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In this review, we summarise recent results for the complex eigenvalues
and singular values of finite products of finite size random matrices, their
correlation functions and asymptotic limits. The matrices in the product
are taken from ensembles of independent real, complex, or quaternionic
Ginibre matrices, or truncated unitary matrices. Additional mixing within
one ensemble between matrices and their inverses is also covered. Exact
determinantal and Pfaffian expressions are given in terms of the respective
kernels of orthogonal polynomials or functions. Here, we list all known
cases and some straightforward generalisations. The asymptotic results for
large matrix size include new microscopic universality classes at the origin
and a generalisation of weak non-unitarity close to the unit circle. So far,
in all other parts of the spectrum, the known standard universality classes
have been identified. In the limit of infinite products, the Lyapunov and
stability exponents share the same normal distribution. To leading order,
they both follow a permanental point processes. Our focus is on presenting
recent developments in this rapidly evolving area of research.
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1. Introduction

The study of products of random matrices goes back to the early days
of Random Matrix Theory, when in 1960 Furstenberg and Kesten [1] stud-
ied them in the context of dynamical systems and their Lyapunov expo-
nents. When multiplying matrices generically, the product becomes non-
Hermitian. Hence, it is natural to choose each factor independently to be
non-Hermitian, taken from a Gaussian distribution in the simplest case, the
Ginibre ensembles [2] with real, complex or quaternionic matrix elements.
These are the analogues of the three classical Wigner—Dyson ensembles, la-
belled 5 = 1,2, 4, respectively. When modelling unitary time evolution, the
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choice of matrices to be multiplied is slightly less trivial. Taking factors
from ensembles of Haar distributed orthogonal, unitary or symplectic ma-
trices does not lead out of the one matrix case, due to the invariance of
the Haar measure. For the product to become non-trivial, instead, one may
choose to multiply truncated unitary matrices which are distributed accord-
ing to the Jacobi measure, leading to a sub-unitary evolution. Other choices
are of course possible, e.g. by multiplying unitary matrices that are not Haar
distributed [3-5]| giving a matrix-diffusion on the unitary group. Another
approach to matrix-diffusion was considered in [6] where also a discretisation
resulting in a product of Hermitian matrices was considered.

In any case, one has two choices in studying spectral properties of the
product matrix: either the eigenvalues which are generally complex, or the
singular values which are real positive. The latter were studied first in order
to define and study the Lyapunov exponents. Their application to dynamical
systems has led to the activities summarised in [7]. Examples for more
recent applications include wireless communication [8] and combinatorics [9].
Although, in general, complex eigenvalues and singular values are not related
individually, in the limit of infinite products the radii and singular values
become identical, in other words, the stability and Lyapunov exponents have
the same normal distribution [10, 11|, as first conjectured in [12].

It is quite surprising that the spectral properties of products of random
matrices were first determined in the infinite product case, using mainly
probabilistic tools, and in the limit of infinite matrix dimension (keeping the
number of factors fixed), using planar Feynman diagrams [13] and probabil-
ity theory [8, 14, 15], see [16] for a very recent review on the free probability
approach. The common point to the latter two approaches is that they con-
tain information about global spectral properties. These were found to be
universal when multiplying matrices from various different ensembles [17],
including analytical results for factors from the elliptic ensemble [18].

Apart from special cases for 2 x 2 matrices, see e.g. [19], explicit results
for the product of M matrices of size N x N with M and N finite are very
recent, starting from [20-22] for the complex eigenvalues, and from [23, 24|
for the singular values. They reveal a determinantal and Pfaffian structure
and will be the main topic of this review. Inherited from the fact that the
product of normal or gamma random variables is distributed according to
the Meijer G-function [25], these special functions appear in the weight and
determinantal expressions for the products of random matrices too. Obvi-
ously, the detailed knowledge of all eigenvalue and singular value correlation
functions has opened up the possibility to study local spectral properties,
and we will also review the recent progress on finding known and new uni-
versality classes in the large-N limit.
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In [20], the joint density of complex eigenvalues for products of M ma-
trices of size N x N was derived and the kernel of orthogonal polynomials
(OP) in the complex plane that determines all correlation functions was
given. While in the bulk and edge large-IN scaling limit at fixed M the
respective Ginibre universality classes for a single matrix were recovered, at
the origin a new universality class labelled M with a hypergeometric kernel
appeared [20]. These results were generalised to products of rectangular ma-
trices (these are also called induced Ginibre matrices [26]) for 5 = 4 in [22],
to the rectangular 5 = 2 case 27|, and to the joint density for § =1 in [28].
Here also products of rectangular truncated unitary matrices and products
of mixed type were considered, for which a weak commutation relation was
proved. In all these results, the change of variables from matrices to complex
eigenvalues uses a generalised Schur decomposition.

This decomposition was well-known for M = 2 and § = 1,2, see e.g.
[29], whereas its generalisation to an arbitrary number of matrices M was
given in [27, 30] for f = 2, and was extended to 5 = 4 in [31]. A similar
extension exists for 5 = 1 and was implicitly used in [28, 32]. In [27], also
mixed products of Ginibre and inverse Ginibre matrices, and of truncated
unitary matrices and their inverses were considered, and their joint densities
and corresponding kernels were given. The large-N limit for such products
of unitary matrices truncated form U(N + k) to U(N), also called random
contractions, was studied in [33]. At strong non-unitarity in the bulk and
edge scaling limit, the universal result for a single Ginibre matrix was recov-
ered. In the origin limit, the same new class as for products of M Ginibre
matrices [20] mentioned above was found. Very recently, a more rigorous
derivation of this bulk and edge universality was presented in [34], including
the case of products of rectangular Ginibre matrices when both the inner
and outer edge become soft. At weak non-unitarity, the result for a single
matrix [35] was extended to a new kernel labelled Mk in [33]. A discussion
for M > 1 products of truncated orthogonal (and unitary symplectic) ma-
trices was given in [28], albeit an understanding of the universal kernels is
still lacking — for a single truncated orthogonal matrix see, however, [36].

The distribution of radii of complex eigenvalues of products of Ginibre
matrices is given by permanents [21, 31|, ¢f. [37] for M = 1. The corre-
sponding gap and overcrowding probabilities were derived in [21] for 5 = 2
and in [31] for 8 = 4, including the corresponding asymptotic expansions
for finite and infinite point processes, for fixed M. The limiting distribution
of the largest radius of all eigenvalues was shown to interpolate between the
log-normal and Gumbel distribution (valid for a single Ginibre matrix [38])
in a double scaling limit in [39], where both N and M become infinite.



1750 G. AKEMANN, J.R. IPSEN

Turning to singular values, their joint density and corresponding kernel of
orthogonal functions were derived in [23| for square and [24] for rectangular
matrices with 5 = 2. These enjoy a relation to multiple OP [40] and a
universal correlation kernel labelled M was found in the local origin scaling
limit [41]. For M = 2, it agrees with the limiting kernel in a Cauchy two-
matrix model [42], a correspondence that was extended to the Cauchy multi-
matrix model and general M very recently [43], cf. [44]. This result was
generalised in [45] to a mixed product of Ginibre matrices times a single
truncated unitary matrix, introducing the notion of polynomial ensembles.
There, their relation to a certain type of biorthogonal ensembles previously
studied in [46, 47| was pointed out. Polynomial ensembles enjoy special
invariance properties, related to products of random matrices [48]. The
same limiting kernel as in [41] was also found in [49] for products of Ginibre
and inverse Ginibre matrices, where the average characteristic polynomial
was computed as well. The zeros and asymptotic analysis of the average
characteristic polynomial was performed in [50]. The Fredholm determinant
for the gap probability at the origin was shown to satisfy a system of non-
linear ordinary differential equations [51]. In the bulk and at the soft edge, it
was conjectured in [23] to find the universal sine and Airy kernel respectively,
see [52] for a very recent proof including mixed products of Ginibre matrices
and their inverse. The correlation functions of singular values of truncated
unitary matrices is also currently under way [53]. So far, information on local
properties of the singular values for the 8 = 1, 4 classes has been very difficult
to access, due to the absence of the corresponding Harish—Chandra integral.
Very recent progress has been possible using supersymmetric techniques,
see [54].

