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Our results concern quantum chaos of the vacuum Bianchi IX model.
We apply the equilateral triangle potential well approximation to the poten-
tial of the Bianchi IX model to solve the eigenvalue problem for the physical
Hamiltonian. Such approximation is well-satisfied in vicinity of the cosmic
singularity. Level spacing distribution of the eigenvalues is studied with
and without applying the unfolding procedure. In both cases, the obtained
distributions are qualitatively described by Brody’s distribution with the
parameter β ≈ 0.3, revealing some sort of the level repulsion. The ob-
served repulsion may reflect chaotic nature of the classical dynamics of the
Bianchi IX universe. However, full understanding of this effects will require
examination of the Bianchi IX model with the exact potential.
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1. Introduction

Astronomical observations tell us that the Universe has been expand-
ing for almost 14 billion years so it must have emerged from a state with
extremely high energy densities of matter fields. Theoretical attempts of
understanding the early stage of the Universe are, however, plagued by the
cosmological singularity characterized by blowing up of physical invariants.
This concerns almost all known general relativity models of the Universe
(Friedmann, Lemaître, Kasner, Bianchi, Szekeres, . . . ). The existence of the
cosmological singularities in solutions to Einstein’s equations means that
this classical theory is incomplete. Expectation is that quantization may
heal the singularities.
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The Friedmann–Robertson–Walker (FRW) model, which is homogeneous
and isotropic, is commonly used to describe the cosmological data. However,
the isotropy is dynamically unstable in the backward evolution towards the
cosmic singularity [1]. The general anisotropic model including FRW as a
special case is the Bianchi IX model. It is the best prototype for the Belinskii,
Khalatnikov and Lifshitz (BKL) scenario, which is thought to be a generic
solution to the Einstein equations near the cosmological singularity [2, 3].

The classical dynamics of the Bianchi IX model is both singular [2, 4]
and chaotic [2, 4, 5]. In this article, we look for symptoms of the chaotic
behavior at the quantum level. For this purpose, the spectrum of canonically
quantized Hamiltonian for the vacuum Bianchi IX model is analyzed. In
our considerations, the hard wall approximation (which is well-satisfied in
vicinity of the cosmic singularity) for the Bianchi IX potential is applied.

2. The Bianchi IX model

The Bianchi IX model can be viewed as a generalization of the positively
curved (k = 1) FRW with two additional degrees of freedom parameterizing
the anisotropy [6]. The line element of the model reads

ds2 = −N2(t) dt2 + 1
4

3∑
i=1

q2i (t)ω
i ⊗ ωi , (1)

where ωi are 1-forms satisfying dωi = 1
2εijkω

j ∧ ωk. The N(t) is a lapse
function and the qi(t) function are usually parametrised as qi(t) = a(t)eβi ,
where

∑3
i=1 βi = 0. The a = (q1q2q3)

1/3 = e−Ω is an average scale factor
related to Ω, playing a role of internal time. Based on the βi functions, it
is convenient to define parameters β+ := β1 + β2 and β− := (β1 − β2)/

√
3.

The closed (k = 1) FRW model is recovered for β+ = 0 = β−, with a(t)
corresponding to the FRW scale factor.

The action integral for Bianchi type models reads [4, 7]

I =

∫
(p+dβ+ + p−dβ− −HdΩ) , (2)

where β± and p± are canonical variables, {β±, p±} = δ±,±, whereas H =
H(Ω, β±, p±) is the physical (true) Hamiltonian. The relation of the internal
time Ω to the cosmic time t reads: NHdt = −

√
2/3π exp(−3Ω) dΩ [4].

The Hamiltonian in (2) has the form

H2 = p2+ + p2− + e−4Ω (V − 1) , (3)

where the potential V for the Bianchi IX model is defined to be

V = −4
3e
−2β+ cosh

(
2
√

3β−
)
+ 2

3e
4β+

(
cosh

(
4
√

3β−
)
− 1
)
+ 1

3e
−8β+ +1 . (4)
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As seen from Fig. 1, the potential is characterized by C3v symmetry with
equipotential lines asymptotically arranging in the form of the equilateral
triangle.

Fig. 1. Equipotential lines for the Bianchi IX potential.

