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We consider the products of m ≥ 2 independent large real random ma-
trices with independent tuples (X(q)

jk , X
(q)
kj ), 1 ≤ j < k ≤ n of entries. The

entries X(q)
jk , X

(q)
kj are standardized and correlated with correlation coeffi-

cient ρ = E[X
(q)
jk X

(q)
kj ]. The limit distribution of the empirical spectral

distribution of the eigenvalues of such products does not depend on ρ and
is equal to the distribution of the mth power of a uniformly distributed
random variable on the unit disc.

DOI:10.5506/APhysPolB.46.1737
PACS numbers: 02.50.Cw, 02.10.Yn

1. Introduction

For any m,n ≥ 1, we consider a family of real random variables X(q)
j,k ,

1 ≤ j, k ≤ n, q = 1, . . . ,m, defined on some probability space (Ω,F ,P).
Assume that the following conditions (C0) are fulfilled:
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(a) random vectors (X(q)
jk , X

(q)
kj ) are mutually independent and

E(X(q)
jk X

(q)
kj ) = ρ, |ρ| ≤ 1, for 1 ≤ j < k ≤ n, q = 1, . . . ,m;

(b) EX(q)
jk = 0 and E(X(q)

jk )
2 = 1 for any 1 ≤ j, k ≤ n, q = 1, . . . ,m;

(c) diagonal entries and off-diagonal entries are independent.

We say that the random variables X(q)
j,k , 1 ≤ j, k ≤ n, q = 1, . . . ,m,

satisfy the following uniform integrability condition (UI) if

lim
M→∞

max
q,j,k

E
∣∣∣X(q)

jk

∣∣∣2 I{∣∣∣X(q)
jk

∣∣∣ > M
}
= 0 . (1)

Here and in what follows, I{B} denotes the indicator of the event B.
We introduce m independent random matrices X(q), q = 1, . . . ,m, as

follows
X(q) :=

1√
n

[
X

(q)
jk

]n
j,k=1

.

Denote by λ1, . . . , λn the eigenvalues of the matrix W :=
∏m
q=1X

(q) and
define the empirical spectral measure by

µn(B) =
1

n

n∑
k=1

I{λk ∈ B} , B ∈ B(C) ,

where B(C) is a Borel σ-algebra of C.
We say that the sequence of random probability measures mn(·) con-

verges weakly in probability to the probability measure m(·) (we will write
mn → m) if for all continuous and bounded functions f : C → C and all
ε > 0

lim
n→∞

P

∣∣∣∣∣∣
∫
C

f(x)mn(dz)−
∫
C

f(x)m(dz)

∣∣∣∣∣∣ > ε

 = 0 .

A fundamental problem in the theory of random matrices is to determine
the limiting distribution of µn as the size of the random matrix tends to
infinity. The following theorem gives the solution of this problem for matrices
which satisfy (C0) and (UI).

Theorem 1.1. Let m ≥ 2 and X
(q)
jk , j, k = 1, . . . n, q = 1, . . . ,m, satisfy

(C0) with |ρ| < 1 and (UI). Then µn → µ in probability, and µ has the
density g

g(x, y) =
1

πm (x2 + y2)
m−1
m

I
{
x2 + y2 ≤ 1

}
,

which does not depend on ρ.
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Theorem 1.1 was announced in the talk of F. Götze “Spectral Distri-
bution of Random Matrices and Free Probability” at the Advanced School
and Workshop on Random Matrices and Growth Models, Trieste, Italy. Re-
cently O’Rourke, Renfrew, Soshnikov and Vu, see [1], proved the result of
Theorem 1.1 under additional assumptions on the moments of X(q)

jk .
The case of m = 1 was considered in 1985 by Girko [2]. He showed

that for m = 1, under the additional assumptions that the distribution
of r.v.s, X(1)

jk has a density the limiting measure µ has a density of uniform

distribution on the ellipse E = {(x, y) : x2

(1−ρ)2 + y2

(1+ρ)2
≤ 1}. This result

was called the elliptic law. For the Gaussian matrices, the elliptic law was
proved in [3]. Under the assumption of a finite fourth moment, the elliptic
law was recently proved by Naumov in [4, 5]. Nguyen and O’Rourke in [6]
and Götze, Naumov, Tikhomirov in [7] extended the elliptic law on the case
when X(1)

jk s have only finite second moments and non-identical distributions.
For m = 1 and ρ = 0, we have the circular law, i.e. the limiting distribution
µ is a uniform distribution on the unit disc. See, for example, the result of
Götze, Tikhomirov [8] and Tao, Vu in [9].

