equations given by

P
(i)
j (uj) ∝ e−

i
2
Γjλε u

2
j

∏
`∈∂j\i

∫
du` e

iKj`uju`P
(j)
` (u`) . (23)
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These relations are exact on trees; for finitely connected random graphs
they become asymptotically exact in the thermodynamic limit. A moment
of reflection shows that they are solved [32] by complex Gaussians of the
form

P
(i)
j (uj) =

√
ω

(i)
j

2π
exp

{
−1

2
ω

(i)
j u2

j

}
, (24)

with Reω
(i)
j ≥ 0, entailing that the inverse cavity variances satisfy the self-

consistency equations

ω
(i)
j = iλε Γj +

∑
`∈∂j\i

K2
j`

ω
(j)
`

. (25)

These can be solved iteratively on large single instances. Single-site mar-
ginals, too, will be Gaussian with inverse variances expressed in terms of
solutions of (25) as

ωi = iλε Γi +
∑
j∈∂i

K2
ij

ω
(i)
j

. (26)

In terms of these inverse variances of single-site marginals then, we have

ρW (λ) = pN (0)δ(λ− 1) + Re
1

πN

∑
i

Γi
ωi
. (27)

In the limit of infinite system size, Eqs. (25) can be read as stochastic re-
cursions for the set of inverse cavity variances, with randomness generated
by the random environment of each bond (i, j) in the system. Yet, it turns
out that a straightforward derivation of a self-consistency equation for the
probability density function π(ω) of inverse cavity variances from Eqs. (25)
is possible only for the case of unbiased random walks on complex networks.
In all other cases, correlations (beyond degree) between Γj and the Kj` on
the r.h.s. of (25) prevent straightforward averaging over the graph ensemble,
and a slight modification of the analysis is required, which will be described
below.

Unbiased random walks: In the case of unbiased random walks, however,
we can proceed directly from Eqs. (25). In this case, we have Kij ≡ 1, hence
Γj = kj and Wij =

cij√
kikj

for non-isolated sites, where ki and kj are degrees

of vertices i and j.
A self-consistency equation for π(ω) is then obtained from (25) by ob-

serving that the ω(j)
` for the vertices ` incident on j appearing on the r.h.s of



1662 R. Kühn

(25) are in the thermodynamic lime independently drawn from π(ω). Noting
that the probability for a site i to be connected to a site j with coordina-
tion kj = k and thus Γj = k is given by p(k)k/c, one obtains an integral
equation for a probability density function π(ω) for inverse cavity variances
of the form

π(ω) =
∑
k≥1

p(k)
k

c

∫ k−1∏
ν=1

dπ(ων) δ(ω −Ωk−1) (28)

in which

Ωk−1 = Ω
(
{ων}k−1

ν=1

)
= iλεk +

k−1∑
ν=1

1

ων
. (29)

In terms of the solution of (28), one obtains the spectral density of W for a
random graph with degree distribution p(k) as

ρ(λ) = p(0)δ(λ− 1) +
1

π
Re
∑
k≥1

p(k)

∫ k∏
ν=1

dπ(ων)
k

iλεk +
∑k

ν=1
1
ων

. (30)

As explained in [31], the solution of (28) allows to disentangle contributions
related to the density of localized and extended states, respectively. The
former are related to a singular contribution to π(ω) with support on the
imaginary axis, whereas the contribution to the latter corresponds to a reg-
ular contribution to π(ω) with support in Reω > 0.

General Markov matrices: In order to deal with correlations between Γj
and the Kj` in (25) for Markov processes other than the unbiased random
walk, we return to the Gaussian measure (17) in terms of which the problem
was originally formulated, and rewrite it — inserting the original definition
of the Γj and using transformed variables on non-isolated sites — as

PW (u) =
1

ZW
exp

− i2 ∑
i,isolated

(λε − 1)u2
i

+
i

2

∑
i,j

cij

[
1

2
λεKij

(
u2
i + u2

j

)
−Kij uiuj

] . (31)

In terms of this reformulation, the expression for single-site marginals in
terms of single-site cavity marginals, and the recursion relation for single-
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site cavity marginals now read

P (ui) ∝
∏
j∈∂i

∫
duj exp

− i2λε∑
j∈∂i

Kij

(
u2
i +u2

j

)
+ i

∑
j∈∂i

Kij uiuj

P
(i)
j (uj)

(32)
and

P
(i)
j (uj) ∝

∏
`∈∂j\i

∫
du` exp

{
− i

2
λεKj`

(
u2
j+u2

`

)
+ iKj` uju

}̀
P

(j)
` (u`) ,

(33)
respectively. The modified set of cavity recursions, too, is self-consistently
solved by complex Gaussians of the form (24), giving rise to the following
reformulated recursion for inverse variances of cavity marginals,

ω
(i)
j =

∑
`∈∂j\i

(
iλεKj` +

K2
j`

ω
(j)
` + iλεKj`

)
. (34)

This version allows ensemble averaging in the thermodynamic limit, follow-
ing the line of reasoning presented above for the unbiased random walk case,
as contributions to the r.h.s. of (34) are now independent. One obtains a
self-consistency equation for the distribution π(ω) of inverse cavity variances
which is structurally very similar to (28), viz.

