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We consider the singular value statistics of products of independent
random matrices. In particular, we compute the corresponding averages of
products of characteristic polynomials. To this aim, we apply the projec-
tion formula recently introduced for chiral random matrix ensembles which
serves as a shortcut of the supersymmetry method. The projection formula
enables us to study the local statistics where free probability currently fails.
To illustrate the projection formula and underlining the power of our ap-
proach, we calculate the hard edge scaling limit of the Meijer G-ensembles
comprising the Wishart-Laguerre (chiral Gaussian), the Jacobi (truncated
orthogonal, unitary or unitary symplectic) and the Cauchy—Lorentz (heavy
tail) random matrix ensembles. All calculations are done for real, complex,
and quaternion matrices in a unifying way. In the case of real and quater-
nion matrices, the results are completely new and hint to the universality
of the hard edge scaling limit for a product of these matrices, too. More-
over, we identify the non-linear o-models to the local statistics of product
matrices at the hard edge.
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1. Introduction

Sums and products of random matrices are the simplest generalization of
Random Matrix Theory (RMT) to introduce some kind of dimension. Sums
of random matrices can be understood as a convolution and regularly appear
in the field of Dyson’s Brownian motion [1|. Product matrices are versatile as
well. Applications of them can be found in mesoscopic physics [2], QCD [3],
and wireless telecommunication [4, 5]. In the past years, a lot of progress
was made on products of random matrices, see the new review [6] reporting
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on this progress. For example, free probability has been proven as an effi-
cient tool for calculating the macroscopic level density [7]. With the help of
orthogonal polynomials, one could calculate algebraic structures like deter-
minants and Pfaffians, their kernels, and certain universal statistics on the
local scale of the spectrum |5, 8-11|. In particular, products of random ma-
trices drawn from Meijer G-ensembles exhibit a new kind of universal kernel
in the hard scaling limit (microscopic limit around the origin). This limit is
called Meijer G-kernel. Its name is reminiscent to the fact that the kernel
essentially depends on Meijer G-functions, see [12] for a definition of these
functions. The “standard candles” of RMT, the Wishart-Laguerre ensem-
ble [13] (xGBE), the Cauchy-Lorentz ensemble [14] (LSE), and the Jacobi
ensemble [15] (JSE) are particular cases of Meijer G-ensembles. Also prod-
ucts of matrices drawn from these three ensembles are Meijer G-ensembles
since this class of ensembles is expected to be closed under matrix products.

Most results on the singular value statistics about product matrices are
known for complex matrices (8 = 2), only. The only exception, the macro-
scopic level density, can be computed for real (5 = 1) and quaternion (5 = 4)
matrices with free probability [7] because they share the level density with
8 = 2. However, the local statistics of the singular values is still highly in-
volved for 5 = 1,4 due to unknown group integrals like the Itzykson—Zuber
integral [16] and its polynomial counterpart [11, 17]. The projection formula
recently proposed [18] circumvents such problems. This formula is a short-
cut of the supersymmetry method [19, 20] and directly relates the original
probability density with the weight in the dual superspace.

After introducing the required notation in Sec. 2, we briefly review the
projection formula in Sec. 3. Thereby, we only consider the average of a
product of characteristic polynomials to keep the calculation simple. We
emphasize that the projection formula holds for all three Dyson indices 8 =
1,2,4 which is the strength of this approach.

In Sec. 4, we demonstrate via the three ensembles, YGBE, LGE, and JSE,
how the projection formula works. Thereby, we explicitly compute the well-
known orthogonal polynomials for § = 2 and show that the average of one
characteristic polynomial for § = 1 and the square root of a characteristic
polynomial for 8 = 4 is, apart from some shifts in the parameters, the same
as in the case of § = 2. Another example is presented in Sec. 5 where we
generalize the approach to a product of independently distributed matrices.
Also for product matrices, we explicitly calculate the orthogonal polynomials
in the case of 8 = 2. However, the completely new results are the ones for
B = 1,4 which are expressed in terms of integrals over Dyson’s circular
ensembles (CSE) [21]. In this way, we show in Sec. 6 that the universality in
the hard edge scaling limit holds for real and quaternion product matrices,
too. We are also able to identify the non-linear o-models which are necessary
when comparing the universal results with physical field theories.
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2. Preliminaries

We consider rectangular random matrices which are either real (5 = 1),
complex (5 = 2), or quaternion (5 = 4). We are particularly interested in
the singular value statistics of a random matrix

Rnx(n+v)

B
W € gl(ﬁ) (TL;TL + I/) — Cnx(n+1/) , B
Hrx (ntv) , B

(1)

I
.-lkl\br—\

distributed by P(WWT). We assume v = 0 in the following to keep the com-
putations simple such that we choose the abbreviation gl/® (n) = gl® (n;n).
Nonetheless, this restriction is not that strong since a product of rectangu-
lar matrices can be always rephrased to a product of square matrices [10].
Examples of such induced measures resulting from rectangular matrices are
given in Sec. 5.