The limiting positions for the Lyapunov exponents of products of 5 = 2
[55] and B = 4 [56] Ginibre matrices were derived using probabilistic meth-
ods, including correlated Gaussian distributions for each factor. The detailed
knowledge for the joint densities described above allowed to show [33] for
uncorrelated complex Ginibre matrices that each Lyapunov exponent be-
comes normally distributed, following a permanental point process. The
same leading order behaviour holds taking the same limit of the radii of
complex eigenvalues, called stability exponents. This leads to a one-to-one
correspondence between limiting radii and singular values. The expressions
for the stability exponents were extended to f = 4 and § = 1 most recently
in [11], where the latter case was obtained under the assumption that for
large M, all eigenvalues of the real product matrix become real. Such a
behaviour was previously observed in [57] and proved for general N in [32].
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All aforementioned finite-N and -M results have assumed that each fac-
tor in the product is independent'. To date, only complex eigenvalues of
products of M = 2 matrices that are coupled through an Itzykson—Zuber
term and thus not independent have been studied for finite-N at § = 2 [58],
B =4159], and g =1 [60]. They are given in terms of parameter-dependent
families of Laguerre polynomials in the complex plane, and we refer to the
review |61] where all these results are summarised. Results for singular
values of products of such dependent matrices are currently under way [62].

The remaining content of this paper is organised as follows. In Sec-
tion 2, we will present exact results for finite N and M including the joint
densities, kernels and correlation functions; the section is divided into two
Subsections 2.1 and 2.2 discussing results for complex eigenvalues and sin-
gular values, respectively. In both cases, we consider Ginibre and inverse
Ginibre matrices as well as truncated unitary matrices. We turn to the local
large-N limits at fixed M depending on the location in the spectrum in Sec-
tion 3. Here, we will be very brief and only give more details for the limiting
kernels that were not previously known. Again, we will first discuss complex
eigenvalues in Subsection 3.1 and then discuss singular values in Subsec-
tion 3.2. The following Section 4 is devoted to the opposite infinite product
limit at fixed N. Our discussion of open problems follows in Section 5.

2. Exact results for finite products of finite size matrices

2.1. Complex eigenvalues

2.1.1. Ginibre matrices

We begin with the simplest case: A product of rectangular Ginibre matri-
ces. We emphasise that this special case is very illustrative, since the main
ideas from the treatment of products of Ginibre matrices extend to all the
other examples described in this review.

We are seeking the statistical properties of complex eigenvalues of the
product matrix

Iy =Xy Xy . Xo Xy, (2.1)

where each X is an IN; X N;_1 matrix distributed according to a Gaussian
density

3 BN;N;_1/2 3 ;
P(X;) = (271-) exp [—27 TerXj] , j=1...,M. (2.2)
Here, the matrices X; (j = 1,..., M) are independent and the index § =

1,2, 4 denotes whether real, complex or quaternionic matrices are considered

L Of course, powers of a single matrix form an exception, leading to the same global
density as the product of independent matrices, see e.g. [14].
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(we only multiply matrices with the same ). The parameter
1 f =1,2
- or A=1, (2.3)
2 for =4

is related to the fact that quaternions are given by their 2 x 2 matrix rep-
resentation, which implies that the eigenvalues come in complex conjugate
pairs (see e.g. [63]). If we disregard eigenvalues which are trivially zero, then
we can choose N = Ny < N; < --- < Ny without loss of generality; this is
due to a weak commutation relation [28]. Furthermore, we can parametrise
the matrix product as

XuXy1... XX, =U (XMXM—E' ' 'X2X1> : (2.4)

where U is an Nj; x Njs orthogonal (8 = 1), unitary (8 = 2), or uni-
tary symplectic (8 = 4) matrix and each X; is an N x N matrix. This
parameterisation results in the measure 28]

HdX P(X;) = dp(U H ax; P, (%5) . (2.5)

where dX; and dX ; are the flat measures over all independent matrix ele-
ments, du(U) is the normalised Haar measure, and each X is distributed
according to the induced density

P, (%) et [1,5) e |- L mxix] . 2o
Here, we have introduced the convenient notation v; = N; — N for the dif-
ferences between matrix dimensions. We emphasise that (2.5) enables us to
reduce the problem involving rectangular matrices to the problem involv-
ing square matrices, which is a considerable simplification (we refer to [28]
for a more thorough discussion). It should be noted that this simplifica-
tion is possible for all examples mentioned in this review. Finally, we note
that the induced densities (2.6) are isotropic, i.e. they are invariant under
X; = UX;V, where U and V are orthogonal (8 = 1), unitary (8 = 2),
or unitary symplectic (8 = 4) matrices. This is an extremely important
observation needed for the weak communication relation [28], which states
that any averaged property of such a product matrix (depending only on
the product matrix itself, not on the individual matrices) is independent of
the ordering of the factors. For products of rectangular Ginibre matrices,
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this implies that all averaged properties (e.g. correlations between eigenval-
ues or singular values) are invariant under permutations of the indices vy,
(m = 1,...,M). The reader might note that all products we consider in
this review are independent of the ordering of the factors. This originates
from the fact that all ensembles we consider are isotropic.

We are now ready to state the normalised joint probability density func-
tion (jpdf) of complex eigenvalues for the product matrix ITy;. For f = 2,
the jpdf reads [20, 27, 28]

N

_ 1

=2 —

Pht, (21, 2n) = —i= [Twi2) [ a2 (2.7)
N, n=1 1<j<I<N

Apart from the corresponding weight function given by a Meijer G-function

e =et(s, o [(2) ), 2.3

5 UM

it agrees with the jpdf for a single Ginibre matrix M = 1, where the repulsion
of eigenvalues is given by the squared absolute value of the Vandermonde
determinant. The normalisation constant is given for all three 5 = 1,2,4 by

NIgNB—/y N M

B

ENw = SE BNV HlHlF ( Vy+n)> : (2.9)
n J

The following steps are needed to derive the jpdf in (2.7) for g = 2 for gen-
eral M (and subsequently, for the other fs): (i) a generalised Schur decom-
position [20, 27, 30| of the individual factors distributed according to (2.6),
and (1) the fact that the upper triangular matrices from this decomposition
decouple. The remaining integrals can be performed |20, 27, 28| and lead
to the Meijer G-function as the weight in (2.8). For the most general set of
indices, the Meijer G-function is defined as |64]
2mi J [ TA =05+ ) [, T'(aj — )

Gm’n al,...,ap
X <b1,...,bq &
(2.10)

The integration contour C depends on the poles of the Gamma functions,
cf. |[64]. In the simplest case with p 4+ ¢ < 2(m +n) and z in the upper half
plane, it runs from —ico to +ioco leaving all poles of I'(b; — s) to the right
and of I'(1 — aj + s) to the left. Empty products are defined as unity. For
the special case (2.8), an alternative multiple integral representation of the

>_ 1 dsst] L L'(b; )H] (1 —aj+s)
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Meijer G-function exists [20, 27]

M
IZI2> = qi=M H/d22j|2j|2”j€_'z'7252(2 M- 21)
J=1¢

(2.11)
Note that the right-hand side corresponds to the density of a product of
(unnormalised) scalar-valued random variables. Here, we get the explanation
why the Meijer G-function appears: it was previously known for Gaussian or
gamma random variables that their product is distributed according to the
Meijer G-function [25]. This property is passed on to products of random
matrices as well. It follows immediately from the representation (2.11) that
the (bi-)moments of the weight functions are given by

M —
Goit
) V,y... VUM

M
/d2z wi=2(2) 2F 2t = b H I'vi+k+1). (2.12)
C j=1

Here, the moments are zero for k # ¢ since the weight function (2.8) is

invariant under rotation in the complex plane.
The k-point density correlation functions are defined following [63]

N!
Rf(zh...,zk) = (

N—k)!/dQZ”‘“'1 .d? ZNdef(Zla o 2N) . (2.13)

C

We will consider jpdfs with the following form:

::]z

Z(lznl) I lew -2, (219

n=1 1<t<k<N

P_]pdf (Zl, “ee , ﬁ:
N

where w’=2(|z|) is an arbitrary weight function that only depends on the
modulus. Then, it is well-known that the corresponding OPs are monomials

/dQZ wP=2(|2))2F 2" = Sy oha, - (2.15)

Furthermore, it follows from general considerations that the correlation func-
tions, including the jpdf for k = N, form a determinantal point process 63|

k
CRCRRNES | C I ) P
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where the kernel is given by

*\1

gy (zu*)
Kjﬁvﬁ(z,u) = Z R (2.17)
n=0 n

Here, h, denotes the squared norm determined through the orthogonality
relation (2.15). The normalisation constant in (2.14) is uniquely determined
by these squared norms as well. Explicitly, we have

25 =N ] b (2.18)

For the product of complex (5 = 2) rectangular Ginibre matrices, the jpdf
is given by (2.7) with weight (2.8) and the squared norms are immediately
obtained from (2.12). Thus the kernel for the product of rectangular Ginibre
matrices is given by [20, 27]

N-1
- 1 (zu™)"
K]ﬁ\f_f(zau) = - ) (2.19)
7 WT;OH%ZIF(n-kl—{—Vm)
while the corresponding normalisation constant follows, cf. (2.9)

N-1 M

25, =NV [ [[ T +1+v). (2.20)
n=0 j=1

This determines all k-point correlation functions for f = 2 via (2.16) with
weight (2.8).