3. Quantization

In order to quantize the system, the canonical procedure of quantization
is applied

{β±, p±} = δ±,± →
[
β̂±, p̂±

]
= i}δ±,±Î . (5)

Using the Schrödinger representation for the above commutation relation,
the quantum operator corresponding to (3) reads

Ĥ2 = −}2
(
∂2

∂β2+
+

∂2

∂β2−

)
+ e−4Ω (V (β±)− 1) . (6)

The domain D(Ĥ2) is chosen in such a way that the operator Ĥ2 is self-
adjoint, where D(Ĥ2) ⊂ H := L2(SΩ, dµ) with the subset SΩ defined as

SΩ :=
{

(β−, β+) ∈ R2 | p2+ + p2− + e−4Ω (V − 1) ≥ 0, ∀ (p−, p+) ∈ R2
}
.
(7)

The eigenproblem for the Ĥ2 is equivalent to solving the Schrödinger
equation for a particle in two-dimensional potential well. The difficulty in
solving this equation is due to a complicated form of the potential, which
would require application of sophisticated numerical techniques. However,
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near the singularity (when Ω →∞), the potential e−4Ω (V (β±)− 1) can be
approximated by the hard walls equilateral triangle potential [4, 8]. This can
be deduced from the structure of the equipotential lines of V (see Fig. 1) as
well as from the asymptotic form of the potential V ∼ 1

3e
−8β+ for β+ → −∞.

The effective triangle in which the motion takes place is found to be [4]:
4 :=

{
β+ ≥ −1

2Ω, β− ≤ −
√
3
3 (β+ −Ω), β− ≥

√
3
3 (β+ −Ω)

}
.

Employing the hard wall approximation, the operator Ĥ2 given by (6)
reduces to

Ĥ2
4 = −}2

(
∂2

∂β2+
+

∂2

∂β2−

)
, (8)

with the domain

D
(
Ĥ2
4

)
:=
{
φ ∈ H4, φ|∂4 = 0

}
. (9)

The Hilbert space H4 = L2 (4, dβ+dβ−) has the inner product 〈φ|ψ〉 =∫
4 φ̄ψdβ+dβ−. One can show that the operator (8) defined on (9) is self-

adjoint. Thus, the eigenvalues of the operator Ĥ2
4 are real and the corre-

sponding eigenvectors form an orthogonal set. Despite of non-separability,
the eigenequation Ĥ2

4|q, p〉 = e2q,p|q, p〉 can be solved analytically, leading to
the following set of eigenvalues [9]

e2q,p =
(
p2 + pq + q2

)
E0 , (10)

where E0 = 4
9
h2

Ω2 , and the eigenvalues are labeled by

q =

 0, 1, 2, . . . ,
1, 2, 3, . . . ,
1
3 ,

2
3 ,

4
3 ,

5
3 , . . . ,

(11)

and where
p = q + 1, q + 2, . . . (12)

In what follows, we are interested in the spectrum of the operator Ĥ4
rather than the Ĥ2

4. Because of self-adjointness of the operator Ĥ2
4, the

spectrum of Ĥ4 can be obtained from the spectral decomposition
√
Ĥ2
4 =∫ √

λdP̂λ. The operator Ĥ2
4 is positive

(
〈Ĥ2
4φ|φ〉 ≥ 0 ∀φ ∈ D(Ĥ2

4)
)
. Thus,

the spectrum of Ĥ4 is real and given by (up to the overall sign)

eq,p =
√
E0

√
p2 + pq + q2 . (13)
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4. Chaotic dynamics

The classical dynamics of the Bianchi IX model exhibits chaotic behavior
(see, e.g. [5]), reflecting non-integrability of the system. The chaotic nature
of the classical dynamics can be observed also at the quantum level. In
particular, it has been shown that wave packets evolving in the Bianchi IX
potential undergo defragmentation characterizing chaotic behavior [10, 11].

An alternative way of looking at chaoticity of the quantum systems is
by analyzing spectra of the Hamiltonian operators. Namely, it has been
conjectured that chaotic nature of the classical dynamics leads to the level
repulsion in the quantum theory [12, 13]. This behavior can be characterized
by different statistics of the level spacing s variable, with the mean value
normalized to unity.

In the case of the non-integrable systems, the level spacing distribution is
often characterized by the distribution obtained for the Gaussian Orthogonal
Ensemble (GOE) of the random matrices

PGOE(s) =
π

2
s exp

(
−π

4
s2
)
. (14)

In contrast, integrable systems are characterized roughly by the Poisson
distribution

PPoisson(s) = e−s . (15)

In the real system, chaotic and regular regimes often coexist: the level
spacing distribution can be modeled by distribution interpolating between
Poisson and GOE distributions, such as the Brody distribution

PBrody(s, β) = (β + 1)bsβ exp
(
−bsβ+1

)
, (16)

where b =
[
Γ
(
β+2
β+1

)]β+1
. At the limits of the interval β ∈ [0, 1], we have

PBrody(s, 0) = PPoisson(s) and PBrody(s, 1) = PGOE(s).