Since we choose the complex representation of the quaternion numbers H
in terms of Pauli matrices, we introduce the convenient parameters

7_4 _ /1, Bp=12, ~_J 2, p=1,

B—Ba 7—{2’ 6247 7_{1’ 5:2’4‘ (2)
For the sake of readability, we restrict ourselves to partition functions of the
form

/ AW WWT) det/OF) (WWT ® 15y — M) NE))

The fixed matrix M = {Mg;;} has the dimension (yn x yn) ® (Yk x k) =
yynk x yynk. It has to satisfy the symmetry

MT — 1n®[7'2®1k}M1n®[7'2®1k], 8=1, (4)
[T2®1n}®1kM[7-2®1n]®1k7 ﬁ:47

where 79 is the second Pauli matrix. Other properties of M are not required.

The partition function (3) needs an explanation. The determinant acts
on the tensor space of (yn X yn) matrices containing the matrix WWt and a
space of dimension (Ykx7k). In the case that M = 1., ®diag (my, ..., ms;),
the determinant is a short-hand notation for a product of characteristic
polynomials of WWT which is a well-known partition function in Random
Matrix Theory [22, 23]. The reason why we wrote this product in such an
uncommon, compact form is the application we aim at, namely the singular
value statistics of matrix products. Then the matrix M does not take such
a simple form.
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Another particularity of Eq. (3) which needs an explanation is the ex-
ponent of the determinant, 1/(+%) and the matrix dimensions. In the case
of complex matrices (5 = 2), the exponent and the dimensions become self-
explanatory since they become trivial, e.g. 1/(v7)|g=2 = 1. When W is
real (8 = 1) then WWT is real symmetric and n x n dimensional. The
space dual to the polynomials consists of self-dual matrices. The resulting
Kramers degeneracy cancels the exponent 1/2 and doubles the dimension,
k — 2k. Exactly the opposite happens in the case of a quaternion matrix W
(8 =4). Due to its quaternion structure, the dimension is doubled, n — 2n.
However, the dual space consists of symmetric matrices. Since symmetric
matrices may have also odd dimensions, we do not need a doubling of the di-
mension k. The corresponding square roots of the characteristic polynomials
are exact and, thus, a polynomial because the spectrum of WWT is Kramers
degenerate. Such a square root is known as quaternion determinant and is
equivalent to a Pfaffian determinant [23].

An important ingredient needed for the supersymmetry method is the
invariance of the probability density P under the transformation P(WWT) =
PUWWTUT) for all U € U (n), where

O(n), B=1,
UP(n) =4 Un), B=2, (5)

Only due to this invariance, it is possible to find an integral over a superma-
trix whose dimension is independent of the ordinary dimension n and which
yields exactly the same partition function as Eq. (3). This can be achieved
in four steps which we briefly sketch in Section 3.

For this purpose, we have to introduce two supermatrix spaces and one
ordinary matrix space. Let p,q, N € N, and U(p|q) and UOSp(p|2q) be
the unitary and the unitary ortho-symplectic supergroup, respectively, see
[24-27]. The space of rectangular supermatrices is defined by

A (pla;p'ld') = u® (p+plg+¢) / [P (pla) < (010)] , (6)

where u(?) (plq) is the Lie superalgebra of the supergroup

UoSp ™ (pl2g), B=1,
UP(plg) =4 U(plg), B=2, (7)
UOSp(2plg), B=4.

The coset is taken via the addition as a group action on the Lie superalgebra.
Therefore, a matrix p € gl®) (plg; N) is (vp|7q) x (yp|7q) dimensional and
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has the following form

PBB  PBF
= . 8
P [ PFB  PFF ] ®)

The vp x «vp dimensional boson—boson block ppp and the 7¢ x ¢ dimensional
fermion—fermion block ppp comprise commuting variables, while the other
two blocks contain anti-commuting ones.

We employ the same notation for the two inequivalent fundamental repre-
sentations of the supergroup UOSp(p|2q) as in [25-27] where the superscripts
indicate the transformation property under the complex conjugation, i.e.