π(ω) =
∑
k≥1

p(k)
k

c

∫ k−1∏
ν=1

dπ(ων) 〈δ(ω −Ωk−1)〉{Kν} , (35)

where now

Ωk−1 = Ω
(
{ων ,Kν}k−1

ν=1

)
=

k−1∑
ν=1

(
iλεKν +

K2
ν

ων + iλεKν

)
, (36)

and where 〈. . .〉{Kν} in (35) denotes an average over the distribution of a set
of (independent) edge weights. In terms of its solution, the spectral density
in the thermodynamic limit is given by

ρ(λ) = p(0)δ(λ− 1)

+
1

π
Re

∑
k≥1

p(k)

∫ k∏
ν=1

dπ(ων)

〈 ∑k
ν=1Kν∑k

ν=1

(
iλεKν + K2

ν
ων+iλεKν

)〉
{Kν}

.

(37)
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4. Analytically tractable limiting cases

There are a few cases where it is possible to obtain results analytically
and in closed form. These are the unbiased random walk problem on random
regular graphs and the random walk problem on Erdős–Renyi graphs in the
large mean connectivity limit. For more general Markov matrices, large
c-approximations can be formulated for random regular and Erdős–Renyi
graphs which become exact in the c→∞ limit.

The solution of the unbiased random walk problem on a regular random
graph with degree distribution p(k) = δk,c starts with the observation that
each node of a random regular graph is equivalent, and so is the environment
of every node (and every link). One would, therefore, expect that Eq. (28)
is solved by a δ-function, π(ω) = δ(ω − ω̄). Indeed, this ansatz solves (28)
and gives rise to a quadratic self-consistency equation

ω̄ = iλεc+
c− 1

ω̄
(38)

for the parameter ω̄. Its solution, when inserted into (30), gives a closed-form
expression for the spectral density of the form

ρ(λ) =
c

2π

√
4 c−1
c2
− λ2

1− λ2
. (39)

This expression is readily recognised as a variant of the Kesten–McKay dis-
tribution for the eigenvalue density of adjacency matrices of regular random
graphs [45], adapted to capture the spectral problem of the Markov transi-
tion matrix for an unbiased random walk.

The same result provides an accurate approximate description also for
Erdős–Renyi random graphs at large mean degree c, for which the degree dis-
tribution becomes sharply peaked at the mean degree c. The approximation
becomes asymptotically exact as c → ∞, where fluctuations of the degree
distribution become negligible relative to the mean, and (39) approaches a
semicircular law for rescaled eigenvalues µ = λ/

√
c, viz.

ρ(µ) =
1

2π

√
4− µ2 , (40)

as c→∞.
A similar line of reasoning allows to obtain the spectral density for more

general Markov matrices on Erdős–Renyi and random regular graphs in the
large c limit. Noting that in both cases one can refer to the law of large
numbers (LLN), allowing to replace Ωk−1 in (36) by a sum of averages, one
expects the ansatz π(ω) = δ(ω − ω̄) to provide an accurate approximate
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solution to (35). The ansatz gives rise to a self-consistency equation for the
parameter ω̄ of the form

ω̄ ' c
[
iλε〈K〉+

〈
K2

ω̄ + iλεK

〉]
. (41)

This equation is easily solved numerically. In terms of its solution ω̄, one
can once more invoke the LLN in the expression for the spectral density to
obtain

ρ(λ) =
1

π
Re

 〈K〉

iλε〈K〉+
〈

K2

ω̄+iλεK

〉
 =

1

π
Re

[
c〈K〉
ω̄

]
. (42)

Note that this requires (and entails self-consistently) that ω̄ ∝ 〈K〉 for the
spectral density to be independent of the K-scale. Moreover, for large c, we
have ω̄ ∼ c which allows to approximate (41) by a quadratic equation; its
solution, when inserted into the final equation for the spectral density, gives
rise to a Wigner semi-circular distribution of the form