The second set of results that follows from Eq. (2.14) for § = 2 is the
joint density of the radii r; of the complex eigenvalues, z; = rjewj. It is
obtained by integrating over all angles 6; leading to a permanent [21]

N 2 N _
— 2 wP=2(r
II [ donrnPigi(a.. . 2n) = ooy 2mw 7)oy [7«21_—11} :
» Z8=2 1<ji<n L7
n=1 N SIS
(2.21)
where we have included the factors r,, from the radial measure dr,r,. The
radii thus become independent random variables, generalising the result
in [65]. Moreover, the hole probability that a disc of radius r centred at
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the origin is empty of eigenvalues becomes

N 27
Prob[Vj :r; > r] = H /drnrn/dG def Zly.ey ZN) (2.22)
N GMILO 1 2
LM+I\Q,n+uvy,...,n+ vy
=11 . (2.23)
i Hj:1 I'(n+v;)

The second line was derived in [31]. Tt agrees with [63] for M = 1 with
v1 = 0. An alternative result for M = 2 was previously obtained in [66].

The quaternionic k-point correlation functions for 8 = 4 are defined
identically to the complex case (2.13). Here, we will consider jpdfs of the
form:

N
— 1 _
Phtr . von) = == 1w Uzallza — 52 T T2e — 2l — 12,
N = 1<k</<N

(2.24)
where the weight function is invariant under rotation in the complex plane.
We restrict ourselves to the upper half plane C, due to complex conjugated
pairing of eigenvalues for 5 = 4. It should be noted that except for the weight
function, the jpdf is identical to that of a single Ginibre matrix M = 1.
Additionally, we define the skew-symmetric product

(f.9)s = /d2z W= (2])(z" = 2) (F(2)9(=") = f(z%)g(2)) - (2.25)
Ct

It follows from general considerations that the corresponding k-point cor-
relation functions including the jpdf form a Pfaffian point process |63, 67|
reading

p=4 .k p=4 * %
N ) B G | s
; 1<i,j<k K’B:4(z~ 2j) —KB:4(;;’F zj) 7
j=1 N 1y %) N RE]

with the kernel given in terms of monic skew-orthogonal polynomials

Kﬁ 4 P2n+1(2)p2n(u) — p2n+1(u)p2n(z). 297
(2,u) z . (2.27)
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Here, the skew-orthogonal polynomials p,(z) are defined such that they sat-
isfy the skew-orthogonality relations |63, 67]

(P2k+1,P20+1) s = (D2k, P20)s =0, (D2k+1,P20) s = IO p - (2.28)

We know that the weight function in the jpdf (2.24) is invariant under
rotation in the complex plane. This implies that

/d2z wP=(|2))2F 2" = sp Ope s (2.29)
Cy

where s are constants depending on the weight. It was pointed out in [22]
that in order to find the skew-orthogonal polynomials, it is sufficient to
calculate the constants, si. Explicitly, we have

n n
pon(2) = Z [ H o2t ] 2% pons1(z) = 22T by, =2 S2p41 .
k=0 Leziiq1 5261
(2.30)
The main idea behind this result is that the odd polynomials are always
monomials, due to the rotational invariance of the weight.

We can now turn to products of rectangular Ginibre matrices with quater-
nionic matriz elements (f = 4), where we refer to [22, 28, 31| for details.
The derivation of the jpdf for the complex eigenvalues is based on the gen-
eralised Schur decomposition for quaternionic matrices, see [31]. With the
notation given above, we have

N

allzan—zlP T la—zllze—2 1
= 1<k<I<N

p=1
Pjpdf,u(zh “ee ,

(2.31)
with the weight and normalisation constant defined in (2.8) and (2.9), re-
spectively. Inserting (2.8) with § = 4 into (2.29) yields

™

Sn = oM (n+1)+1

M
I revm +n+1). (2.32)

m=1

This determines the skew-orthogonal polynomials (2.30) and, therefore, all
correlation functions via (2.26), with weight and kernel given by (2.8) and
(2.27), respectively.
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Turning to the distribution of radii, we obtain up to factors of 2 the same
result as in Eq. (2.21) after integration

N27r

N B=4
_ _drw T _
| | /denrnpjidéy(zb R ZN) = Hn—l /3:141 ( n) per [T?£13:| :
n=17 ZN,:/ 1<5,I<N

(2.33)
This is true despite the initial repulsion of eigenvalues from the real line in
Eq. (2.31). The radii are once again independent random variables, gener-
alising the results of [38|. Likewise, the 8 = 4 hole probability defined as in
Eq. (2.22) was obtained in [31]

M+1,0 1 M2
' N G17M+1<0,2n—|—21/1,...,2n—|—21/M’2 r)
Prob[Vj :r; > r] = H i :
1 [[i= I'(2n+ 2v5)

(2.34)

For M =1, it agrees with [63]; for M = 2, see [66] for a different expression.

Finally, we state the jpdf for products of rectangular real Ginibre matrices

(8 =1). It is well-known that the eigenvalues of a real matrix are either real

or come in complex conjugate pairs. The main difficulty for real matrices is

that a complete triangularisation is possible if and only if all the eigenvalues

are real [29]. Typically, a real Ginibre matrix will have both real and complex

eigenvalues which prevents this. However, it is always possible to make an

incomplete triangularisation involving 2 x 2 matrices. If N is even, then it
is possible to write down the jpdf in terms of 2 X 2 matrices [28§]

N/2

_ 1 _
POt 21, Zypa) = i [Twi="(zy) T ldet [2F @1, — I ® Z]|,
Ny n=1 1<k<e<¥

N4

(2.35)
where each Z,, is a real 2 x 2 matrix, hence its eigenvalues are either real
or a complex conjugate pair. These eigenvalues can be identified with the
eigenvalues of the original N x N matrix ITy;. A similar expression for N
odd was given in [28], but will not be repeated here. The weight function
with a matriz argument is given by

M
wilz) =] /dzj\detzj\”ﬂ‘e5“ZJ'TZJ’52X2(Z—ZM---21% (2.36)
j:1R2><2

which should be compared to expression (2.11). The fact that the jpdf (2.35)
is only known up to 2 x 2 matrix integrals plus the fact that one has to
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distinguish real and complex conjugate eigenvalue pairs has so far prevented
progress in computing density correlation functions or the distribution of
radii. In [28], a general approach was presented using the fact that the
eigenvalues of a 2 x 2 matrix can be linked to its singular values. This
approach led to an M-fold integral representation of the two-point weight,
but the expression was too complicated for any further calculations to be
tractable.

As mentioned above, a complete triangularisation is possible when all
eigenvalues are real, z; = z; € R (j = 1,...,N). In this special case, the
approach used for 8 = 2,4 can be extended in a straightforward manner
leading to a jpdf with all eigem;alues real |32],

Piaty (@1, 2N) = ZBle w) [I lw—al, (237

N,v n=1 1<j<I<N

with the weight and normalisation given in Eqs. (2.8) and (2.9), respectively.
If N is even, then the probability that all eigenvalues are real is given by [32]

H/d:cnppdfy (x1,...,ZN)

n= 1R
3 _ o §_m —/,1
det GM+1,M <2 D) . 7"'7]2/ ‘1>:|
1§k<€§% |: M+1,M+1 0 i1+k’%+k
- . (2.38)

Hn 1HM F(Vm+%)

A similar expression holds for N odd.

2.1.2. Ginibre and inverse Ginibre matrices

Next, we consider the generalised eigenvalue problem given by the char-
acteristic equation

det[Yl...YL)\—XM...Xﬂ:O, (2.39)

where each X is an N; X N;_1 matrix and each Yj is an Npsyj_1 X Npjyj
matrix. If each X; and Yj is distributed independently according to (2.2),
then the generalised eigenvalue problem may formally be thought of finding
the eigenvalues of a mized product of Ginibre and inverse Ginibre matrices

(Y1...Y) ' Xy X (2.40)

This was studied for square matrices in |27]; the jpdf of complex eigenvalues
reads

defvu( Tyee-y 2N —5=5 le,“ Zn) H |zl—zj\2 (2.41)

Ny,u n=1 1<j<ISN
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with weight function

w?