« | diag (1,, -1 ® 1) pdiag (1, m®1y), B=1, )
p= diag (—1m ® 1p,14) pdiag (1 @ 1y,1y) , =4

for p € g’ (plg; p'l¢’) and
U — diag (1,, -1 ® 1,) Udiag (15,1 ® 1), B=1, (10)
| diag (e ®1,,1,) Udiag (i ®1,,15), =4

for U € UP)(plg) € U(yp[7q). The two relations (9) and (10) are general-
ization of the definitions of real and quaternion matrices to superspace.
The ordinary matrix space announced is the coset

CBE(yk) = [U(k) x U(K)]/U(k)=U(k), B =2, (11)
U(2k)/USp(2k) , B=4

equipped with a normalized Haar measure du(U) induced by the Haar mea-
sures on the defining groups. These three sets are the circular ensembles first
studied by Dyson [21]. These cosets are also the fermionic part of the super-
matrices involved in the superbosonization formula [20]. Since we only dis-
cuss the average of products of determinants and not ratios superbosoniza-
tion reduces to bosonization only involving the circular ensembles (11). Let
us recall the properties of a matrix U € CSE(vk). The matrix U is unitary
and satisfies the symmetries U7 = U for 8 =1 and U = (n®1;)U(12®1y)
for g = 4.

Also the superdeterminant and the supertrace play an important role in
the ensuing calculations. They are defined via the ordinary determinant and
trace, and explicitly read

det (pBB — PBFPERPFB)

detp =
Sdet p det ppr

, Strp = tr ppg — tr prr (12)
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for an arbitrary square supermatrix p € gl(®) (plg; plq) whose fermion—fermion
block ppr is invertible. The definitions are chosen in such a way that
many properties of the trace and the determinant carry over to super-
space. For example, the circularity StrAB = StrBA, the factorization
Sdet AB = Sdet A Sdet B, and the relation InSdet A = Strin A still hold
for two arbitrary invertible square supermatrices A and B. The circularity
property of the supertrace works for rectangular supermatrices, as well. A
more profound introduction in supersymmetric analysis and algebra can be
found in [28|.

3. What is the projection formula?

The projection formula in its general form projects functions living on
a very large superspace to functions on a much smaller superspace [18]. In
this way, it directly relates the original weight P to a weight @) in the smaller
superspace. Hence, the projection formula is a shortcut of the supersym-
metry method [18]. For our particular purposes, the large superspace is
gl®) (n+7l|yl;n|0) with [ being an integer larger than or equal to k/~. The
enlargement of the dimensions & — 2[ in the case of k odd and g = 4 is
crucial. The reason is a Cauchy-like integration theorem [26, 29] first de-
rived in a general framework by Wegner [30] which only applies to an even
dimensional reduction of a matrix space in the case of 5 = 1,4.

In the first step of deriving the projection formula, we need the following
version of this Cauchy-like theorem [18§]

J @] P (oot

Jd [ﬁ} exp [—Strﬁfff}

P (WWT) - (13)

with W € gl (n) = g1 (n|0;n|0) and 2 € g1® (F1|71; n|0). The matrices
are embedded as follows

w w’ o~

The second splitting in W’ € gl (n+71|yl — k; n|0) and £’ € gl (0|k; n|0)
becomes relevant in the third step of the derivation of the projection for-

mula. The measure d[f2] is the product of all differentials of independent
matrix entries of {2. The normalization with a Gaussian is true because the
proportionality constant is independent of P and thus can be fixed by any
weight.
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In Eq. (13), we have chosen a supersymmetric extension of P to the
superspace gl (n 4 31|y1;n|0) which is by far not unique. However, the
final result is independent of this choice as already discussed in [27]. Such
an extension indeed exists for a smooth distribution P. Since P is invari-
ant under the group u® (n), we can apply the Cayley—Hamilton theorem
implying that P can be expressed in matrix invariants like traces and deter-
minants of WIWT. Those invariants have invariant extensions, namely the
supertrace and the superdeterminant, cf. Eq. (12).

In the next step, we rewrite the determinant in Eq. (3) as a Gaussian
integral over a matrix V = {V,;} € gl (O\k n|0) which only consists of
Grassmann (anti-commuting) variables [28]

det!/ 0D (Wt @ 154 — M)

~ JdlV]esp [m«VWWTvT = Tt St MabisVaiVi

2,j=1
15
Jd[V]exp [tr VVT] (15)
Then, the partition function is up to a constant
o Jk  n
Z(M) / AdVIP (207 ) exp| S22V =" 37 My VuiVi
ab=114,j=1
(16)
with
p_[0 0 pr_ [0 VI B) (14 Al 4 &
V—[V 0], v —[0 0 ]Egl (n+Alyl;n+Alyl) . (17)

The first (yn + 2931 — 7k) rows and the last 2951 columns of V are equal
to 0. The change of the sign in front of the first term in the exponential
function relates to the fact that Grassmann variables are anti-commuting.