ρ(λ) =
c

2π

〈K〉2

〈K2〉

√
4〈K2〉
c〈K〉2

− λ2 . (43)

This expression, too, is invariant under rescaling of the edge weights Kij as
it should, because K scales are immaterial in normalized Markov transition
matrices. As in the case of unbiased random walks, a c→∞ limit exists for
the distribution of rescaled eigenvalues µ = λ/

√
c, and takes the form

ρ(µ) =
1

2π

〈K〉2

〈K2〉

√
4〈K2〉
〈K〉2

− µ2 . (44)

In the large c limit, therefore, eigenvalue densities of random Markov matri-
ces defined in terms of Erdős–Renyi or random regular graphs are given by
Wigner semi-circular laws, with spectral radius fully determined by first and
second moments of the weight distribution. The result (44) is expected to
describe the density of rescaled eigenvalues in the large mean connectivity
limit (c→∞) for any degree distribution for which relative fluctuations of
degree become asymptotically negligible compared to the value of the mean
degree c, as the large c limit is taken.

5. Results

In what follows, we report results for a number of different ensembles
of sparse Markov matrices. The variety of possible realisations to which



1666 R. Kühn

our theory could, in principle, apply is clearly far too large to even attempt
giving anything approaching an overview, so we restrict ourselves to a set of
examples chosen to illustrate the working of our approach and the quality
of the results obtainable. Examples are deliberately chosen to complement
those given in an earlier short account of the theory [39].

Where analytic results are compared with simulation results obtained by
numerical diagonalization of finite dimensional matrices, we usually use a set
of 1000 × 1000 matrices, averaging spectra over a sample of 5000 matrices,
randomly drawn from the ensembles under study.

In Figs. 1 and 2, we look at spectra of Markov matrices describing unbi-
ased random walks on sparse graphs with power-law degree distribution of
the form p(k) ∝ k−γ , choosing a lower cut-off of kmin = 2 for the degrees,
entailing that there will not be any isolated sites in these systems. Figure 1
looks at the case γ = 3, Fig. 2 at γ = 4.
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Fig. 1. (Colour online) Spectral density of the transition matrix for an unbiased
random walk on a random graph with power-law degree distribution p(k) ∝ k−3,
with k ≥ kmin = 2. Left panel: analytic results for the full density of states obtained
by solving (28) via population dynamics (full red curve) compared with simulation
results for an ensemble of 1000 × 1000 matrices (dashed green curve). Curves are
virtually on top of each other. Right panel: analytic results separately exhibiting
the density of extended states (full red curve) and total density of states (dashed
green curve). Except in the immediate vicinity of λ = ±1 curves are virtually on
top of each other.

In the γ = 3 case in the right panel of Fig. 1, one can discern mobility
edges at λc ' ±0.950 on the scale of the figure as shown, separating extended
state at |λ| ≤ |λc| from localized states at |λ| > |λc|. In addition, there is
also a narrow gap in the density of extended states at small |λ|, viz. for
−0.004 . λ . 0.004 (not discernible on the scale of the figure) with only
localized states existing in the gap.
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Fig. 2. (Colour online) Spectral density of the transition matrix for an unbiased
random walk on random graph with power-law degree distribution p(k) ∝ k−4, with
k ≥ kmin = 2. Left panel: analytic results for the full density of states obtained
by solving (28) via population dynamics (full red curve) compared with simulation
results (dashed green curve). Curves are virtually on top of each other. Right
panel: analytic results separately exhibiting the density of extended states (full red
curve) and total density of states (dashed green curve). Curves are virtually on
top of each other (see the main text for details).

As explained in detail in [31], the distinguishing feature of the localized
states is that they correspond to a singular contribution to the solution π(ω)
of (28), with support on the imaginary axis. To reveal this contribution, the
spectral density (30) needs to be evaluated with a small non-zero regulariz-
ing ε; in the present paper, unless otherwise specified, we choose ε = 10−4

for this purpose.
In the γ = 4 case shown in Fig. 2, one would have to zoom into the

λ ' ±1 regions to reveal mobility edges at λc ' ±0.987, and into the small
|λ| region to exhibit an even narrower gap in the density of extended states
for −0.0014 . λ . 0.0014, with once more only localized states existing in
the gap, as in the γ = 3 case.

The agreement between analytic and simulation results in both cases is
excellent. In the γ = 4 case, there are a few small peaks that can be observed
in the simulation, mainly at λ = ±0.5 and λ = ±

√
2/2 and at λ = 1 which

are absent or appear as cusps in the analytic results for the thermodynamic
limit. These are due to finite-size effects affecting the simulation results e.g.
the peaks at λ = ±0.5 and at λ = 1 are mainly due to isolated 3-cycles,
which are suppressed in the limit N →∞.

