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Following Dyson, we treat the eigenvalues of a random matrix as a sys-
tem of particles undergoing random walks. The dynamics of large matrices
is then well-described by fluid dynamical equations. In particular, the invis-
cid Burgers’ equation is ubiquitous and controls the behavior of the spectral
density of large matrices. The solutions to this equation exhibit shocks that
we interpret as the edges of the spectrum of eigenvalues. Going beyond the
large N limit, we show that the average characteristic polynomial (or the
average of the inverse characteristic polynomial) obeys equations that are
equivalent to a viscid Burgers’ equation, or equivalently a diffusion equa-
tion, with 1/N playing the role of the viscosity and encoding the entire
finite N effects. This approach allows us to recover in an elementary way
many results concerning the universal behavior of random matrix theories
and to look at QCD spectral features from a new perspective.
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1. Introduction

The physics motivations of (some of) the authors of this contribution
have their roots in the study of various aspects of Quantum Chromodynamics
(QCD). A particularly inspiring example is the case of Yang–Mills theory
in two dimensions and the order–disorder phase transition first identified by
Durhuus and Olesen, or the chiral symmetry breaking and its restoration at
finite temperature. There were also attempts to apply the Random Matrix
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Theory to QCD evolution equations at high energy, but so far these attempts
have not been successful. In all cases considered, some aspects of the physics
are captured by the Random Matrix Theory. This is so, in particular, in
situations where, as a parameter is varied, qualitative changes of behavior
present a universal behavior. The parameter may be the area of a Wilson
loop, the volume of the system, the number of colors, the rapidity, etc. We
shall generically refer to this parameter as a “time”, and, indeed, our main
effort will be to arrive at dynamical equations that describe the evolution
of the system. These equations will follow Dyson’s prescription [1], that:
The xi should be interpreted as positions of particles in Brownian motion.
This means that the particles do not have well-defined velocities, nor do they
possess inertia. Instead, they feel frictional forces resisting their motion.

2. Burgers’ equation

Much of the work to be discussed in this note was inspired by the ubiq-
uitous emergence of Burgers’ equation in the Random Matrix Theory. We
shall, therefore, start by recalling some properties of Burgers’ equation [2].
This will give us acquaintance with concepts that will be used later.

Burgers’ equation describes the evolution of the velocity field u(x, t) of
a fluid. In one dimension, it reads

∂tu+ (u · ∇)u = ν∇2u , (1)

where ν is the viscosity. This equation differs from the Navier–Stokes equa-
tion by the absence of pressure forces (in the Navier–Stokes equation, a term
∇P/ρ, with P the pressure and ρ the density, would be present on the right-
hand side of Eq. (1)). The non-linear term in Eq. (1) can be viewed as of
the purely “kinematical” origin.

When ν = 0, the equation is referred to as the inviscid Burgers equation.
It is often used as a one-dimensional model of turbulence. Its solution can
exhibit shocks, and this will play an important role in our discussion. The
inviscid Burgers equation can be solved by the method of characteristics: We
look for solutions of the form of u(x, t) = u(x(t), t), such that u is constant,
du = 0, along the characteristic lines

x(t) = ξ + u0(ξ) t , u0(x) = u(x, t = 0) . (2)

The solution of the equation can then be written as u(x, t) = u0(ξ(x, t)), or
equivalently as the solution of the implicit equation u(x, t) = u0(x−tu(x, t)).
A shock starts to develop when the characteristics cross each other, which
happens for the smallest value t∗ of t for which the condition

dx

dξ
= 1 + t

du0
dξ

= 0 (3)
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is satisfied. A generic initial velocity field for which this happens is u0(ξ) =
aξ + bξ3, with a < 0 and b > 0. Then, it is easily shown that t∗ = −1/a.
As we shall see, we can learn a lot about the general (universal) structure
of the solution by analyzing its behavior in the vicinity of the shocks.