The integrals over V' and {2 can be interchanged such that we find the
function

P (17*17) - / d[2]P (mﬁ) exp [—Strmﬁf/*f/ . (18)

The invariance of P(2021) = P(UQQTUT) for all U € UB) (n+71|y1) carries
over to a symmetry for P(VIV) = P(UVTVU?) for all U € UP) (n +Fi|y1).
Therefore, the following duality holds

P (17*17) =P (f/f/T) (19)
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which is the third important step of the derivation. Employing the defini-
tion (18) backwards, the partition function is

Jk  n

Z(M) o / d[Q2]d[V]P (QQT) exp [ VIRV = 373 My Vi Vi
ab=114,j=1

x / a[2]Q (2 2'1) aet!/07) (1., 0 '~ M) . (20)

In the last step, we integrated over the remaining degrees of freedom W, cf.
the splitting (14), which do not show up in the determinant. This integration
yields the function

w'w't Wt
Q(Q’Q’T) a/d[W’]Pq oWt oot D . (21)
This equation is the essence of the projection formula. The remaining things
to do are cosmetics.

We want to express the dyadic matrix Q' ' as a single square matrix U
which is an element in CSE(vk). Note that the circular ensemble really

relates to the Dyson index § = 4/8 and not [ which originates from the
symmetries fulfilled by V.

Exactly this is done in the last step. We apply the superbosonization
formula [20] which reduces to pure bosonization in our case. This yields the
partition function

Z(M) = / du(U)QU)det VO (1, © U — M)det ™7U  (22)

with the normalized distribution

WAW, + WoWd  WoU1/2
J dWild[ws]P ( Cpewl
QU) = p- :
[ du(U)d[WA]d[Wa] det™/7 U exp [—Str <W1 Wi +W2W§) Ftr U}

(23)
The reduction of the integral (21) to the final expression (23) as an integral
over the two matrices Wi € gl¥® (n + Fi|yl — ksn + 3|yl — k) and Wy €
gl®®) (n +F1|y1 — k; 0|k) was done in [18] and is skipped here due to the lack
of space.

We remark that apart from the case of k odd and 8 = 4, the auxiliary
parameter [ can be chosen | = k/v. Then, the matrix W is an ordinary
square matrix and Ws is a rectangular matrix only consisting of Grassmann
variables.
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4. Application to standard random matrix ensembles

Three particular cases of Meijer G-ensembles are the Gaussian yGSE,
the heavy-tailed LOE, and the compactly supported JGE. We discuss them
in Subsections 4.1, 4.2, and 4.3, respectively. These ensembles play im-
portant roles in a vast of applications and cover a broad range of systems
[8, 9, 13-15, 22].

4.1. Wishart-Laguerre (Gaussian) ensemble

The first ensemble we consider is the yGSE
Py, (WWT) x det”’/ TWWHexp | —tr WWT/1? (24)

with v € Ny and I" > 0. It is the oldest random matrix ensemble first studied
by Wishart [13]. The determinant in front of the Gaussian originates from
a transformation of a rectangular matrix W’ e gl®® )(n, n + v) to the square
matrix W € gl® (n). Therefore, one can understand Eq. (24) as an induced
measure [10]. The corresponding weight Qwr, is given by Eq. (23)

WIW, + WoWi  Wot/2

Qwr(U) o / d[Wl]d[Wz]SdetW[ 2yt u
2

xexp | ~Str (WiW] + WoW]) + e U/ 17|
x det ™/ TUe U/ (25)

Therefore, the partition function (3) for Py, (WWT) reads

[ dp(U)det™ /AT det 0D (1, @ U — M)etrU/T?

Zwi(M) = [ dp(U)det™ +)/A et U/1?

(26)

This result agrees with the one derived in [26]. The normalization can be
fixed by considering the expansion of the partition function for large M.
The result (26) exhibits nice implications. For example, the case k =~
and M = m1,25, is equal to the orthogonal polynomials for 8 = 2 and to the
skew-orthogonal polynomials of even order for 5 = 1,4, see [23]. Hence the
contour for § = 2 is a representation of the modified Laguerre polynomials

Lg/), see [31], i.e.