In Fig. 3, we present results for systems with unnormalized transition
matrix elements taking the form of Kramers transition rates

Γij = cije
−β(Vij−Ej) . (45)
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Fig. 3. (Colour online) Spectral density of transition matrices with Kramers tran-
sition rates as described in the main text, with β = 2 (left set of panels) and β = 5

(right set of panels), on an Erdős–Renyi graph of mean coordination c = 3; note
the different vertical scales. The upper row compares analytic results for the total
density of states obtained via population dynamics (full red curves) with simulation
results (dashed greed curves). Curves are virtually on top of each other. In the
second row, we display results separately for the extended states (full red curves),
and the total density of states (dashed green curves). While there are mobility
edges near λ = ±1 for both values of the inverse temperature, we see a large gap in
the density of extended states appearing in the β = 5 system, which is not present
in the β = 2 case.

For the present study, we assume that the distribution of barrier heights
Vij ≥ 0 is itself a Gibbs distribution at inverse temperature β0, p(V ) =
β0e
−β0V , which could describe the influence of a preparation-temperature

of the glassy system on the distribution of barrier heights it would ex-
hibit. The distribution of initial energies is, in fact, arbitrary, as initial
energies cancel in properly normalized stochastic matrices, so that Wij =
cije

−βVij/
∑

i cije
−βVij . Note that with these specifications, we get a power-

law distribution of edge weights of the form

p(K) =
β0

β
K

β0
β
−1
, K ∈ [0, 1] . (46)
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As this distribution depends only on the ratio β0
β of inverse temperatures

characteristic of the preparation process and that prevalent when the relax-
ation process is observed, we can take β0 = 1 without loss of generality.
Systems of this type were studied within a heterogeneous mean-field ap-
proximation to dynamics in [13], generalizing earlier work [11, 12] to include
barrier height distributions and incompletely connected networks of traps.

Figure 3 shows results for a system on an Erdős–Renyi graph of mean
coordination c = 3, for two values of the inverse temperature, β = 2 and
β = 5. Once more, theory and simulation are in excellent agreement. In
this case, a substantial gap in the density of extended states appears in the
centre of the spectrum for the system with the larger value of β = 5, which
is absent in the β = 2 system. Attempts at a direct verification of this
finding based on a numerical study of inverse participation ratios resulted
only in a qualitative confirmation, as the dynamical range of matrix elements
in this situation was very large, entailing that only rather small systems
(N . 250) could be studied numerically, with EISPACK diagonalization
routines failing to find eigenvectors for the larger systems, thus preventing
a scaling analysis of IPRS that would include sufficiently large system sizes
to be conclusive. We, therefore, looked at level-spacing distributions as an
alternative. The expectation would be that level-spacing distributions would
significantly deviate from the Wigner distribution PGOE(s) = π

2 e
−π

4
s2 , and

be closer to an exponential distribution P (s) = e−s if a substantial fraction
of states were localized. This is indeed what we find, as demonstrated in
Fig. 4.
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Fig. 4. (Colour online) Distribution of level spacings of transition matrices with
Kramers transition rates at β = 2 (left panel) and β = 5 (right panel). Other
specifications are as in Fig. 3. Level spacing distributions (full red curves) are
obtained as simulation results, and compared with the Wigner surmise for GOE
matrices (dashed green curves) and a Poisson distribution of level spacings (dashed
blue curve) one would expect if all states were localized.
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Figure 5 is devoted to testing our results about analytically tractable
limiting cases, discussed in Sec. 4. It shows a comparison of the prediction
(39) for the eigenvalue density of Markov transition matrices for unbiased
random walks on random regular graphs, here for the case of coordination
c = 4, and it tests the validity of that prediction for Erdős–Renyi graphs
in the large c limit, by looking at a system with c = 100, comparing the
analytic prediction (39) with results obtained by solving the self-consistency
equation (28) numerically for these cases. The agreement is found to be
perfect. For a test of the approximation (41), (42) valid for general Markov
matrices defined on random regular graphs or Erdős–Renyi graphs at large
mean connectivity c, we refer to [39].
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Fig. 5. (Colour online) Comparison of the closed form analytic prediction of Eq. (39)
for the spectral density of the transition matrix for an unbiased random walk on
a random regular graph of coordination c = 4 (left panel) and an Erdős–Renyi
graph of mean coordination c = 100. Shown are results obtained by solving (28)
via population dynamics (full red curves) and the predictions of Eq. (39) for c = 4

and c = 100 (dashed green curves), respectively. Curves are virtually on top of
each other.