_ ~N—pq,...,—N —
5=2(2) = GM,L< o B

L.M Vi, ..., UM

|z|2> . (2.42)

Here, we use the notation v; = N; —N fori=1,...,M and pu; = Ny ;— N
for j = 1,..., L. Equivalently, the weight function can be written in the
following integral representation

L
wfij?(z) = 7Tl_M_Ll_[/d? uge_|uZ‘2|uZ‘2(N+lM—2)

M
d? —|zml|? 2vm 52 _AM A1 . (2.43

m=1 C

=

It follows that the squared norms defined via (2.15) are given by

M L
Wt =a [] TWm+n+ 1) [ TN + pe—n). (2.44)
m=1 (=1

Thus the normalisation constant directly follows from (2.18), while all
k-point correlation functions are given via (2.16) with weight (2.42) and ker-
nel (2.17). Note that in both (2.18) and (2.17), we have 0 < n < N—1, which
ensures that the gamma functions in (2.44) are well-defined. For L = 0, the
jpdf (2.41) reduces to the previous results (2.7), while for M = L =1, it
reduces to the spherical ensemble introduced and solved in [68].

The joint density of the radii is given by (2.21) and a simple calculation
starting from the definition (2.22) yields the hole probability

GM+LL <nNM1,---,nNHL,1 r2>
L+L,M+1 0,n+uvy,...,n+ vy

Mo T+, + )T, T(N + e —n)
(2.45)
The result for § = 2 can be extended to f = 4 in a simple manner.
The jpdf of complex eigenvalues is of the same form as (2.24) except that
the weight function and the normalisation constant changes. The weight
function for f = 4 can be expressed in terms of (2.42)

Prob[Vj :r; > r] = H

n=1

Wit () = whg, o (20702) (2.46)

It follows from (2.29) that
M
i

L
o = ML)+ +1 Hlp(QVm+"+1)HF(2N+2um—n+1). (2.47)
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This determines the skew-orthogonal polynomials (2.30) and, therefore, all
correlation functions via (2.26) with the kernel given by (2.27). The corre-
sponding spherical ensemble (M = L = 1) for 8 = 4 was studied in [69]. For
B =1, the spherical ensemble was studied in [70] but we will not discuss the
generalisation to arbitrary M and L for 5 = 1 here.

2.1.3. Truncated unitary matrices

Now, we turn to products of truncated unitary matrices. Consider M
independent orthogonal (8 = 1), unitary (8 = 2), or unitary symplectic
(B8 = 4) matrices U; of different sizes K for j =1,..., M. Let the unitary
matrices be uniformly distributed with respect to their corresponding Haar
measure; we seek the truncation of each matrix U; to its upper-left sub-block
X of size Nj x Nj_1. We are interested in the complex eigenvalues of the
following product of M truncated unitary matrices

HMEXM...Xl. (2.48)

For K; — N; — Nj_1 > 0, projection of the Haar measure on the original
group to a measure for the sub-block gives

j|/B(Kj_Nj_Njfl+1_2//8)/(2’Y)

P; (X)) < © [1 = X[ X;] det [1 - X]x, (2.49)

for each X;. Here, © denotes the Heaviside theta function of matrix argu-
ment. In the more general case, see [33] for an integral representation of the
measure.

For B = 2, the jpdf of complex eigenvalues derived in [27, 28, 33] is of
the same form as Eq. (2.7), with the weight function given by

= MO (Kl,-.. ;KM 2
w2 (2) = Ghr'yr <V17 o ’ El > : (2.50)
Here, we have v; = N; — N and k; = K; — N;_1, with the restriction
kj—vj>0forj=1,...,M. The theta function in (2.49) is included in the
Meijer G-function, because the weight function (2.50) is strictly zero outside
the unit disc. For example, we have [64]:

1,0(1 20(1,1
G171<0‘\z\2>:@(1—\z12> and G272<0’0‘\z\2>:—log\z]2@<l—]z]2).

(2.51)
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Again, the weight function can be written via an M-fold integral represen-
tation 27, 28, 33],

M

1 Km —Vm—1
,8 2 _ 1-M 2 2um 2
,M()—7r HM/CZZMZMV <1—|Zm|>
m=1 D
X602 (z —zpr ... 21) (2.52)

where the integration domain, D, is the unit disk. From this representation,
we find the squared norms
M
(v n+1
H Llvm+n+1) (2.53)
ot I'km+n+1)"

The kernel and the normalisation constant are uniquely determined by (2.17)
and (2.18), respectively.

In complete analogy to the Ginibre case, we may go to the generalised
eigenvalue problem (2.39) and consider a mized product of truncated and
1nverse truncated matrices. We introduce L additional independent unitary
matrices V; of different sizes T} for j = 1,...,L, which are distributed
uniformly with respect to Haar measure. Truncating each matrix V; to
its upper-left sub-block Y; of size Nys4j—1 X Naryj, the general eigenvalue
problem gives rise to a jpdf with exactly the same structure as (2.7), except
that the weight function (2.50) is replaced by [27]

).

(2.54)
Here, p1j = Naryj—N and 7; = Tj— Ny j—1 satisfy the restriction 7;—pu; > 0
for j = 1,...,L. Note that if M = 0, then the weight function (2.54) is
strictly zero inside the unit disc.

The result for = 2 can be extended to 8 = 4 in a simple manner.
The jpdf of complex eigenvalues is of the same form as (2.31) except that
the weight function and the normalisation constant changes, see [28]. The
weight function for the product of truncated unitary symplectic matrices
can be expressed in terms of (2.50) as

Wizt (2) = Wiy 1 (2) - (2.55)

It follows from (2.29) that

=2 (Z) GML _N_Mla"')_N_HL7H17"
MALM+LN i .. vp, —N — 1, . .., —N—TL

M
:WH F(21/m+n+1).

2.56
I'(2ky, +n) (2.56)

m=1
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This determines the skew-orthogonal polynomials (2.30) and, therefore, all
correlation functions via (2.26), with the kernel given by (2.27).

2.1.4. Mixed products

Finally, we mention that no new techniques are required in order to
study more complicated products constructed from different combinations
of Ginibre, inverse Ginibre, truncated unitary as well as inverse truncated
unitary matrices. Such products will have a jpdf with a structure similar
to the examples above and the weight function can again be expressed as
a Meijer G-function, albeit with more indices. In fact, products of Gini-
bre and truncated unitary matrices have previously been studied in [28] for
all 8, although the most general results are restricted to 8 = 2,4 due to
the incompleteness of a generalised real Schur decomposition as discussed
in Section 2.1.1. We stress again that all matrix ensembles described in
this section are isotropic, which implies that the ordering of the matrices is
irrelevant for all statistical properties of the eigenvalues, see [28].

2.2. Singular values

In this section, we seek the statistical properties of the singular values
rather than of the complex eigenvalues for some random product matrix.
Explicitly, we consider products of Ginibre, inverse Ginibre, and truncated
unitary matrices. It turns out that all these ensembles are polynomial en-
sembles |45, 48] which are special types of biorthogonal ensembles [46, 47].
For this reason, we first recall a few general properties of polynomial ensem-
bles. Let x, (n =1,...,N) be a set of positive variables. We are interested
in a generic jpdf of the following form

—2 1 =2
Phat(@1,... oy) = 252 IT (z—=) et [wf_l(xg)] , (2.57)
N  1<i<j<N -

where {w£:2(x)} is a collection of weight functions on the positive half-line.
The k-point correlation functions are defined by [63]

noX T
m H /d.’l}n Pjpdf(‘rb B -I:N) . (258)
n=k+17

Rf(azl, PN ,$k)

It follows from the biorthogonal structure of the jpdf (2.57) that the k-point
correlation functions including the jpdf form a determinantal point process
reads

R, o) = det KR (@) (2.59)
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with kernel v
-1
K2y = 3 3 pn(e)n(y) (2.60)

n=0 "

The functions p,(x) and ¥, (x) must satisfy the biorthogonality relation
/dxpk($)¢e($) = hpOpe - (2.61)
0

Due to the structure of the jpdf (2.57), each p,(z) is a monic polynomial. For
the orthogonal functions 1, (x), we require that their linear span given by
span{to(x),...,¥n_1(x)} agrees with that of the weight functions wh=? (x),
span{wy =2(z),... ,w]‘i,:fl (x)}. The biorthogonal functions as well as the
squared norms h,, are uniquely defined. Finally, the normalisation constant
in the jpdf (2.57) can be written as a product following [63]

Z =N e (2.62)

Hence, the normalisation is completely determined by the squared norms.