2y m) o f dzz D) (o gyl

S e OB < () e
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These polynomials also appear for § = 1,4 if we set £k = 1. Only the
argument m is modified to ym. Interestingly, the case 8 = 4 is an average
over a square root of a determinant which is equivalent to a Pfaffian.

For the case of k = 2y and M = 1,25, ® diag (my, mz), we find one of
the kernels corresponding to the YGSE [23]. When computing the contour
integral (26), we immediately find the corresponding Christoffel-Darboux
formulas.

4.2. Cauchy-Lorentz ensemble

The LAE is the next case we want to study. It is defined by the proba-
bility density [14, 18]

Per, (WWT ) oc det”/ TWW et (F21,m +wwt ) (28)

with I' > 1, v € Ny and pu > k/v+ (2n+v) /7 — (77 — 1) /2 for guaranteeing
the convergence of the integral (3)!. It is a heavy-tailed distribution and
was employed for modelling financial correlations [14].

The choice I" > 1 is convenient for the projection formula but is not a
restriction at all because it only rescales the ensemble. The term det”/ TWwi
can be again understood as a remnant of a rectangular matrix W’/ € gl('g)
(n,n + v). However, we underline that such a transformation from W’ to
W also changes the exponent pu.

The weight for the dual space is calculated with the help of Eq. (23)

WAW] + WoWy  WoU/2

Qo) [ diwijapwasaee /7 | MU oy o

F21'yn+'y§l|'y§lfﬁk + WIWJ + WQWQT W2U1/2

xSdet ~H
U\rwy 15, +U

x det™"/TUdet" (I'*15), + U) / d[Wh)d[Ws)Sdet */TW W
xSdet ~# [F217n+y§l|v§l—ﬁk + W1W1T+F2W2 (F21§k+U)71 WQT]
x det™/TUdet"* "7 (15, + U) . (29)

In the last step, we have rescaled Wy — Wa(I'?15; + U)Y2 such that
the remaining integrals are independent of U. Thereby, we recall that the
Berezinian (Jacobian in superspace) is det =*/7=%/7 (12 15, +U) because Wy

! Note that the inequality satisfied by p in [18] contains a mistake which we have
corrected here. The inequality can be found by performing a singular value decom-
position of W and then reading off the algebraic behaviour at infinity.
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comprises Grassmann variables, only. Hence, we end up with the partition
function

[ dp(U)det” "5 Udet! > (P15 +U) dets (L, © U=M)
[ du(U)det ="/ Udett 1=/ (1215, + U)

Zon(M) =
(30)

Starting from this formula, one can again easily deduce the orthogonal or
skew-orthogonal polynomials, the kernel involving two characteristic poly-
nomials, and the Christoffel-Darboux formula associated to this kernel.

For example, the orthogonal polynomials corresponding to the complex
LBE = LUE is

ZéﬁLZQ’k:D (ml,) fdzz_("+”+1) (I?+ z)’knil (z—m)"

OCZ V+])'1F[ —n—v—j (—%)j.(?)l)

This polynomial can be understood as a Jacobi polynomial when analyti-
cally continuing the parameters to negative values, c¢f. Eq. (37). The same
polynomials pop up for § = 1,4 when setting £ = 1. This time, we have
only to change the exponent u — yu — /v + 1.

4.8. Jacobi (truncated unitary) ensemble

The JBE is defined by [15]

Py (WWT ) o det”/ TWWtdet” (FHW —wwt ) o (F21W —wwt ) ,

(32)
where v € Ny, k > —1/(2v). The Heaviside step function © for matrices is
unity if the matrix is positive definite and otherwise vanishes. Again, the
scaling I' > 1 is only introduced to avoid problems with the contour integrals
in the dual space. In the case of yyu € Ny, the random matrix W distributed
by Eq. (32) can be understood as a truncation of an orthogonal (8 = 1), a
unitary (8 = 2), or a unitary symplectic (8 = 4) matrix, respectively, see
[10, 15].

To apply the projection formula, we have first to find the supersymmetric
generalization of the Heaviside step function. For this reason, we write this
function as ©(I"%1.,, — WIW). Then, it is clear that this function reads in
terms of the supermatrix 2 as ©(I"%1,, — 272) because the dyadic matrix
2712 has still an ordinary dimension and can be embedded in the space of
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vyn X yn matrices by a Taylor expansion in the Grassmann valued matrix
entries. Such a Taylor expansion is always finite since Grassmann variables
are nilpotent. Hence, we do not have to fear any problems of convergence.