Let us, finally, turn to relaxation-time distributions for stochastic pro-
cesses defined on complex networks. Getting access to them via a compu-
tation of spectra of random Markov matrices was, after all, one of the main
motivations for the present project.

Indeed, given the relation Eq. (3) between eigenvalues of a transition
matrix and relaxation times of the stochastic process it describes, one can
translate spectral densities into spectra of relaxation times. Using the no-
tation ρλ and ρτ to distinguish eigenvalue densities and relaxation time
distributions, we have

ρτ (τ) =
[
ρλ

(
e−1/τ

)
+ ρλ

(
−e−1/τ

)] e−1/τ

τ2
. (47)
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In Fig. 6, we look at the relaxation time distribution for a stochastic
system with unnormalized Kramers transition rates of the form (45), defined
on random graphs with power-law degree distribution p(k) ∝ k−3, with
k ≥ kmin = 2, and a Gibbs distribution for the barrier height as used above
in Fig. 3. In the figure, we also show the eigenvalue distributions giving rise
to these relaxation-time spectra. With reference to Eq. (47), we note that
the short relaxation times are generated by eigenvalues in the immediate
vicinity of λ = 0, whereas eigenvalues very close to λ = ±1 correspond to
the large relaxation times. Being able to disentangle extended and localized
states allows us to make an analogous distinction between relaxation times
corresponding to extended and to localized modes, with — in the present
example — both the very fast and the very slow processes corresponding to
localized modes.
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Fig. 6. (Colour online) Spectral density of transition matrices with Kramers tran-
sition rates as described in the main text (upper set of panels), and the resulting
distribution of relaxation times (lower set of panels), with β = 2 (left) and β = 5

(right). The underlying graphs are chosen to have a power-law degree distribution
p(k) ∝ k−3, with k ≥ kmin = 2. Both, spectra and relaxation time distributions
are shown separately for the extended states (full red curves), and for the total
density of states (dashed green curves). Mobility edges at small |λ| and at λ in the
vicinity of ±1, the latter barely detectable on the scale of the figure, imply that
both very fast and very slow modes correspond to localized states.
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The relaxation time spectra of the system studied in Fig. 6 are very
broad, our results covering more than five orders of magnitude. For both
values of the inverse temperature β, the large τ behaviour of the relaxation
time distributions is compatible with a power-law behaviour, ρτ (τ) ∼ τ−γ

with γ ' 2.23 at β = 2, and γ ' 1.60 at β = 5. A comparison of results
for the β = 2 and the β = 5 case shows that the spectral density gives
more weight to eigenvalues near λ = ±1 as β is increased, entailing that the
relaxation time distribution gives more weight to slow modes. In particular,
the asymptotic decay of the relaxation-time distribution at large τ , as quan-
tified by the exponent γ, is significantly slower for β = 5 than it is for β = 2.
Another significant effect of raising the inverse temperature (decreasing the
temperature) at which glassy relaxation is studied is to extend the region of
localized fast modes to larger τ . Both aspects would clearly deserve a more
quantitative and systematic investigation.

It should be noted that resolving both the small and the large τ asymp-
totics requires analysing spectra at extremely fine resolution, both very close
to λ = 0, and λ = ±1. We do not wish to hide the fact that this is nu-
merically very challenging, in particular as the analysis of relaxation time
spectra corresponding to localized modes requires keeping small non-zero
values for the regularizing parameter ε used in the theory, which induces a
smoothing of spectra over scales of the order of ε, and thus tends to deform
results in the vicinity of δ-peaks of sizeable weight in the spectrum. In order
to keep the effect of such deformation down, we choose a value of ε = 10−6

to properly resolve, in particular, the small τ region of relaxation-time spec-
tra, which, in turn, requires very long measuring runs ‘in equilibrium of the
population dynamics’ to achieve good accuracy. Here is clearly the point
where the need for good asymptotic analytic control of eigenvalue spectra is
very urgently felt.

6. Summary and discussion

In summary, we have computed spectra of random stochastic matrices
which are constructed in terms of random graphs. Our methods used to
compute spectra require that the Markov matrices under investigation sat-
isfy a detailed balance condition, or in other words that the Markov chains
described by them are time reversible. We expect, however, that this re-
striction can be overcome by suitably adapting the methods of [46], and we
intend to look at this problem in a future publication. The graph ensemble
within reach of the present methods is the so-called configuration model,
defining an ensemble of graphs that is maximally random, subject only to
a given degree distribution. As it stands, we also need to assume that the
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mean degree remains finite in the thermodynamic limit. It is clear, however
that systems defined on Erdős–Renyi graphs with diverging mean degree are
within easy reach of our methods.