2.2.1. Ginibre matrices

Now, we are ready to discuss products of rectangular Ginibre matrices.
We keep the notation from Section 2.1.1 and consider a product matrix I1s
given by (2.1), where each X is an (N +v;) x (N +v;_1) matrix distributed
according to (2.2). A derivation of the jpdf for the singular values of the
product matrix in the 8 = 2 case was presented in [23, 24| and explicitly
uses the Itzykson-Zuber integration formula [71]. The absence of similar
integration formulae for § = 1 and 8 = 4 have, so far, restricted explicit
calculations to 8 = 2. For some asymptotic quantities, this difficulty can be
circumvented using supersymmetric techniques [54].

Let z; (j =1,...,N) denote the squared singular values of the product
matrix Il,s, then the jpdf for the singular values of the product of complex
Ginibre matrices is given by (2.57) with weight functions |23, 24|

B=2, \ _ ~MJO -
Wy () = Go js (1/1, ce UM-1,VM + kK ' x) ’ (263)

The biorthogonal functions corresponding to these weights were first ob-
tained in [23, 24]. It was shown that the biorthogonal functions and the
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squared norms are given by

n M
(—1)"+kn! IFm+n+1)| 4
(@) = S \Im TR L)k 2.64
Pa() kZ::O(n—kz)!k! A T+ kD) | " (264)
= (D)™l D (v + o+ 1)
Yn(z) = kzo (n— k) K T(vpg + &+ 1)
M,0 —
XG07M<I/1,...,VM_l,VM—l-k’x) : (2.65)
M
ho = n! [ Tvm+n+1). (2.66)
m=1

It is immediately seen from this representation that the biorthogonal func-
tions are monic, but for further calculation it is often useful to rewrite them
in terms of special functions. The polynomial p,(x) can be written either
as a hypergeometric function or as a Meijer G-function, while 1, (x) can be
written as a single Meijer G-function. Explicitly, we have [23, 24]

n h” -n
pn(z) = (-1) MlFM<V1+1,---,VM+1'x>

0,1 n+1
= —hy Gl,M-i-1 <—I/1, e, =, 0 x) ’ (267)
M+1,0 -n
Yn(®) = Gy <0, Viyeo oy UM ‘ m) ' (2.68)

This determines the normalisation via (2.62) and all correlations via (2.59)
with kernel (2.60). Furthermore, the explicit formulation of the biorthogonal
functions (2.67) and (2.68) allows a double contour (and a real) integral
representation of the kernel [41],

KMV(

y U M u—N+1)T ﬁ (u+ vy + 1)
u—v I'lv=N+1)T I'v+uvm+1)

_ 0,1 N
- /dUGl,MH (—ul,...,—yM,O uy),
0
1

(2.69)
where C is a straight line from —35 — ico to —% + 200, while X encloses
1,..., N in the positive direction without any intersection with C. This is

du dv

m:l

M+1,0 —-N
ur |Gy iy
) 0,v1,...,VM
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seen by writing the biorthogonal functions (2.67) and (2.68) as their integral
representations, see (2.10), and inserting them into the expression for ker-
nel (2.60); the sum can be performed and the first line of (2.69) is obtained.
In the second line, we have displayed a second real integral representation
from [41]. Tt is already very reminiscent of the large-N asymptotic result as
we will see in Section 3.2.1, see Eq. (3.17).

It was pointed out in [41] that the polynomials (2.64) satisfy a stricter
condition than biorthogonality; they are multiple orthogonal polynomials of
type II with respect to the weights wﬁ 2(:U), e ,wf;‘j_l(:n) (see [72, 73| for
a discussion of multiple orthogonal polynomials). This means that

/ dz apa(@)ul T2 () = 0, (2.70)
0
fork=0,.... M—1and ¢ =0,..., ["W_k] — 1, where [z] denote the ceiling

function. This multiple orthogonality may be used to establish M + 2 term
recurrence relations for the biorthogonal functions:

00
T/J
l'pn( ) pn+1 Zamnpn m ) /dﬂfﬂﬁpn o m( ),
hn—m
0

x h hnll +men hJ;er ) bm,n:/d$xpn+m($) B :

(2.71)

0

These recurrence coefficients satisfy @y, = by n—m and were explicitly cal-
culated in [41] but will not be repeated here.

2.2.2. Ginibre and inverse Ginibre matrices

Like for the complex eigenvalues, we will also consider a mized product
of Ginibre and inverse Ginibre matrices; here we follow [19]. We seek the
jpdf for the squared singular values of the matrix

Vol Xy X (2.72)

where X; and Y; are distributed according to the induced density (2.6) with
indices v; and pj, respectively. Recall that any rectangular structure of the
product matrix can be incorporated by choosing v; (i = 1,..., M) and p;
(j =1,...,L) to be positive integers. The jpdf for the mized product of Gini-
bre and inverse Ginibre matrices is given by (2.57) with weight function [49]
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9= i (<N s =N
wu,#;k(x) _GL’M( Viyeoos VM-1,VM + K

x) . (2.73)

This choice of weight functions requires that M > 1 but allows L = 0.
However, there exists an alternative choice which requires that L > 1 and
allows M = 0, leading to the same correlation functions.

Similar to the pure Ginibre case, the biorthogonal functions may be
expressed neatly in terms of special functions [419]

h —n,1—N—py,...,1 =N —
_(_1\n_'n ’ 1 ) KL |/ 4\L
pn(m)—( 1) nlhg L+1FM( vi+1,...,vp+1 ( 1) :L')
0,1 n+1,N+pu,....,N+pug
:_hnGL+1,M+1< v =0 T, (2.74)
M+1,L —N—Ml,...,—N—ML,—n
Un(2) :GL+1,M+1< 0,v1,...,vm $> (2.75)
M L
hp=n!l [[ T(n+vm+ ) [[ TN+ pe —n). (2.76)
m=1 (=1

If L = 0, then the biorthogonal functions reduce to the Ginibre case and
they satisfy the M + 2 term recurrence relations (2.71). However, if L > 1,
then the multiple orthogonality relations (2.70) are no longer valid and no
recurrence relations are known to date.

As in the Ginibre case, the normalisation constant and the k-point cor-
relations are determined by the biorthogonal functions (2.74) and (2.75)
together with the squared norms (2.76) via (2.62) and (2.59), respectively.
Also a double contour integral representation is possible

—Ltico
2
1 2y L D(u—N+1)I(u+1)
KM7L7VHU‘ —
N Y) = e / d“%d” wu—v T(w—N+1)T(v+1)
1l i X
2
M L
r 'm + 1 I'(N m—
XH (u+vm + )H (N +p u) (2.77)
mzlf’(v—}—um—l—l)E:lF(N—i—,um—v)

The contour X' is defined as for products of Ginibre matrices and a similar
single real integral representation as in (2.69) exists.

2.2.3. Truncated unitary matrices

We now turn to products of truncated unitary matrices. The derivation
of the jpdf for such products requires an extension of the Itzykson—Zuber
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integral which was very recently proved in [53]. Moreover, the authors of [53]
showed that the jpdf for the product of M truncated unitary matrices was
given by (2.57) with weight function

B=2 Mo (Kl KM—1, kM — N+ k41
wy,x;k(ﬂf) = GM,M< Y1y UMt UM+ K T|. (2.78)

Here, we use the same notation as in Section 2.1.3. The biorthogonal func-
tions are given by

hy -n,k1+1,...,5p+1
— (_1\n ) 9 9
pala) = (1) sy (T
B 0,M+1 —Klye..,—Kp,n+1
_hnGMH’MH( o ‘x) (2.79)
M+1,0 —N K1, KM
Un(z) :GM+1,M+1< Vi,..., Va0 x), (2.80)
nme Lvm+n+1) (2.81)
T(km +n+1)°

which determines the normalisation (2.62) and the correlations (2.59). Sim-
ilar to the two previous examples, the kernel can be written as a double
contour integral,

1 2y M(u—N+1)(u+1)
Ky" = —— [dugd
N @) (2m)2/ “7{ o—u Tw-N+1)T(v+1)

C b))
Fv—i—um—i—l)F(u—l—nm—l—l)’ ’
where the contour Y is chosen such that it encloses 1,..., N without in-

tersecting the other contour C encircling the negative real axis in positive
sense. For the real integral representation corresponding to (2.69), we refer
to [53].