In the case of m > 1, ρ = 0 and X
(q)
jk and X

(q)
kj are independent for

1 ≤ j < k ≤ n, Theorem 1.1 was proved by Götze and Tikhomirov in [8].
See also the result of O’Rourke and Soshnikov [10].

2. Proof of the main result

In the following, we shall give the proof of Theorem 1.1. We skip almost
all proofs which may be found in the extended version of this paper available
at arXiv.org, see [11]. We shall use the logarithmic potential approach first
suggested for the proof of the circular law by Götze and Tikhomirov in [12].
This approach was developed in many papers (see, for instance [8, 13] and
[14]). We define the logarithmic potential of the empirical spectral measure
of the matrix W by the formula

Un(z) = −
∫
C

ln |w − z|µn(dw) .

Let us denote by s1 ≥ s2 ≥ · · · ≥ sn the singular values of W − zI and in-
troduce the empirical spectral measure νn(·, z) of squares of singular values.
We can rewrite the logarithmic potential of µn via the logarithmic moments
of the measure νn by

Uµn(z) = −
∫
C

ln |z − w|µn(dw) = −1
2

∞∫
0

lnxνn(dx) .
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This allows us to consider the Hermitian matrices (W − zI)∗(W − zI)
instead of W . To prove Theorem 1.1, we need the following lemma.

Lemma 2.1. Suppose that for a.a. z ∈ C there exists a probability measure
νz on [0,∞) such that
(a) νn

weak−−−→ νz as n→∞ in probability,
(b) ln is uniformly integrable in probability with respect to {νn}n≥1.
Then, there exists a probability measure µ such that
(a) µn

weak−−−→ µ as n→∞ in probability,
(b) for a.a. z ∈ C

Uµ(z) = −1
2

∞∫
0

lnxνz(dx) .

Proof. See [1, Lemma 4.3] for the proof. �

Proof of Theorem 1.1. From Lemma 2.1, it follows that to prove The-
orem 1.1 it is enough to check conditions (a) and (b) and show that νz
determines the logarithmic potential of the measure µ. In Theorem 3.1, we
find the limit distribution of the singular values of W (z) = W −zI (Section
3). The solution of this problem is divided into several steps. We start with
a symmetrization of the one-sided distribution function. Then, we reduce
the problem to the case of truncated random variables. Next, we show that
the limit of empirical distribution of singular values of the product of matri-
ces with truncated random variables is the same as the distribution of the
product of matrices with Gaussian entries. Finally, we show that the limit
of the expected distribution of the singular values of matrices with Gaussian
entries exists and its Stieltjes transform s(z) satisfies the following system
of equations

1 + ws(α, z) + (−1)m+1wms(α, z)m+1 = 0 ,

(w − α)2 + (w − α)− 4|z|2s(α, z) = 0 .

From paper [13] we know that the measure with the Stieltjes transform s(z)
which satisfies this system of equations determines the logarithmic potential
of the measure µ.

In Section 4, Lemma 4.4, we show that ln(·) is uniformly integrable in
probability with respect to {νn}n≥1. �

3. Singular values of the shifted matrices

In this section, we prove that there exists the limit distribution for the
empirical spectral distribution of W − zI. By Gn(x, z) we denote the em-
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pirical spectral distribution function of (W − zI)(W − zI)∗ (the distribu-
tion function of the uniform distribution on the squared singular values of
W − zI). This distribution function corresponds to the measure νn(·, z)
introduced in the previous section. Let Gn(x, z) := EGn(x, z).

We say the entries X(q)
j,k , 1 ≤ j, k ≤ n, q = 1, . . . ,m of the matrices X(q)

satisfy Lindeberg’s condition (L) if

for all τ > 0, Ln(τ) := max
q=1,...,n

1

n2

n∑
i,j=1

EX2
ijI
(
|Xij |≥τ

√
n
)
→ 0 as n→∞ .