Given the ubiquity of systems that can be described in terms of Markov
processes defined on complex random graphs, and given the flexibility of our
approach, we believe our method and results to hold considerable potential
for a broad range of applications.

Using the relation between eigenvalues of stochastic matrices and relaxa-
tion-times of Markov processes described by these matrices, we can translate
eigenvalue spectra into relaxation time spectra. An example for a generalized
trap-model with Kramers transition rates between a network of long-lived
states is analyzed in Sec. 5.

Of particular interest is the appearance of localized states in systems of
the type described in the present paper. Referring to Eq. (2), two aspects
deserve particular mention in this context: (i) Eigenvectors vα correspond-
ing to localized modes are typically supported on a subset of the vertices
of a graph that constitutes a vanishingly small fraction of the entire system
in the thermodynamic limit; in this sense, these modes only contribute to
local probability flows. (ii) For localized initial conditions p(0), the projec-
tions (wα,p(0)) of initial conditions on (left) eigenvectors corresponding to
localized modes will with high probability be vanishingly small in the ther-
modynamic limit, entailing that the vast majority of localized modes will
not contribute to the relaxation dynamics under these circumstances.

Localization effects are traditionally discussed and understood in terms
of quantum interference effects [47]. Here we find that localization effects
must generally be reckoned within the context of classical stochastic dynam-
ics, if the underlying systems exhibit a sufficient degree of heterogeneity, an
issue we have not seen much discussed in the literature. Notable recent ex-
ceptions include a study of localization effects in so-called maximum-entropy
random walks in [48], and a recent observation of localization in a special
variant of the periodically kicked rotor [49] which is, in fact, a deterministic
classical system.

In the present paper, we have restricted our analysis to ‘homogeneously’
defined graphs. However, as in the case of adjacency matrices and weighted
graph Laplacians, our approach is easily generalized to systems exhibiting
modular or small-world properties [50].

Concerning the description of stochastic dynamics, we have here looked
at Markov matrices appropriate for the analysis of systems with discrete-
time dynamics. In the case of continuous-time dynamics, one would instead
have to look at weighted graph Laplacians as the appropriate infinitesimal
generators of dynamics. The spectral theory of these objects was developed
in earlier papers [31, 50] for transition matrices which are symmetric to
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begin with. Transition matrices which are not symmetric, but satisfy a de-
tailed balance condition would be in reach by combining the symmetrization
technique used in the present paper with the methods developed in [31]. A
further extension of the current methodology is required, if transition ma-
trix elements depend on site-randomness rather than being independently
chosen as properties of links, the Barrat–Mézard version of the trap model of
glassy dynamics [12] with Glauber transition rates being a notable example.
At the cost of moderate further complications, such systems can, however,
be handled, and we shall report results in a future publication.

Appendix

Replica analysis

In this appendix, we provide a brief account of the replica analysis of the
spectral problem for random Markov matrices defined in terms of random
graphs; we only document the preparatory stage of the calculation for the
special case of unbiased random walks, but provide and account of the full
calculation for the case of more general Markov matrices.

Replica analysis — unbiased random walk

Referring to the structure (11) of the symmetrized version W for of the
transition matrix for the unbiased random walk problem, we introduce a
decomposition of the system into the set of connected sites N = {i; ki 6= 0},
and its complement N̄ , the set of isolated sites. In terms of this decompo-
sition, the partition function (15) allows the decomposition

ZW = ZN̄ × ZN , (48)

with the partition function corresponding to the isolated sites simply given by

ZN̄ = (λε − 1)−|N̄ |/2 . (49)

For the partition function corresponding to connected sites, we have

ZN =

∫ ∏
i∈N

dui√
2π/i

exp

− i2 ∑
i,j∈N

(
λεδij −

cij√
kikj

)
uiuj

 . (50)

A transformation of variables ui ← ui√
ki

in the above integral transforms (50)
into

ZN =

(∏
i∈N

ki

)1/2 ∫ ∏
i∈N

dui√
2π/i

exp

− i2λε∑
i∈N

kiu
2
i +

i

2

∑
i,j∈N

cijuiuj

 .

(51)
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In terms of this decomposition, one finds

ρN (λ) = p(0)δ(λ− 1) +
1

πN
Re
∑
i∈N

ki
〈
u2
i

〉
, (52)

where 〈. . .〉 denotes an expectation w.r.t. the complex Gaussian weight in
terms of which ZN is defined.