5. Level spacing distribution

In this section, statistical properties of eigenvalues of the prototype of
the Bianchi IX with the potential approximated by the hard wall equilateral
triangle are analyzed. For this purpose, degeneracy of the spectrum (13) has
to be removed firstly. The different eigenvalues are subsequently sorted as-
cending (e1 < e2 < e3 < . . . < en) and the level-spacings ∆i = ei+1 − ei are
computed. Distribution of ∆is cannot be compared to the scale-free distri-
butions (14) and (15). This requires introducing normalized level-spacing s,
defined such that the mean value 〈s〉 = 1. The simplest way is to rescale
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∆i → si = ∆i/∆̄, where ∆̄ = 1
n−1

∑n−1
i=1 ∆i. In Fig. 2, we present corre-

sponding distributions for two different values of the number of eigenvalues
n = 1000 and n = 20000.
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Fig. 2. Level spacing distributions for the triangular hard wall potential approx-
imation to the Bianchi IX potential with a different number of levels taken into
account: (a) 1000, (b) 20000. The dotted (blue) line corresponds to the Poisson
distribution. The dashed (red) line is the GOE distribution. The solid (black) line
is the Brody distribution with the parameter β = 0.3.

The spectrum of eigenvalues is usually inhomogeneous (averages over its
different regions do not overlap). In order to extract information about the
local correlations, global trend in the spectrum has to be subtracted. This
can be performed by applying the so-called unfolding of the spectrum. In
what follows, we apply the procedure to the spectrum (13). For this purpose,
we define Ei ≡ Eq,p :=

√
p2 + pq + q2 and (as previously) construct non-

degenerate spectrum from it. Based on this, the function N(x) is defined
such that i = N(Ei). The function together with the polynomial fit

N̄(x) = 0.209129x+ 0.830051x2 − 0.00542089x3 + 0.000050016x4 , (17)

is shown in Fig. 3. The fit has been performed using the least-squares method
for n = 1000.

The fitted function N̄(x) allows us for the following decomposition
N(Ei) = N̄(Ei) + Ñ(Ei), where Ñ(Ei) quantifies fluctuations around the
mean value. Now, the new spectrum can be defined as εi := N̄(Ei). The
advantage of such definition is that the corresponding distribution of level
spacing si = εi+1 − εi is well-normalized, because

〈s〉 =
s1 + . . .+ sn−1

n− 1
=
εn − ε1
n− 1

=
N̄(En)− N̄(E1)

n− 1
≈ n− 1

n− 1
= 1 . (18)

Indeed, for the fit (17) performed for n = 1000 we obtain 〈s〉 = 1.00064.
In Fig. 4, we present distributions of the unfolded spectra for two different
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values of the number of eigenvalues n = 1000 and n = 20000. In this case,
fluctuations are greater than previously, therefore the size of the bin has
been increased to 0.2 in order to smoothen the spectrum. Furthermore, for
n = 20000 the unfolding procedure has been performed based on the new fit
N̄(x) = −4.82423x + 1.23144x2 − 0.016761x3 + 0.00021306x4 − 1.36681 ×
10−6x5 + 4.09267× 10−9x6 − 4.56953× 10−12x7, which gives 〈s〉 = 1.00079.
The fit (17) performed for n = 1000 is no more valid for the n = 20000 case.
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Fig. 3. Plot of the function i = N(Ei) together with the polynomial fit (17).
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Fig. 4. Level spacing distributions of the unfolded spectra for the triangular hard
wall potential approximation of the Bianchi IX potential with a different number of
levels taken into account: (a) 1000, (b) 20000. The dotted (blue) line corresponds
to the Poisson distribution. The dashed (red) line is the GOE distribution. The
solid (black) line is the Brody distribution with the parameter β = 0.3.

6. Summary

The level spacing distributions obtained with and without applying the
unfolding procedure are qualitatively similar. This indicates that inho-
mogeneity of the spectrum does not play a significant role. Both spectra
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are qualitatively described by the Brody’s distribution with the parameter
β ≈ 0.3. The observed deficit of the small level spacing (with respect to
the Poisson distribution) indicates for level repulsion, which might reflect a
chaotic nature of Bianchi IX model. Confirmation of this observation might
be provided by the further analysis of fluctuations of the unfolded spec-
tra [14]. Furthermore, next step would be a numerical examination of the
level statistics of the Bianchi IX with the exact potential.

W.P. would like to thank the organizers of the Conference for creating
an inspiring atmosphere, and for financial support.
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