In order to solve the viscid Burgers equation, it is convenient to perform
a so-called Cole–Hopf transform

u(x, t) = −2ν∂x lnφ(x, t) , (4)

with φ(x, t) obeying a diffusion equation

∂tφ(x, t) = ν∂xxφ(x, t) . (5)

The solution can be then written as a convolution of the heat kernel and the
initial condition u0(x)

φ(x, t) =
1√

4πνt

∞̂

−∞

dx̄ e−
(x−x̄)2

4νt
− 1

2ν

´ x̄
0 dy u0(y) . (6)

When ν → 0, one can evaluate the integral using the saddle point method.
The saddle point equation is nothing but the characteristic equation, as one
can easily verify: we recover the inviscid Burgers equation.

Most of these elements (characteristics and shocks, Cole–Hopf transform,
heat kernel, etc.) will be present in the foregoing analysis of specific random
matrix models. In particular, we shall identify the shocks in the Burgers
equation with the edges of the spectrum of eigenvalues, and the viscosity
will be seen to be simply related to the size N of the matrices, ν = 1/2N .
However, while we found the fluid analogy inspiring, a word of caution is in
order: we should emphasize that the Burgers equations that we shall meet
will involve complex valued fields and coordinates, and the viscosity may
turn out to be sometimes negative.

3. Yang–Mills theory in d = 2

The first example that we shall discuss is that of the Yang–Mills theory
in d = 2 dimensions. This is not the simplest example, but it is the one for
which the main observations on which our work is based were made [3]. The
fundamental object to consider in this context is the average of the Wilson
loop along a (simple) curve C

W (C) =

〈
P exp

i ˛
C

Aµdx
µ

〉 , (7)
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where P is a path ordering operator, and the average (denoted by the angular
brake 〈·〉) is taken over the two-dimensional Yang–Mills field configurations.
The gauge field Aµ is taken in the fundamental representation so that W is
an Nc×Nc matrix, with Nc the number of colors. To within a normalization,
W depends only on the area enclosed by the loop. The matrix W is unitary
(for each realization of the gauge field), with its eigenvalues of the form of
λ = eiθ, living on the unit circle. The density of these eigenvalues, ρ(θ),
evolves as a function of the size of the loop. For small loops (which probe
short distance, perturbative physics), the spectrum covers a small fraction
of the unit circle around θ = 0: the spectrum exhibits a gap. As the
area increases, the gap eventually closes, with the eigenvalues occupying
uniformly the unit circle in the limit of large areas. Remarkably, the region
of the crossover where the closing of the gap takes place, becomes infinitely
thin as Nc, the number of colors (the size of the matrix) becomes infinite,
suggesting a phase transition at infinite Nc, for a particular critical loop area
A = A∗ [4].

This behavior can be reproduced by a simple random matrix model,
in which the building of Wilson loops of increasing areas is mimicked by
multiplying random unitary matrices [5]

W = lim
M→∞

lim
N→∞

M∏
i=1

Ui , Ui = ei
√
t/M Hi , (8)

where Hi is a random Hermitian matrix drawn from a Gaussian distribution
with second cumulant 1

N 〈TrH2〉 = m2. The square root dependence on
time reflects the underlying diffusion process. This model exhibits a phase
transition for a critical area A∗ ∼ 1/m2.

It turns out that this phenomenon can be described by a Burgers equa-
tion. This equation has been derived in a number of independent ways, none
of them very direct (see references in [3]). It reads

∂AF + F∂αF = 0 . (9)

In this equation, A plays the role of time, and the angular variable α the
role of the position (on the unit circle). The function F (which plays the
role of the velocity field) is related to the resolvent G(z)

G(z) =

π̂

−π

dθ
ρ(θ)

z − eiθ
, F (α) = i

(
zG(z)− 1

2

)
, z → eiα . (10)

The density ρ(θ) can be obtained from the imaginary part of F (z = eiα).
This relation between the resolvent G and the function F that satisfies the
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Burgers equation is complicated here by the structure of the unitary group
and its compact support. We shall later treat examples where it is the
resolvent itself that satisfies the (inviscid) Burgers equation. The main issue
here is to observe that F is a complex function of a complex variable.