The replica calculation to perform the average of lnZN can be done
using straightforward modifications of those presented for sparse matrices
described in detail in [31, 50]. The only subtlety here is that probabilities of
coordinations need initially be replaced by conditional probabilities, given
the coordination is non-zero. We will not reproduce the details here; the
interested reader could easily reconstruct them following the outline of the
calculation of the more general case documented below.

Here just quote the result. Following [31, 50], one obtains a pair of sef-
consistency equations for the saddle point evaluation of the average 〈ZnN 〉 of
the replicated partition function in a replica symmetric formulation of the
problem. These are:

π̂(ω̂) =

∫
dπ(ω) δ

(
ω̂ − Ω̂

)
,

π(ω) =
∑
k≥1

p(k)
k

c

∫ k−1∏
ν=1

dπ̂ (ω̂ν) δ (ω −Ωk−1)

with Re{ω, ω̂} ≥ 0, and

Ω̂ = Ω̂(ω) =
1

ω
and Ωk−1 = Ω

(
{ω̂ν}k−1

ν=1

)
= iλεk +

k−1∑
`=1

ω̂ν . (53)

The equations for π̂(ω̂) and π(ω) can be combined by inserting the former
into the latter, giving

π(ω) =
∑
k≥1

p(k)
k

c

∫ k−1∏
ν=1

dπ(ων) δ (ω −Ωk−1) (54)

with now

Ωk−1 = Ω
(
{ων}k−1

ν=1

)
= iλεk +

k−1∑
ν=1

1

ων
. (55)
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In terms of the solution of (28), one obtains the spectral density of W for a
random graph with degree distribution p(k) as

ρ(λ) = p(0)δ(λ− 1) +
1

π
Re
∑
k≥1

p(k)

∫ k∏
ν=1

dπ(ω`)
k

iλεk +
∑k

ν=1
1
ων

, (56)

which agrees with the result (30), obtained using a cavity approach.

Replica analysis — general stochastic matrices

As for the transition matrices describing unbiased random walks, we
use the natural partition of the system into isolated and connected sites,
and introduce a transformation of integration variables ui ← ui√

Γi
on the

connected sites to express the analogue of (51) for this case as

ZN =

(∏
i∈N

Γi

)1/2∫ ∏
i∈N

dui√
2π/i

exp

− i2λε∑
i∈N

Γiu
2
i +

i

2

∑
i,j∈N

cijKij uiuj

 .

(57)
Averaging over the disorder is, in the present case, complicated by the

fact that the site-disorder in the {Γi} is correlated with the bond-disorder
beyond the constraint that the connectivity matrix is compatible with a
given degree sequence, as in the present case the Γj =

∑
i cijKij also depend

on the weights connected to a given site. Using this definition of the {Γi}
and symmetry of the weights, we can transform (57) into

ZN =

(∏
i∈N

Γi

)1/2 ∫ ∏
i∈N

dui√
2π/i

× exp

− i4λε ∑
i,j∈N

cijKij

(
u2
i + u2

j

)
+
i

2

∑
i,j∈N

cijKij uiuj

 . (58)

This form is now ready to perform an average over the connectivity matrices
and weights defining the Markov matrix ensemble in question. Concerning
details, one might either perform the average using a full micro-canonical
graph ensemble (as documented in detail for matrices with general modu-
lar structure in [50]). There are two possible short-cuts which can simplify
the calculation. One can do the calculation for an Erdős–Renyi ensemble
of weighted graphs and use the fact that — formally — the analysis carries
over to more general graph ensembles within the configuration model class,
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as was done in [31]. Alternatively, one can perform an average over a canon-
ical graph ensemble, and recover micro-canonical results at the end of the
calculation, which is the approach we shall take here.

We can omit the prefactor (
∏
i∈N Γi)

1/2 from (58), the effects of which are
irrelevant when evaluating the spectral density. The canonical distribution
of connectivity matrix elements compatible with a degree sequence (ki) of
mean degree c is

p(cij) =

(
1− kikj

cN

)
δcij ,0 +

kikj
cN

δcij ,1 , i < j , (59)

with cij = cji. Note that when evaluating 〈ZnN 〉, we are looking at a condi-
tional averages, given that coordinations are non-zero, so c̃ = c/(1 − p(0))
is the average coordination on N ; this entails that cN = c̃|N |. The average
of the replicated partition function is thus obtained as

〈ZnN 〉 ∝
∫ ∏

i∈N ,a

duia√
2π/i

exp

 c̃

2|N |
∑
i,j∈N

ki
c̃

kj
c̃

×

(〈
exp

{
iK
∑
a

[
uiauja −

i

2
λε
(
u2
ia + u2

ja

)]}〉
K

− 1

)}
. (60)