It easy to see that (UI)⇒ (L).
The main result of this section is the following Theorem.

Theorem 3.1. Let m ≥ 2 and X(q)
jk , j, k = 1, . . . n, q = 1, . . . ,m satisfy (C0)

with |ρ| < 1 and (L). Then, there exists a distribution function G(x, z) such
that:
1. Gn(x, z)→ G(x, z) as n→∞;
2. Stieltjes transform s(α, z) of the distribution function G(x, z), defined
by the equality s(α, z) :=

∫
1

x−αdG(x, z), satisfies the following system of
equations:

1 + ws(α, z) + (−1)m+1wms(α, z)m+1 = 0 ,

(w − α)2 + (w − α)− 4|z|2s(α, z) = 0 ,

where Im(w − α) > 0 for Imα > 0.

Remark. It is well-known that the distribution function with the Stieltjes
transform satisfying the system exists and is unique. Moreover, this dis-
tribution is finitely supported and has a density. (See, for instance, [13].)
In particular, if Gn(x, z) converges to G(x, z), then this convergence is uni-
formly in x ∈ R, i.e.

lim
n→∞

∆n(z) = sup
x
|Gn(x, z)−G(x, z)| → 0 . (2)

Remark. It is easy to extend this theorem and show that Gn(x, z) weakly
converges in probability to G(x, z).

Introduce the following matrices

V =

(
W O
O W ∗

)
, J(z) =

(
O zI
zI O

)
,

J = J(1) , V (z) = V J − J(z) , (3)
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where I denotes the unit matrix of the corresponding order and α = u+iv ∈
C+ (v > 0). Note that V (z) is a Hermitian matrix. The eigenvalues of the
matrix V (z) are −s1, . . . ,−sn, sn, . . . , s1. Note that the symmetrization of
the distribution function Gn(x, z) is a function G̃n(x, z) which is the empirical
distribution function of the eigenvalues of the matrix V (z). We get

∆n(z) := sup
x
|Gn(x, z)−G(x, z)| = 2 sup

x
|G̃n(x, z)− G̃(x, z)| =: 2∆̃n(z) .

We shall proof that limn→∞ ∆̃n(z) = 0. In what follows, we shall consider
symmetrized distribution functions only. We shall omit the symbol “ ·̃ ” in
the corresponding notation.

We show that the limit distribution of the singular values of a product
of random matrices satisfying the assumptions of Theorem 3.1 does not
depend on the distribution of the matrix entries. Let Y (1), . . . ,Y (m) be n×n
independent random matrices with independent Gaussian entries n−1/2Y (q)

jk

such that Y (q)
jk , 1 ≤ j, k ≤ n, q = 1, . . . ,m satisfy (C0). For any ϕ ∈ [0, π2 ]

and any ν = 1, . . . ,m, introduce the following matrices

Z(ν)(ϕ) = X(ν) sinϕ+ Y (ν) cosϕ ,

where [
Z(q)(ϕ)

]
jk

=
1√
n
Z

(q)
jk =

1√
n

(
X

(q)
jk sinϕ+ Y

(q)
jk cosϕ

)
.

We define the matrices W (ϕ),V (ϕ) and V (z, ϕ) similarly to (3).
In these notations, W (0),V (0) and V (z, 0) are formed by Y (q), q = 1,

. . . ,m, and W (π2 ),V (π2 ) and V (z, π2 ) are formed by X(q), q = 1, . . . ,m.
Let sn(α, z, ϕ) denote the Stieltjes transform of the symmetrized expected
distribution function of singular values of W (ϕ)−zI. Then, sn(α, z, π/2) =
sn(α, z) denotes the Stieltjes transform of the distribution function Gn(x, z)
and sn(α, z, 0) denotes the Stieltjes transform of the symmetrized expected
distribution function of the singular values of the matrix W (0) − zI. We
prove the following lemma.

Lemma 3.2. Under the assumptions of Theorem 1.1, the following holds:
for any δ > 0, ∣∣∣sn (α, z, π

2

)
− sn(α, z, 0)

∣∣∣→ 0 as n→∞

uniformly in α = u+ iv with v ≥ δ.
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Due to Lemma 3.2, we may consider the Gaussian case only. We will
omit the argument ϕ = 0 from the notation of the Stieltjes transform. We
prove the following statement.