By solving this equation using the method of (complex) characteristics
(see [6]), one finds that for the trivial initial condition corresponding to the
unit matrix, i.e. G0(z) = 1/(z−1), or F (α) = (1/2) cotα/2, shocks develop.
The characteristics are straight lines α = ξ+AF0(ξ), where F0(α) = F (A =

0, α), and the locations of the shocks are given by the solutions of dα
dξ

∣∣∣
ξc

=

1 +AF ′0(ξc) = 0. By expanding F0(ξ) in the vicinity of ξc, one gets

α = αc +
A
2

(ξ − ξc)2F ′′0 (ξc) +
A
6

(ξ − ξc)3F ′′′0 (ξc) + . . . (11)

This equation allows us to invert the characteristic equation and get ξ(α,A),
and hence the solution in the vicinity of the singularity (recall that F (A, α))=
F0(ξ(A, α)). When F ′′0 (ξc) 6= 0, one gets ξ = ξc ∼

√
α− αc, so that

ρ(α) ∼
√
αc − α. This is the familiar square root singularity correspond-

ing to the edges of the spectrum in the gapped phase. At the closure of the
gap, when the two edges of the spectrum on the unit circle meet at α = π,
F ′′0 (ξc) = 0, and the cubic term is dominant, leading to a cubic root singular
behavior in the spectral density. This point corresponds to the Durhuus–
Olesen transition. In the vicinity of this point, the spectral density is of
the form of ρ(α) ∼ (π − α)1/3. This completes the analysis of the spectral
density in the large N limit.

In order to go beyond the infinite N limit, and capture the effect of finite
N corrections of the spectrum of eigenvalues, it is convenient to consider the
average characteristic polynomial

QN (z, t) = 〈det(z −W (t))〉 . (12)

This object was shown to be convenient in order to obtain spectral infor-
mation from numerical simulations [7]. In the large N limit, the average
characteristic polynomial is simply related to the resolvent. We have indeed
(with λ denoting an eigenvalue of W )

∂

∂z
〈ln det(z −W )〉 =

ˆ
dλ

ρ(λ)

z − λ
= G(z) , (13)

and in the large N limit, we have approximately 〈ln det(z−W )〉 ≈ ln〈det(z−
W )〉. The function F that satisfies the Burgers equation is related to QN (z)
by (see Eq. (10))

F (z) =
i

N

d ln qN (z)

d ln z
, qN (z) ∝ z−N/2QN (z) . (14)
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For the unitary group, the average characteristic polynomial can be cal-
culated via a character expansion, and an integral representation has been
given by Neuberger [8, 9]

qN (y, τ) =

√
N

2πτ

∞̂

−∞

dxe−
N
2τ

(x−y)2
(

2 cosh
x

2

)N
, (15)

with

qN (y, τ) = (−1)Ne−
Ny
2 e

Nτ
8 QN (−ey, τ) . (16)

Expression (15) has the form of a convolution of the heat kernel and some
initial condition (it is easily verified that this is indeed the initial condition
that was mentioned earlier). Thus, qN satisfies a diffusion equation with a
diffusion constant equal to 1/2N , while −(1/N)∂ ln qN/∂y satisfies the cor-
responding viscid Burgers equation. In terms of the function F introduced
above, and for z = eiα, this equation reads

∂τF + F∂αF = − 1

2N
∂ααF . (17)

Note that in this case, the viscosity is negative. One should be careful,
however, with the interpretation of the viscosity term in this complex setting,
since the sign of the viscosity term depends on the direction of the complex
plane in which one is looking (it is positive, for instance, if one choose
z = −ey, with y real). One may argue that the negative sign is indeed what
is expected in order to amplify the spectral oscillations of the eigenvalue
density that are observed in the vicinity of the shocks, while the positive
viscosity would lead naturally to damping.