Let n,p,q € N and V € gl(ﬁ)(p]q;n|0). Then, the extension of the
Heaviside step function is done by a limit

6 (130 = V1V) = lim det™ (15 + V)

€— 00

o o

—1)ie—de .

= Eligloexp E ()jetrejewv . (33)
=1

This limit vanishes if one or more eigenvalues of the numerical part of the
dyadic matrix VIV is larger than 1. We emphasize that indeed only the
numerical part matters and not the nilpotent terms because of the Taylor
expansion in the latter. In the next step, we employ the duality tr eIeVIV —
v(n—p)+7q+ Stre€VV'. We have

© <1W B VTV) = lim (1+ )P "795det ! (1Vpl7yq + e_geEVVT)

€—00
= Elglgo det ™! (lvpﬁq +e {6EVVT }BB>
=0 (1,-{vv} ") (34)

The Heaviside step function is only taken for the numerical part {VV/T}ium
of the boson-boson block of the dyadic matrix VVT. Any expansion in the
nilpotent terms yields a polynomial in € which are suppressed by the expo-
nential e~€. This implies that the other three blocks of the supermatrix eVV!
cannot contribute because they are polynomials in €. The boson—boson block
is {eGVVT}BB = eE{VVT}%uBm(l + f(e)) with f a polynomial and f(0) = 0.
Therefore, Eq. (34) is the correct generalization of the Heaviside step func-
tion to the superspace. Interestingly, the Taylor expansion in the nilpotent
terms have no influence on the Heaviside step function. But this behaviour
has to be expected because the Taylor expansion can only have an effect on
the boundary. Only there, one or more eigenvalues of the numerical part
{VVTIaum are equal to 1 where the value of the function may change. How-
ever, the supersymmetric Heaviside step function vanishes at the boundary,
too, due to the expansion in the nilpotent terms yielding an inverted poly-

vvt 1 €
nomial in €, e.g. det_l(lvaq + e_e{eEVVT}BB) VViieg=to 1/f(e) “=°0

with f a polynomial.
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We employ Eq. (34) in our setting and recognize that the matrix U is not
a part of the boson—boson block of the matrix argument of Py in Eq. (23).
Hence, the function in the dual space is

WAW] + WoW)  WoU/2

Qi(U) o /d[I/Vl]d[I/Vz]Sdet"/:Y [ g2t U
2

F217n+ﬁllﬁlﬁk - W1W1T - W2W2T WoU'/2

U1/2W2T 1—12]_5]C -U
%0 (171 — (W] + W} )
o det™/TUdet ™ ¥/7"/7 (1?15, —U) . (35)

xSdet *

We underline that the boson—boson block of W5 WQT only consists of nilpotent
parts such that it does not contribute to the Heaviside step function. The
corresponding partition function is

[ dp(U)det ™5 Udet ™55 (I1s), — U) det7 (1y, ® U—M)
[ du(U)det= /AT det =" */ /7 (1215, — U)

Zy(M) =

(36)
One can readily check the correctness of this result by calculating the or-
thogonal or skew-orthogonal polynomials and the kernel involving two char-

acteristic polynomials. For example, with the help of the residue theorem
we generate the polynomials,

Z§’8:2’k:1)(m1n) x fdzz(nJrqul) (F2 . Z)—(n+’f+1) (z—m)"

n+/<a—|—1/—|—j—|—1] m\J (m) [ 2M
“Z o () < B (1)

(37)

where P}f’y) are the Jacobi polynomials with respect to the weight (1 — z)"
(1 +2)"O(1 — 2?), see [31]. As in the case of the LBE, we find the same
polynomials for § = 1,4 and k& = 1 when replacing the exponent x —
yE+5/v— 1.

We also obtain the well-known Christoffel-Darboux formula of the Jacobi
polynomials by setting k = 2, § = 2, and M = 1,, ® diag (m1, m2). Then,
the integral reduces to a double contour integral after diagonalizing U.
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5. Application to product matrices

The computation of the partition function for a product of L matri-

ces W — W) = Hle W; = Wi ... Wy independently distributed by

PWWT) — Hle Pj(WjW;) works in a similar way as for a single ma-
trix. Starting from the partition function

Zn(M) :/

/

xdet 0D [W W] o 15, — X7 My (38)

by (ijj) det!/(7) [W(L) (W<L>)T ® 15, — M]

]