Lemma 3.3. Let r.v.s Y (q)
jk , q = 1, . . . ,m, j, k = 1, . . . n be Gaussian r.v.s

satisfying the conditions (C0). Then, the following limit exists

g = g(α, z) = lim
n→∞

sn(α, z) ,

and satisfy the system of equations

1 + wg + (−1)m+1wm−1gm+1 = 0 ,

g(w − α)2 + (w − α)− g|z|2 = 0 , (4)

with a function w = w(α, z) such that Im(w − α) > 0.

4. The minimal singular value of the matrix V (z)

We shall use the following theorem which was proved in [7].

Theorem 4.1. Assume that Xjk, 1 ≤ j, k ≤ n satisfy the conditions (C0)
and (UI). Let X = [Xjk]

n
j,k=1 and Mn denote a non-random matrix with

‖Mn‖ ≤ KnQ =: Kn for some K > 0 and Q ≥ 0. Then, there exist
constants C,A,B > 0 depending on K,Q and ρ such that

P
(
sn (X +Mn) ≤ n−B

)
≤ Cn−A , (5)

where sn(X +Mn) is the smallest singular value of X +Mn.

Lemma 4.2. Under the conditions of Theorem 1.1, there exists a constant C

such that for any k ≤ n(1− C∆
1

m+1
n (z)),

P{sk ≤ ∆n(z)} ≤ C∆
1

m+1
n (z) .

Lemma 4.3. Let n1 := [n − nδn] + 1 and n2 := [n − nγ ] for any sequence
δn → 0, and some 0 < γ < 1. Under the conditions of Theorem 1.1, we have

lim
n→∞

1

n

∑
n1≤j≤n2

ln sj

(
X(q)

)
= 0 , for q = 1, . . . ,m− 1 ,

lim
n→∞

1

n

∑
n1≤j≤n2

ln sj

(
X(m) +Mn

)
= 0 ,

where ||Mn|| ≤ nQ for some Q > 0.
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Lemma 4.4. Assume that the assumptions of Theorem 1.1 hold, then ln(·)
is uniformly integrable in probability with respect to {νn}n≥1.

Proof of Lemma 4.4. It is enough to check that

lim
t→∞

lim
n→∞

P

 ∞∫
0

| lnx|νn(dx) > t

 = 0 . (6)

Let k0 = [n(1− C∆
1

m+1
n (z))]. We introduce the event

Ω0 := Ω0,n :=
{
ω ∈ Ω : sn

(
X(q)

)
≥ n−b, q = 1, . . . ,m− 1,

sn

(
X(m) +Mn

)
≥ n−b, sk0 ≥ ∆n(z)

}
for some b > 0 which will be chosen later and Mn = −z(

∏m−1
i=1 X(q))−1.

Note that the matrices X(m) and Mn are independent and it follows from
Theorem 4.1 that ‖Mn‖2 ≤ nQ for some Q > 0 with probability close to one.
From Theorem 4.1 and Lemma 4.2, we conclude that limn→∞ P(Ωc

0) = 0. It
follows that it is enough to prove that

lim
t→∞

lim
n→∞

P

 ∞∫
0

| lnx|νn(dx) > t,Ω0

 = 0 .

We may split the integral
∫∞
0 | lnx|νn(dx) into three terms

T1 := −
∆n∫
0

lnxνn(dx, z) , T2 :=

∆−1
n∫

∆n

| lnx|νn(dx, z) ,

T3 :=

∞∫
∆−1

n

lnxνn(dx, z) .

We set n′ := k0 + 1 and n′′ := [n − n1−γ ]. Applying Lemma 4.3, we may
show that T1 = o(1). For the term T3, we may write the bound

T3 ≤ ∆n| ln∆n|
∞∫
0

x2νn(dx, z)→ 0 as n→∞ ,



On a Generalization of the Elliptic Law for Random Matrices 1745

where we have used the fact that x−2 lnx is a decreasing function for x ≥
√
e.

It remains to estimate T2. Integrating by parts and applying (2), we write

ET2 ≤ C∆n| ln∆n|+
∆−1

n∫
∆n

| lnx|dG(x, z) <∞ .

These facts and Markov’s inequality finish the proof of lemma. �
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