The viscosity term in Eq. (17) allows us to take into account the finite N
corrections in a compact way, and to zoom into the structure of the spectrum
in the close vicinity of the shocks. As emphasized already, the viscid Burgers
equation controls the behavior, not of the spectral density itself, but of the
average characteristic polynomial (or a function closely related to it), that
evolves smoothly towards the resolvent as N → ∞. As is well-known, to
capture the universal behavior of the spectrum close to its edges, one needs
to introduce special scalings that take into account the way the spectral
density at large N drops at the edge. The density generically drops as
|α − αc|η, so that an interval that contains a fixed number of eigenvalues
scales as N δ, with δ = 1/(1+η). For the typical values η = 1/2 and η = 1/3,
this yields δ = 2/3 and δ = 3/4, respectively. These exponents indeed
control the universal behavior of the average characteristic polynomial and,
in particular, the double scaling limit that holds near the Durhuus–Olesen
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transition. We refer to Ref. [7] for a thorough analysis. We shall present an
example of the similar double scaling limit (so-called Pearcey universality
class) in the (simpler) context of random Hermitian matrices in the next
sections.

4. Random walk of Hermitian matrices

The analysis of the simpler case of random Hermitian matrices [10] will
reveal why the emergence of the inviscid Burgers equation is quite natural
in the study of the spectral density of matrices of large sizes N . In the
next section, we shall argue that this equation naturally extends to the
viscid Burgers equation for the average characteristic polynomial, with 1/2N
playing the role of the viscosity.

Following Dyson, we regard a random matrix as the result of independent
random walks undergone by each independent matrix element. As is well-
known, the change of variables from the matrix elements to the eigenvalues
introduces a Coulomb-like repulsion between the eigenvalues, so that the
random walks of the eigenvalues xi obey

〈δxi〉 = E(xi) ∆t , E(xj) =
∑
i 6=j

(
1

xj − xi

)
,

〈
(δxi)

2
〉

= ∆t . (18)

Equivalently, the joint probability distribution P (x1, . . . , xN , t) obeys the
Smoluchowski–Fokker–Planck equation

∂P

∂t
=

1

2

∑
i

∂2P

∂x2i
−
∑
i

∂

∂xi
(E(xi)P ) . (19)

Although the solution of this equation, for the trivial initial condition cor-
responding to a null matrix, is easy to obtain

P (x1, . . . , xN , t) = C(t)
∏
i<j

(xi − xj)2 e−
∑
i

x2
i

2t , (20)

we shall be interested in simpler objects, such as reduced densities and, in
particular, the eigenvalue density

ρ̃(x, t) =

ˆ N∏
k=1

dxk P (x1, . . . , xN , t)

N∑
l=1

δ(x− xl) =

〈
N∑
l=1

δ(x− xl)

〉
. (21)

Knowing the equation satisfied by P (x1, . . . , xN , t), it is easy to establish
the equation satisfied by the eigenvalue density

∂ρ̃(x, t)

∂t
=

1

2

∂2ρ̃(x, t)

∂x2
− ∂

∂x

 
dy

ρ̃(x, y, t)

x− y
, (22)
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in which the two particle density appears: ρ̃(x, y, t)=
〈∑N

i=1

∑
j 6=i δ(x−xi)

δ(x − xj)
〉
. This equation is the first equation of an infinite hierarchy of

equations, somewhat analogous to the BBGKY hierarchy of equations for the
n-point functions in statistical mechanics, or the Schwinger–Dyson equations
in quantum field theory. In order to solve such equation, some truncation
is needed. We shall base the present truncation on the large N limit. In
this limit, one expects the connected part of the two particle density, in the
expression ρ̃(x, y) = ρ̃(x)ρ̃(y) + ρ̃c(x, y) to be subleading (of the order of
1/N) with respect to the disconnected part, which is simply the product of
single eigenvalue densities. It is then convenient to redefine