2.2.4. Mixed products

As a final remark, we mention that more complicated products con-
structed from Ginibre, inverse Ginibre, truncated unitary and inverse trun-
cated unitary matrices can be studied without introducing new techniques.
Such a product of Ginibre matrices times a single truncated unitary matrix
has previously been studied in [45]. When mixed products are considered,
it is important to note that all matrix ensembles described in this section
are isotropic, which implies that the ordering of the matrices is irrelevant
for the statistical properties of the singular values, see |28].
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3. Local universality for large matrix dimensions

In this section, we will discuss the universal limits for products of a finite
number M of matrices as the matrix dimension N tends to infinity. Global
spectra for both the complex eigenvalues and the singular values of product
matrices have been studied intensively in the literature; in particular, using
techniques from free probability, see [9, 13-15, 17, 18, 74-77]. Many of these
results predate the exactly solvable cases described in Section 2. However,
almost nothing was known about the local universality for products of ran-
dom matrices until recently. One of the main benefits of the matrix products
described in Section 2 is that their exact solvability allows a direct study
of both global and local universality. Here, we will restrict our attention
to results about local universality. In the known cases, it turns out that
local correlations in the bulk and at the soft edges correspond to classical
universality results from Random Matrix Theory; that is Ginibre-type cor-
relations for the complex eigenvalues and correlations given in terms of the
sine and Airy kernel for the singular values. At the origin and at the hard
edge, new universality classes arise. In order to make this review both short
and concise, our main focus will be on these new universality classes. We
stress that this choice does not mean that the results for the bulk and the
soft edges are less interesting, neither that these results are easily obtained.

3.1. Complez eigenvalues
3.1.1. Origin

We consider the local correlations at the origin for a product of complex
(8 = 2) Ginibre matrices first obtained for square matrices in [20]. The
correlations are given by (2.16) with weight (2.8) and kernel (2.19). The
local scale at the origin is obtained by keeping the number of matrices M
as well as the parameters v,, > —1 (m = 1,..., M) fixed, while taking
the matrix dimension N to infinity without further rescaling. This is a
trivial task since the weight function (2.8) is independent of N, while the
kernel (2.19) simply becomes an infinite sum which can be written either as
a hypergeometric function or a Meijer G-function [20]

S *\1
KM’”uvzli]r11[('822u11:l (wv”)

() Ny (t:0) ZH%ZIF(Vm-i-n—i-l)

origin N—oo T

n=0
F 1 uv*
_11M vi+1,...,vp+1
& Hi\n/lzlp(’/m“‘l)
I 1 0
:WGLMH(O,—W,...,—VM’ —uv*). (3.1)



1770 G. AKEMANN, J.R. IPSEN

The universal k-point correlation functions at the origin, therefore, read

k

M,v M,v
porigin;k(zh R Zk) = H wl],\/[(Zg) 1<(%ejt<k [Korigin(zi7 ZJ)} ’ (32)
(=1 -
with kernel (3.1) and weight
M,0 — 2
) =G5 (|- (33)

For M =1 and v = 0, the product ensemble reduces to the classical Ginibre
ensemble. Evaluating the special functions (3.1) and (3.3) for M = 1 and
inserting this into (3.2), we explicitly see that

=Lv= 1
M=1,v=0 N 1 9 N )
Poriginik (21,0 20) = 1§Czl'3tgk LT exp (_§|Zi’ - §|Zj| + ziz;)]
=2
:pgulk;k(zlv-'wzk)- (34)

These are the known correlation functions for a single complex Ginibre ma-
trix at the origin. Because in the Ginibre ensemble the density is flat, the
origin is not special and Eq. (3.4) agrees with the bulk scaling limit, see the
next subsection.

For M > 2, the correlations (3.2) satisfy a reduction relation

. k M, M717
lim (var) pori;n;k (VVmZz1, -« s\ VMZE) = porigin;l;c(zl’ zk) . (3.5)

VU —00

We recall that the parameters v, (m = 1,..., M) incorporate the rectan-
gular structure of the matrices.

Let us now turn to a mixed product of Ginibre and inverse Ginibre
matrices as discussed in Section 2.1.2. Here, the k-point correlation functions
are given by (2.16) with weight (2.42) and kernel (2.17), where the squared
norms are given by (2.44). It can be seen that with v, and pu,, fixed for
m =1,..., M, we have the following scaling limit for the k-point correlation
function

: 1 z z
A}gnoo WRﬁngylf <NL1/2’ e NLk/2> = p(])\f{;mk(zl, cey 2E) - (3.6)
Here, the right-hand side is given by (3.2), i.e. it is the same as for the
product without any inverse matrices L = 0.



Recent Exact and Asymptotic Results for Products of Independent . . . 1771

Finally, we will look at products of truncated unitary matrices. We
consider the weight function (2.50) and the kernel (2.17) with the squared
norms given by (2.53). Let J and L be integers such that J + L = M. We
take M and J as well as v, (m =1,...,M) and k; (j = 1,...,J) to be
fixed, while Ky = N 4+ O(1) as N tends to infinity for £ = 1,..., L. The
k-point correlation functions (2.16) have a hard edge scaling limit given by

M,J,u,n(z 5 ) = lim M,J v,k 21 2k
porigin;k 1y--e5 %k T Nooo NkL origin;k NL/Q""’NL/Q
k
_ M,J M, Jvk/, .
= [T wi%/ (ze) det [Korigm (zz,zj)} . (37
e 1<i <k

where the weight and kernel are given by

wM’J(z) . GM,O </€1, ook

2

v,k T TIM\ v ‘Z‘ >7 (38)
].,K/l—’_].,K/J—'_l *

1 J+1FM<I/1+1,...,VM+1 ”“)

— TTM J

T [ Lnet I'(vm + 1)/Hj:1 I(k;+1)

1 1741 0, —rK1 —KJ
Lo+ » L —wt ). 3.9
T J+1,M+1 07_V1)"'5_VM ( )

KM’J’V’K(U, 1)) _

origin

This was first shown in [33] for a product with J = 0; in this case, the
correlation functions (3.7) reduce to the case with M Ginibre matrices (3.2).
It remains to find the local correlations for more general products. It would
be natural to look at mixed products constructed from both Ginibre and
truncated unitary matrices as well as their inverses.

A more challenging task is to find the local correlations at the origin for
products of real (8 = 1) and quaternionic (8 = 4) matrices. For § = 4, the
correlations at the origin were obtained for a single matrix as well as a prod-
uct of two matrices in [67] and [59], respectively. The main idea presented
in [67] and reused in [59] was to write down a set of coupled differential equa-
tions for the kernel at the origin. This technique can be extended to products
of an arbitrary number of matrices. However, the complicated structure of
the differential equations for arbitrary M has prevented an explicit evalua-
tion for M > 3, so far. The calculations simplify considerably if we integrate
out the angular dependence of the eigenvalues; this idea was explicitly used
in [22, 28, 31]. The local radial density at the origin for products of Ginibre
matrices was explicitly calculated in [22] and a structure closely related to
that of complex matrices was found. For 8 = 1, the correlations for M = 2
were found in [60], but almost nothing is known for M > 3.
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3.1.2. Bulk and soft edge

It was shown in [20, 33, 34] that, under proper rescaling, the local k-point
correlation functions of the eigenvalues in the bulk for a product of complex
Ginibre or truncated unitary matrices are given by

B=2 _ 1 11,12 11,2
pbulk;k(zh cey2E) = 13(}3’1:31@ [W exp (f§|zi| - §|zj| + ziz;>] . (3.10)
which is the same as for the standard complex Ginibre ensemble, see e.g.
[63, 78]. In order to study the local correlations in the vicinity of a (soft)
edge, we need to choose a point located on the edge. Given such a point,
20, it was shown [20, 33, 34| that proper rescaling leads to

=2
psﬁoft;k(zh PN ,Zk)
1 1,02 1y, 2 " 20%i + 25 %0
:1§(},ejt§k %exp(—§|zi| — 5l2|° + 22} erfe —5 )| (3.11)

where erfc(z) is the complementary error function. Note that this sup-
plements the universality results at strong non-Hermiticity known for the
complex eigenvalues of non-Hermitian matrices [79-81], see also [82] for a
recent heuristic approach.