L

[T aw;]
Jj=1
ﬁd[Wj]Pj (WjW]T> dett/ (L1 (W(L—l))
j=1

with X7 = w1 g 15, and Y 1 = (W(L_l))T ® 151, we apply the
projection formula for Wy after replacing the matrix M — XEEIM YLf_ll.
Then, we obtain

Zu0) = [ T dwsip; (W) | duu)@e@uyder /70,
j=1

xdet!/(77) [W(L_l) <VV(L_1))Jf QU — M]

L1
.|.
:/ H d[W;1F; (WjWJT) dp(Ur)QL(Ur)det®/ Y (L=2) (W(L—2)>
j=1
3 ; B »
Hdet [WL_IWL—l ® Lk — XL—QMYL—Q} g (39)

where Xj_o = W2 @ VUL, Yi_o = (W) @ /UL, and Qp, is com-
puted as in the projection formula (23). This procedure yields a recursion
resulting in the following expression for the partition function,

L
Zi(M) :/ [ dnwy@;w;) | det—""uy, ..Uy
j=1

xdet!/ (O [Lm @ VUL .../ UUi\/Us .. .\/UL, — M} , (40)

where each matrix Uj is an element in the circular ensemble CBEFE).
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In the final step, we replace UJ'- = VUL ...\/Ujt1Uj\/Ujs1...vUL

which preserves the symmetries such that U} € CBE(7k). For this pur-
pose, we use two facts. First, the Haar measure is invariant under du(U) =
dp(VUVT) for all V € U(Jk) resulting from the fact that the explicit form of
the Haar measure of CBE(Fk) is du(U) o det™*/7~0=/2yd[U] with d[U]
the product of the differentials of all independent matrix entries [20, 21].
Second, the weights Q; are also invariant under Q;(U) = Q;(VUVT) for
all V e U (k). Hence, these weights have an expression in terms of func-
tions of matrix invariants. With the help of a slight abuse of notation,
one can say that the weights @Q); satisfy a cyclic permutation symmetry,
Q;(AB) = Q;(BA) for any two matrices A, B € U(Yk).
Finally, we find the result

L
Z (M) = / [T (U}) Qs (UjUyst )| det™"TUjdet/ 0D 1, @ U}~ M]
j=1

(41)
with U7, = 15;. This result is surprisingly compact. It also reflects the
nature of the original product of matrices which is equivalent to a Mellin-like
convolution in a matrix space. Also the dual space exhibits this structure of
a Mellin-like convolution.

As an example, we calculate the orthogonal polynomials (kK = 1) of a
product of Ly, complex xGBE = xGUE, Eq. (24), Lcr, complex LGE =
LUE, Eq. (28), and Ly complex JSE = JUE, (32). We assume this product
to be ordered, i.e. first the Wishart—Laguerre, then the Cauchy—Lorentz, and
finally the Jacobi matrices. The result does not depend on this ordering, see
the discussion in [10]. Then the orthogonal polynomials are

(8=2,k=1) WL o T2i1]Y 2ok

=2 k= —1\" ] i+ e Zj+1

Z ml,) x 1—mz ! | | A e e N
Jj=1

Lwi+LcL

dz (241" [ e, 2 197
<11 [ZJ I+ ——

z Z5
j=Lwr+1 7 gt

X

Lwir+Lcr+Ly dzs ) v; 1wl
Zj [zﬁl} [Fz A ]
J
Zq zZq Zq
j=Lwr+LcrL+1 7 J A
HaF[n‘i‘K/a“‘Va"’j"‘l]

* 2 = ML+ IV, e — =70 =30

(-2 e
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with zry +re+r,+1 = 1 ,u;. = [; —n, Ii; = kj +n, and I'? = Hj sz.
The product of the Gamma functions runs over the possible values for v,,
Ka, and p,. The polynomial (42) is a hypergeometric function and, thus, a
Meijer G-function [12]. It agrees for certain values of the parameters Lwr,,
Lcr, and Ly with known results [9, 11]. What is completely new are the
results for § = 1,4 and k£ = 1 which are essentially the same polynomials.

Here, the other approaches failed because of unknown group integrals.

6. Hard edge scaling limit of product matrices

Up to now, every calculation was done for finite n such that we made
no approximation and the projection formula was exact. However, to make
contact to physical systems and universality, we have to zoom onto the local
scale somewhere of the spectrum. A very prominent scaling is the one to a
vicinity around the origin also known as the hard edge scaling limit.