ρ̃(x) = Nρ(x) , ρ̃(x, y)−N2ρ(x)ρ(y) = Nρc(x, y) , (23)

and to also redefine the time, setting τ = Nt, to take into account the fact
that the rate for “collisions” among eigenvalues (the last term in Eq. (22))
is N times larger than the rate of diffusion. We then obtain

∂ρ(x)

∂τ
+
∂

∂x
ρ(x)

 
dy

ρ(y)

x− y
=

1

2N

∂2ρ(x)

∂x2
+

1

N

 
dy

ρc(x, y)

x− y
, (24)

where the terms of the order of 1/N have been moved to the right-hand
side of the equation, and can be ignored at this stage (we return to finite
N corrections in the next section). On the left-hand side, one recognizes a
non-linear term that is reminiscent of that present in the Burgers equation,
except for the denominator that reflects the repulsion among the eigenvalues.
But it is easy to get rid of this denominator, at the price of introducing the
complex resolvent of the random matrix H

G(z, τ) =

〈
1

N
Tr

1

z −H(τ)

〉
=

ˆ
dy

ρ(y, τ)

z − y
, (25)

where ρ is the eigenvalue density of H. Then, simple manipulations (in-
volving taking the Hilbert transform of the equation) yield the following
equation

∂τG(z, τ) +G(z, τ) ∂zG(z, τ) = 0 . (26)

This equation is a complex Burgers equation. It is the analog of Eq. (9) of the
unitary case, however here it is the resolvent itself that enters the equation
(instead of the function F of the unitary case). This (small) difference is to
be attributed to the specificity of the unitary group.

At this point, we note that the characteristic equation (in the complex
domain) takes the form of z = ξ + τG0(ξ). For the initial condition cor-
responding to a vanishing matrix, G0(z) = 1/z. Then, the characteristic
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equation yields an implicit equation for G, G = 1/(z − τG) which defines
G(z, τ) as an algebraic curve, with possible square root singularities. These
singularities, we associate with shocks and they correspond to the edges of
the spectrum (in the large N limit).

5. Beyond the large N limit with the average
characteristic polynomial

It appears that the fluid analogy that guided us in the previous section
to the inviscid Burgers equation cannot be pursued in a simple way. This
is because in Eq. (24) we do not know how to treat the connected 2-point
function in order to truncate the hierarchy in a consistent fashion.

Our first attempt to study the finite N corrections was to use other
well-known techniques in Random Matrix Theory, namely the technique of
orthogonal polynomials, from which we can reconstruct the spectral infor-
mation. For the Hermitian matrices, these polynomials are Hermite poly-
nomials. By imposing that these polynomials be orthogonal with respect to
the distribution (20), one finds that these polynomials differ from the usual
ones by a simple scaling. They are given explicitly by

πk(x, τ) = (−i)k
√

N

2πτ

∞̂

−∞

dq qke−
N
2τ

(q−ix)2 . (27)

One can verify, by a direct calculation, that these polynomials satisfy the
differential equation

∂τπn(x, τ) = −νs∂2xπn(x, τ) , νs =
1

2N
(28)

or, by taking the Cole–Hopf transform fk(z, τ) ≡ 2νs∂z lnπk(z, τ), the viscid
Burgers equation

∂τfk(z, τ) + fk(z, τ)∂zfk(z, τ) = −νs∂2zfk(z, τ) . (29)

This is now an exact equation, with all finite N effects captured by the
viscosity term. The knowledge of the orthogonal polynomials allows us to
reconstruct the spectral density (and other correlation functions) using stan-
dard techniques of Random Matrix Theory. However, we would like to pro-
ceed in a different way.