3.1.3. Weak non-unitarity limit

In the case of truncated unitary (or orthogonal) matrices, one may con-
sider the particular limit, in which the number of truncations remains finite,
while the matrix size(s) go to infinity. Consequently, the resulting truncated
matrices become almost unitary, with the macroscopic density of complex
eigenvalues condensing on the unit circle. However, locally, the complex
eigenvalues may still extend inside the unit disc. For M = 1, this limit
was studied first in [35] and named weakly non-unitary. For M > 1 and a
particular choice of parameters, this has been generalised in [33]. Namely,
if in Subsection 2.1.3, we truncate all matrices in the product starting from
the same size, K; = K, down to square matrices of size N; = N (v; = 0)
for all j, we can take the following large-N limit with K — N = k fixed. In
order to obtain non-trivial local correlations inside the unit disc, we take k
points z; in the vicinity of a fixed point zg on the unit circle:

1
zjzl—ﬁ(mj—l—iyj), xj >0 for j=1,2,...,k. (3.12)

Here, we have chosen zy = 1 without loss of generality, due to the rotation
invariance. In contrast to the previous sections, here the weight (2.50) and
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the kernel (2.17) with norms (2.53) do not converge to a limit individually.
Ouly their combination as it appears in the correlation functions (2.16) has
a limit which we give here straight away

1 - 1 1
lim —R£_2 (1 — —(z1+y1),..., 1 — —(zx + zyk)>

N—oo N2k N N
M ) )
— 1<dﬁt<k [Kwe’zﬁ{(xj + 1yj, z; + zyl)] ) (3.13)

where the weak kernel is given by [33]

O (x;)O () (darjay) M=)/

MzK/ . Soy . Y J—
K oo (x4 iy, x +iy) = (M —1),

weak

ONMF (11—t
X PR —
< 6t> ( t >
This expression generalises the kernel at weak non-unitarity given in [35] for
M = 1. In order to extend this result to a more general parameter setting

with the x; being different, the difficulty is to obtain the limiting kernel (and
not the weight).

(3.14)

b= (g b iy ) /M

3.1.4. Further limits

In addition to the various limits in different parts of the spectrum we
discussed so far, further asymptotic limits can be considered. For example,
the large radius limit » — oo of the hole probabilities Eqgs. (2.23) and (2.34)
at finite and infinite N have been derived in [21] and [31] for § = 2 and 4,
respectively. Furthermore, the infinite-/N process can be considered directly
and, for example, overcrowding estimates can be made |21, 31]. Similar
questions arise in the analysis of zeros of Gaussian analytic functions, cf. [37].

A related question was considered in [39], where the distribution of the
largest radius was studied in a double scaling limit with both N and M
going to infinity. In the case of products of square Ginibre matrices with
B = 2, a transition between the known Gumbel distribution for M =1 [83]
and a lognormal distribution was found. The latter relates to the study of
the largest stability exponent which will be introduced in Section 4.

3.2. Singular values
3.2.1. Hard edge
In this section, we return to statistical properties of the squared singular

values for products of random matrices. The products described in Sec-
tion 2.2 were all determinantal point processes (2.59) with a kernel (2.60)
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constructed from a set of biorthognal functions. A study of the local correla-
tions for such products at the hard edge for large matrix dimensions was first
undertaken in [41], where it was found that a new family of universal corre-
lation kernels arises. We saw in Section 2.2.1 that the kernel for the product
of Ginibre matrices can be written as a double contour integral (2.69). Using
that

I'u—N+1) sinnu

I'(v—N+1) sinmv

we find the hard edge limit

N“"(1+0(N7Y), (3.15)

M,v . . 1 M, r vy
KMelJer(x y) = lim —KN v (N’N)

1 U,,—v—1 o3 I 1
_ | / du%dvx y sinu I'(u + 1)
b

u—v sinmo I'(v+1)

X
=

~|3

N

+

5
_I._
=

(3.16)

Evaluating the integrals allows a representation in terms of special functions

Kieijer (@)
jdsOFM<"1+l ”M+1S$>G%31( ) Sy)
) [, (v + 1) A0
1
/dsGé:?W_H <07_V1’._”’_VM 5$>Gé\/[]’\9[+1 <,/1 _VM,O‘ y)
(3.17)

We will refer to (3.17) as the Meijer G-kernel [53]. The Hamilton equations
for the gab probability in this limit were studied in [51].

For M = 1, the product consists of a single matrix, hence it reduces to the
Wishart-Laguerre ensemble. It is well-known that the hard edge behaviour
for the Wishart—Laguerre ensemble is described by the Bessel kernel, see e.g.
[78]. This is explicitly incorporated in the Meijer G-kernel (3.17) by

1

Klj\\/[/[ei:jl;y(x’ 2/ds ‘]V 2@) (2\/>) ( ) KBessel(4x 4y)
0

(3.18)
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where the Bessel kernel is defined as

Ko,y = YL V) ot ngx__ij_l W) R V) 5.9

Note that the z- and y-dependent prefactor to the Bessel kernel in (3.18)
cancels out when calculating the correlation functions due to the determi-
nantal structure. For M > 2, the Meijer G-kernel (3.17) satisfies a reduction
relation,

lim VMK%’V(VMQ:, vmy) = Kl\]\/ﬁ;;”(x, v), (3.20)
Vpr—00

where the kernel on the right-hand side depends on the remaining parameters
Um (m=1,...,M —1). Recall that for the product of rectangular Ginibre
matrices, the parameters v, incorporate the rectangular structure.

Similar results were obtained for mixed products of Ginibre and inverse
Ginibre matrices in [49] and for products of truncated unitary matrices
in [53]; the product of Ginibre matrices together with a single truncated
unitary matrix was studied in [45]. The biorthognal functions for mixed
products of Ginibre and inverse Ginibre matrices are given in Section 2.2.1.
For M and L as well as v, (m=1,..., M) and p,,, (¢{ = 1,..., L) fixed, we
have [49]

lim ——
N—o0 NLJrl

M7L7 ) x y o J\47
feyrt (NLH’W) = Kyidijer (2, 9) 5 (3.21)

where the kernel on the left-hand side is given by (2.60).

For products of truncated unitary matrices, the biorthogonal functions
as well as a double contour integral representation of the kernel can be found
in Section 2.2.3. Let J and L be integers such that J + L = M. We take M
and J as well as vy, (m=1,..., M) and s; (j =1,...,J) to be fixed, while
ke =N+ O(1) as N tends to infinity for £ =1,..., L. In this case, we find

lim

M, Jv, z Yy _\ o gMJv,
dim e AP ) = K@), (3.22)

NL+1’ NL+1 Meijer

where the kernel on the right-hand side is a generalised version of the ker-
nel (3.17) given by [53|
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M7J7 7
KMeijelllr " (x’ y)

>

(3.23)

ki+1,...,65+1
! F Y — sz
:/ds J M<1/1+1,...,1/M+1 M0 (,ﬂ,.”’/{u
S Moy Do+ 0/ Ty D+ 1) e var 0
1

1 —Kly...,—K Kly..., KR
— dSGJ,«J]M . 1, ) J ST Gﬁ/lj\g . 1, s v
MAINQ, —v, . =y MAI\pr, oo v, 0
0

Note that this Meijer G-kernel reduces to (3.17) for J = 0, exactly like the
k-point correlation functions (3.7) reduce to (3.2) for J = 0.

In addition to the product ensembles described above, the Meijer G-kernel
(3.17) has appeared in the context of Cauchy multi-matrix models [42-44, 84|
and Muttalib-Borodin ensembles [46, 47|. The reappearance of the Meijer
G-kernel (3.17) in all these models suggests a much stronger underlying
universality principle similar to known results for the Bessel kernel [85-89].
In the global regime, such a link is provided by the equilibrium measure [90].

3.2.2. Bulk and soft edge

The evaluation of the local statistics in the bulk and at the soft edge
turns out to be much more technically demanding than the evaluation at
the hard edge, and has only very recently been obtained for the product of
rectangular Ginibre matrices [52]. There, it was shown that classical random
statistics is obtained under proper rescaling, i.e. the sine kernel in the bulk
and the Airy kernel at the soft edge. Recall that the sine and Airy kernel
are defined by (see e.g. [63])

Ai(x) Ai'(y) — Ai'(z) Ai(y)

(3.24)
respectively. We emphasise that the derivation of the sine and Airy kernel
presented in [52]| crucially depends on known results for the global density
of the squared singular values [9, 76, 91|, and, in particular, an asymp-
totic expression in terms of elementary functions obtained in [92-94]. How-
ever, the strategy for obtaining the local statistics presented in [52] is by
no means restricted to the Ginibre case; in fact, Ref. [52] provides similar
results for mixed products of Ginibre and inverse Ginibre matrices (see Sec-
tion 2.2.2) and for Ginibre matrices mixed with a single truncated unitary
matrix (see [45]) although the proofs are only sketched.

sinw(x —
Ksine(xvy) M

pr—" and  Kairy(2,y) pra—y
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4. Lyapunov and stability exponents for large products

Until now, we have considered the asymptotic behaviour of matrix prod-
ucts with a finite number of factors M as the matrix dimensions tend to
infinity. In this section, we will consider the opposite situation, where the
matrix dimensions are kept fixed as the number of factors M tends to in-
finity. In general, we are interested in the spectral properties of a product
matrix