We now rewrite (60) as a functional integral, using the replica density

ρ(u) =
1

|N |
∑
i∈N

ki
c̃
δ(u− ui) =

1

N

∑
i∈N

ki
c
δ(u− ui) (61)

and its conjugate arising from a Fourier representation of the defining
δ-functional as order parameters, giving

〈ZnN 〉 ∝
∫
D{ρ, ρ̂} exp{N [Gb +Gm +Gs]} , (62)

with

Gb =
c

2

∫
dρ(u)dρ(v)

×

(〈
exp

{
iK
∑
a

[
uava − 1

2λε
(
u2
a + v2

a

)]}〉
K

− 1

)
, (63)

Gm = −
∫
du iρ̂(u)ρ(u) , (64)

Gs =
∑
k≥1

p(k) ln

∫ ∏
a

dua√
2π/i

exp

{
i
k

c
ρ̂(u)

}
. (65)
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Replica symmetry

Following previous micro-canonical calculations [31, 50], we now use a
replica-symmetric ansatz of the form

ρ(u) =

∫
dπ(ω)

∏
a

e−
ω
2
u2a

Z(ω)
, (66)

iρ̂(u) = ĉ

∫
dπ̂(ω̂)

∏
a

e−
ω̂
2
u2a

Z(ω̂)
(67)

with
Z(ω) =

√
2π/ω (68)

for the replica-density ρ(u) and its conjugate iρ̂(u). Here, π and π̂ are taken
to be normalized probability density functions. For π̂ to be normalized, the
parameter ĉ must then be properly chosen. This gives

Gb[π] ' n
c

2

∫
dπ(ω)dπ(ω′)

〈
ln

[
Z2 (ω, ω′,K, λε)

Z(ω)Z(ω′)

]〉
K

, (69)

Gm[π, π̂] ' −ĉ− nĉ
∫
dπ(ω)dπ̂(ω̂) ln

[
Z (ω + ω̂)

Z(ω)Z(ω̂)

]
, (70)

Gs[π̂] ' ĉ+ n
∑
k≥1

p(k)

∞∑
`=0

pκ(`)

∫ ∏̀
ν=1

dπ̂(ω̂ν)

× ln

 Z
(∑`

ν=1 ω̂ν

)
√

2π/i
∏`
ν=1 Z(ω̂ν)

 (71)

as the leading small-n contributions to Gb, Gm and Gs, now expressed as
functionals of π and π̂. Here, pκ(`) = κ`

`! e
−κ is a Poisson distribution with

mean κ ≡ ĉkc , and we have defined

Z2

(
ω, ω′,K, λε

)
=

∫
dudv exp

{
iKuv− 1

2 (ω+iλεK)u2− 1
2

(
ω′+iλεK

)
v2
}
.

(72)
Note that by doing the v integral in Z2, one has

Z2(ω, ω′,K, λε) = Z(ω′ + iλεK)Z

(
ω + iλεK +

K2

ω′ + iλεK

)
. (73)

Fixed point equations follow from stationarity requirement of the integral
(62) w.r.t. variations of the normalized π and π̂, giving ĉ = c, hence κ = k,
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and

π̂(ω̂) =

∫
dπ(ω)

〈
δ
(
ω̂ − Ω̂(ω,K, λε)

)〉
K
, (74)

π(ω) =
∑
k≥1

p(k)
k

c

∞∑
`=1

pk(`)
`

k

∫ `−1∏
ν=1

dπ̂(ω̂ν) δ (ω −Ω`−1) (75)

with

Ω̂ (ω,K, λε) = iλεK +
K2

ω + iλεK
, (76)

Ω`−1 =
`−1∑
ν=1

ω̂ν . (77)

For details of the reasoning, we refer to [31, 50]. As before, the two fixed
point equations can be combined by inserting the first into the second, giving

π(ω) =
∑
k≥1

p(k)
k

c

∞∑
`=1

pk(`)
`

k

∫ `−1∏
ν=1

dπ(ων) 〈δ (ω −Ω`−1)〉{Kν} , (78)

with now

Ω`−1 =
`−1∑
ν=1

[
iλεKν +

K2
ν

ων + iλεKν

]
. (79)

Results for micro-canonical graph ensembles are recovered by replacing the
Poisson distribution pk(`) appearing in the above self-consistency equations
by a sharp distribution with all weight concentrated at ` = k, i.e. by sub-
stituting pk(`) → δ`k. The resulting fixed point equation then agrees with
(35), (36), as obtained earlier using a cavity analysis.
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