Let us observe first that the (monic) polynomial with n = N is the
average characteristic polynomial, 〈det(z −H(τ))〉 = πN (z, τ) which, as we
have already emphasized, coincides with the resolvent in the large N limit.
We have indeed

G(z, τ) =
1

N

〈
Tr

1

z −H(τ)

〉
=

1

N

∂

∂z
〈Tr ln (z −H(τ))〉 , (30)
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and

〈Tr ln (z −H(τ))〉 = 〈ln det (z −H(τ))〉 ≈ ln 〈det (z −H(τ))〉 , (31)

where the last, approximate, identity holds in the large N limit. The viscid
Burgers equation (29) constitutes, therefore, a natural extension of the invis-
cid Burgers equation for the resolvent, albeit for a slightly different object.

At this point, before we proceed further, we can show how we can use
the viscid Burgers equation in order to analyze the behavior of the average
characteristic polynomial near a shock. To that aim, recall that we need
to look at interval in the eigenvalues spectrum that scales as N δ, with δ =
1/(1 + η). As for the correction to the large N density, it is of the order
of Nγ with γ = δ − 1. Focusing, for the sake of illustration, on the case
η = 1/2, corresponding to δ = 2/3 and γ = −1/3, one is then led to look
for solutions of the viscid Burgers equation in the form

x = zc(τ) + ν2/3s s , fN (x, τ) = żc(τ) + ν1/3s χN (s, τ) . (32)

A simple analysis then allows us to recover the well-known Airy behavior in
the vicinity of the edges of the spectrum.

The method of orthogonal polynomial is powerful, but it has limitations.
For instance, the polynomials depend on the initial condition (here trivial),
and there are cases where such polynomials are unknown. However, the
existence of the diffusion and Burgers equations seems to be generic. We
have already seen that these equations can be derived in the unitary case
by using a character expansion of the determinant (or its inverse). In other
cases, we can derive the equations by expressing the determinant as Gaussian
integrals over Grassmann or complex variables. This has been achieved in
a number of cases. Let us just focus on the Hermitian case, which is the
simplest. In this case, the equations are simply

∂τQN (z, t) = − 1

2N
∂zzQN (z, τ) , ∂τθN (z, t) =

1

2N
∂zzθN (z, t) , (33)

where QN denotes the average characteristic polynomial, and θN the average
of the inverse characteristic polynomial. One can then easily construct the
solutions of these equations, for arbitrary initial conditions, as convolutions
of the heat kernel with the initial conditions. We get

QN (z, τ) =

√
N

2πτ

∞̂

−∞

exp

(
−N (q − iz)2

2τ

)
QN (−iq, τ = 0) dq , (34)

and

θN (z, τ) =

√
N

2πτ

∞+zˆ

−∞+z

exp

(
−N (u− z)2

2τ

)
θN (u, τ = 0)du . (35)
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This contour can be deformed to the real axis and a half circle enclosing the
pole at 0 from above (Imz > 0) or below (Imz < 0). These integral represen-
tations provide an alternative method to study the universal behavior near
the shocks to that just mentioned base on the Burgers equation. Here, the
analysis will follow the saddle points and their merging (recall that the sad-
dle point equation coincides with the equation for the characteristics of the
Burgers equation). For detailed analysis of large N limit of above integral
representations, we refer to [11].

6. Spontaneous breakdown of the chiral symmetry in QCD

The fluid analogy outlined in the previous sections helps also to under-
stand another challenging problem of strong interactions — i.e. the spon-
taneous breakdown of the chiral symmetry in QCD. The order parameter,
known as a quark condensate Σ ≡ |〈q̄q〉| (i.e. the expectation value of the
density of quark–antiquark pairs in the vacuum state of QCD) is directly
related to the average spectral density ρ(λ) of the Euclidean–Dirac operator
near the vanishing eigenvalue, by the so-called Banks–Casher relation [12]

Σ = π
ρ(0)