HMEXM...Xl, (41)

where each X,,, (m = 1,...,M) is an N x N random matrix, indepen-
dently chosen from some ensemble. The multiplicative ergodic theorem of
Oseledec [95, 96] states that if the second moments of the diagonal entries

of X%L@Xm are finite, then there is a well-defined limiting matrix

V= tim (mlm) 4.2
with real eigenvalues e’ (n = 1,...,N). Here, the ), are known as Lya-
punov exponents. Let z, (n =1,..., N) denote the squared singular values

of the product matrix (4.1); Oseledec’s theorem tells us that z,, ~ e2MAn

for large M, hence negative (positive) Lyapunov exponents represent expo-
nential decay (growth) and therefore stability (instability). Moreover, we
see that all squared singular values diverge exponentially whenever the Lya-
punov spectrum is non-degenerate. In such cases, it is expected that the
Lyapunov exponents become independent Gaussian random variables with
fluctuations of the order of M~1/2 for sufficiently large M, see [7, 97, 98].
Together with the symmetry of the Lyapunov exponents under permuta-
tions, this statement is equivalent to saying that the jpdf for the squared
singular values is given by a permanental point process,

N
H oM e2Mén Pipar (eQM'El, cey 62M§N>

n=1

M M(& — \i)?
~ 1/N! _ T T 4.3
/ 1Sog<N [\/ 2m0? ( 207 ’ 4

with means \; and variances o; to be determined. The Gaussian approxima-
tion is expected to be valid when the distance between Lyapunov exponents
is large compared to the size of their fluctuations, i.e. |X\; — ;| > M~Y2 for

all ¢ # 7.
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How much of this expectation has been realised? In [99], the mean and
variance of the largest Lyapunov exponent has been computed for products
of real Ginibre matrices, see (4.4) below. The same ideas were used to
calculate all the Lyapunov exponents in [100]. In these papers, probabilistic
methods were applied, which we will briefly recall below. Further explicit
results for the Lyapunov exponents (again, based on probability theory) were
derived much later for factors from correlated Gaussian ensembles in [55] for
B =2 and [56] for § = 1,4, see \; in (4.4) for the uncorrelated case.

It is clear from the discussion in Section 2.2 that the explicit results for
finite-V and -M should give access to the permanental structure. Indeed,
in [10] such a derivation was recently performed for the product of Ginibre
matrices with 5 = 2. There, the permanental point process (4.3) was derived
starting from (2.57), defining z; = €% and taking M to be large. The
following values for the variances (and means) were obtained for 5 = 2:

M= ; &3 + w (Bn) and (05)2 = %w’ (?) : (4.4)

where 9 (z) denotes the digamma function. For further details including the
subleading higher order cumulants for 8 = 2, we refer to [10].

Previously, a direct access to the jpdf at finite M and N was unknown,
and alternative methods for the evaluation of the Lyapunov exponents were
developed much earlier [99]. These are valid for the more general class of
isotropic matrices (including the Ginibre case) which is why we recall them
here. The partial sum of Lyapunov exponents can be written as

< 1 U det AT X}, X, A
= Z N—n+1 = T ot ATA

(4.5)

sup log ,
M =1 ACFN xk det ATA

where )\]ﬁv_n 41 denotes the n'™® largest Lyapunov exponent and the supre-
mum is over all N x k matrices with entries in F = R, C,H for g = 1,2,4.
For large M, the right-hand side of (4.5) can be evaluated using the law of
large numbers. Recently, it was pointed out in [101] that the method of [99]
can be also used to extract the variances of the Lyapunov exponents. In this
case, formula (4.5) is used to evaluate the average ( ) with respect to the X;

()Y = 3o (M) 12 5 Cov (W M) -

n=1 1<i<j<k
(4.6)

If the Lyapunov spectrum is non-degenerate, then the covariances are ex-
pected to decay exponentially at large M, hence they may be neglected at
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leading order in M, see [101]. Note that if we are only interested in the
largest Lyapunov exponent, i.e. kK = 1, then the second sum on the right-
hand side of (4.6) disappears which was used much earlier in [99] to find the
variance of the largest Lyapunov exponent.

Mixed products of Ginibre and inverse Ginibre matrices as well as prod-
ucts of truncated unitary matrices can also be evaluated using either the
probabilistic methods from [99] or the exactly solvable models from Sec-
tion 2 as in [10, 11]. The mixed product case can be constructed from (4.4)
and will not be repeated here, see [101]. We can consider unitary matrices
truncated from (N + k) x (N + k) Haar distributed matrices to N x N
sub-blocks (see the discussion in Section 2.1.3) leading to [101]

e (2) (). e

(- to(E) )

These quantities can also be found by direct evaluation of the jpdf from
Sections 2.2.3 and 2.1.3. While the discussion given above involves solely
square matrices, it is a straightforward task to include the parameters v;,
see [11].

Although Lyapunov exponents are the standard choice for the character-
isation of stability, a different possibility exists. Rather than investigating
the singular values of the product matrix (4.1), we could look at the com-
plex eigenvalues z, (n = 1,..., N) of the product matrix (4.1). The absolute
values of the eigenvalues are expected to grow exponentially for large M, al-
though there is no equivalent of Oseledec’s theorem in this case. It was
therefore suggested in [10] to parametrise the eigenvalues as z, = eMé&n+i0n
with &, and 6, real. It was previously conjectured that the stability expo-
nents driving the exponential growth (decay) are identical to the Lyapunov
exponents whenever the spectrum is non-degenerate [12]|. For the product of
Ginibre matrices, this was proved in [10, 11] starting from Eqs. (2.7), (2.31)
and (2.37), leading to (4.3) with identical means and variances (4.4) for the
stability exponents for = 2,4 and 1, respectively. Note, however, that the
corrections to this limit which were also computed in [10, 11| differ from the
corrections for the Lyapunov exponents known for 5 = 2 only.

It is natural to ask about the angular dependence of the complex eigen-
values for M going to infinity as well. For 8 = 2, the spectrum is trivially
rotational invariant; for products of 8 = 4 Ginibre matrices, it was shown
in [11] that the eigenvalues have a sine-squared repulsion from the real axis,
due to the pairing of complex conjugate eigenvalues. The most interesting
case is undoubtedly f = 1. For the product of real Ginibre matrices all
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eigenvalues become real when the number of matrices tends to infinity. This
was first observed numerically in [57] and for N = 2, and later verified for
general N by explicit calculations in [32]. It was found that for large IV, the
probability that all eigenvalues are real can be estimated by [32]

. 1 (/M +1)r(1/2)\M* o
Prob[Vj : z; € R] ~ <\/§ ( T/M+1/2) ) ) , (4.9)

which tends to unity as M goes to infinity. This was confirmed in [11].

5. Open problems

Several open problems can be easily identified. It would be desirable to
allow for a wider choice of ensembles of random matrices that can be multi-
plied, while maintaining the exact solvability for finite products of M factors
at finite matrix size ~ N. Apart from allowing for classical Hermitian en-
sembles, one generalisation relevant for universality is to include invariant
non-Gaussian ensembles. As in the truncated unitary ensemble, this imme-
diately drops the independence amongst the matrix elements within each
factor. On the other hand, one could also drop the independence among
different factors in the product. Furthermore, new limiting kernels may be
accessible from the finite N and M results, such as by taking different double
scaling limits.

Taking factors from the real Ginibre ensemble or studying truncated
orthogonal matrices still presents a challenge. But even for the truncated
unitary ensemble, only a very limited parameter range of the exact solution
at finite V and M has been explored in the weak non-unitarity limit. This
and the orthogonal ensemble may provide a rich study ground, being poten-
tially relevant in systems with absorption or with sources of decoherence.
Generally speaking, the plethora of new mathematical results reviewed here
has not yet been fully exploited in applications. Especially, the new micro-
scopic classes at the origin labelled M will probably require to go beyond
standard areas such as combinatorics or telecommunications. The initial
motivation to study toy models of dynamical systems in the beginning of
the sixties may be very worthwhile revisiting under this new light of insights.

We would like to thank the organisers of this excellent workshop for
creating a very stimulating atmosphere. We are indebted to all our cowork-
ers for inspiring collaborations, which have led to many of the results pre-
sented here. In particular, we thank Peter Forrester, Mario Kieburg and
Arno Kuijlaars for detailed comments on this manuscript. This work was
supported by SFB|TR12 (G.A.) and by IRTG 1132 (J.R.I.) of the German
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