As a simple but non-trivial example, we choose the matrix product of
the previous section with the source M = ([, I’; I')1,, @ m/[n(I1,(1a —
n/¥))(11,(ke +n/7))]. In particular, we consider the scaling limit n — oo
and vj, fi; = (pj/n —1/7), &; = (kj/n+1/7), and m fixed. Then, one
can easily show that the asymptotics of each weight, regardless what kind
of random matrix we consider, is

"% deti/ AUtV (43)

Qj(al) &
with a = 1—’3-2 for xGBE, a = Ff/(nﬁj) for LAE, and o = Ff/(n//%j) for LBE.
After a proper rescaling of the matrices Uj, the partition function (41) takes
the asymptotic form

Zn(M)"& / Hdu U?) det?i/TU; | e Vet Sos e UUph—trmUnt )

with L = Lwr,+ Lcr+ Ly. We underline that no saddle point approximation
is needed for this limit. Hence, the matrices U; are still elements of the

circular ensemble CSE(7k).

For g = 2, the partition function (44) yields the Meijer G-kernel of a
product of matrices drawn from yGpEs, ¢f. [9]. This can be seen by di-
agonalizing the unitary matrices, applying the Itzykson—Zuber integral [16]
and, finally, integrating over a determinantal point process. The entries of
the resulting determinant are Meijer G-functions. Our result emphasizes
the conjecture that also this kernel is universal. Indeed, we could also have
chosen another scaling which still leads to a hard edge scaling limit. Then,
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we would get finite rank deformations of the result (44) which was recently
discovered for a product of truncated unitary matrices in [11]. Nevertheless,
the limiting kernel is still a Meijer G-kernel but with other parameters.
From a physical point of view, one can ask for the non-linear o-model
corresponding to the partition function (44). In this framework, the func-
tion in the exponential function is identified as the potential. The integra-
tion domain CAEY(Fk) is the coset of the “favour” group which keeps the
“massless Lagrangian” (m = 0) in the full theory at finite “volume” n in-
variant divided by the group which keeps the ground state invariant. As
in the case of L = 1, the theory is spontaneously broken. For a product
matrix, the “flavour” symmetry at finite “volume” n is UL(Fk) for g = 1,4
and [U(k) x U(k)]* for 3 = 2 which can be readily checked by linearising
the product W& in the matrices W;. This group is spontaneously broken

to [U®)(k))F and the source term for its condensate is the “mass” 7. This
non-linear o model generalizes the one for the Wishart-Laguerre ensemble
which were found in QCD [32] and mesoscopic systems [24].

7. Conclusions

We briefly presented the projection formula [18| for averages over prod-
ucts of characteristic polynomials which is a shortcut of the supersymmetry
method [19, 20, 27]. The general results found by this approach were demon-
strated in the case of Wishart—Laguerre (yGSE), Cauchy—Lorentz (LSE),
and Jacobi (JBE) ensembles, in particular, we rederived the corresponding
orthogonal polynomials for 5 = 2. These polynomials are essentially the
same when averaging over one characteristic polynomial for 5 = 1 and over
a square root of a characteristic polynomial for § = 4.

Moreover, we generalized the projection formula to products of matrices.
Since the projection formula works in a unifying way for all three Dyson
indices 8 = 1, 2,4, this approach is an ideal alternative compared to other
methods like orthogonal polynomials and free probability when studying real
or quaternion matrices. Note that up to now free probability only applies
to global spectral properties and to use orthogonal polynomials we need to
know group integrals like the Itzykson—Zuber integral [16] or its polynomial
counterpart [11, 17]. The projection formula circumvents this problem. In
particular, we were able to show that the spectral statistics at the hard
edge are the same for products of completely different random matrices only
depending on the number of matrices defined and their indices v1,...,1
encoding the rectangularity of the matrices. This was done for all three
cases 8 = 1,2, 4 and underlines the strength of the projection formula where
other methods fail. In the complex case (8 = 2), we easily deduce from our
results those for the Meijer G-ensembles studied in |9, 11].
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The projection formula also enabled us to identify the non-linear
o-models and the symmetry breaking pattern for product matrices and de-
rived the potential of the Goldstone manifold. This result is completely new
and shows what the effective theory associated to such a product matrix
would look like. In particular, one can understand a product matrix by it-
self as a discrete one-dimensional system. Therefore, our results shows one
way to generalize the zero-dimensional RMT to a one-dimensional theory.

I acknowledge partial financial support by the Alexander von Hum-
boldt foundation. Furthermore, I thank G. Akemann, Z. Burda, T. Guhr,
J.R. Ipsen, V. Kaymak, M.A. Nowak, and J.J.M. Verbaarschot for fruitful

discussions.
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