V4
, (36)

where V4 = L4 represents a Euclidean, four-dimensional volume. In order
to get the non-zero value of the quark condensate on the l.h.s. of the Banks
Casher formula, in the limit when the volume of the Euclidean space-time
tends to infinity, a dramatic accumulation of small eigenvalues has to take
place in the vicinity of zero. We argue, that this sudden increase in the
density is achieved by the formation of a spectral shock wave at zero eigen-
value [13]. In order to demonstrate this phenomenon, we have to tune the
random matrix model in such a way that it includes chiral properties, i.e.
non-zero eigenvalues come in pairs (−λ, λ). The simplest choice reads

W =

(
0 K†

K 0

)
, (37)

where the entries ofK, anM×N (M ≥ N) matrix, evolve in time t according
to a Brownian walk [13, 14]. The fundamental object of our studies is, again,
the characteristic polynomial QN

QN (w, t) = 〈det(w −W )〉 , (38)

where the averaging represents the Brownian motion, and for simplicity, we
have putM = N . Using similar methods as in the Hermitian case, we arrive
at the equation
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∂tQN (w, t) = −1

4
∂2wQN (w, t)− 1

4w
∂wQN (w, t) (39)

i.e. of the diffusion type. The next step is the corresponding Cole–Hopf
transformation (fN = 1

N ∂w lnQN (w, t)) and a rescaling of time, τ = Nt.
Then, one gets from (39)

∂τfN + fN∂wfN = − 1

2N

[
∂2wfN +

1

w
∂wfN −

1

w2
fN

]
, (40)

therefore, again a Burgers type equation. In the large N limit, we recover
the inviscid Burgers equation known the from previous sections, since the
r.h.s. of (40) vanishes and fN becomes the resolvent (Green’s function)
G(z, τ). Let us study now complex characteristics ξ corresponding to the
case of non-trivial initial conditions, i.e. where the spectrum at τ = 0 is
represented by a chirally symmetric pair (−a, a). In the physical context,
a may e.g. represent the lowest Matsubara frequency πT , where T is the
temperature. First, we notice that the singularities (shock waves) may be-
long to three distinct classes, corresponding to the case when τ is smaller,
equal or larger comparing to some critical value τc = a2, respectively. Using
the parametrization δ from the section devoted to Yang–Mills studies, we
arrive at δ = 2/3, δ = 3/4 or δ = 1, respectively. The microscopic properties
of the spectrum can be now rederived by, first, setting

w = wc +N−δs ,

fN = G0(ξ) +N−γχ(s, τ) (41)

second, plugging-in these quantities into, exact for any N , equation (40),
and finally, performing the large N limit. In the first case (τ < τc), corre-
sponding to the scenario when the spectrum forms two symmetric bumps
with respect to zero, averaged spectral determinant of the Dirac takes the
shape of the Airy function — chiral symmetry is unbroken. In the third
case (τ > τc), where gap at zero is closed, averaged spectral determinant
takes the shape of the Bessel function. Temperatures are still low enough,
so the chiral symmetry is broken, and the spectral density within the zero
eigenvalues is completely determined by the so-called Bessel kernel [15]. The
most interesting is the middle case, when the gap closes (opens) at the crit-
ical value τ = τc, i.e. the chiral symmetry is just to be broken (restored).
In this case, in the large N limit, all three saddle points corresponding to
the integral representation of the characteristic polynomial merge, yielding,



Universal Spectral Shocks in Random Matrix Theory — Lessons for QCD 1797

after proper rescalings [14]:

QN

(
N−

3
2a2s, a2 +N−

1
2a2t

)
≈
(
−a2

)N
N

1
2

∞̂

0

u1 exp
(
−1

2u
4 + u2t

)
×I0

(
2iu
√
s
)
du . (42)

We note the qualitative similarity to the integral representation of the
Pearcey function, encountered at the strong-weak coupling transition for
the Wilson loop. This is not unexpected, since in both cases δ = 3/4, cor-
responding to the closure of the gap. However, quantitatively, the behavior
is different. This is caused by the fact, that in the chiral case, the diffusion
operator on the r.h.s. of (40) represents the radial part of two-dimensional
Laplace operator, comparing to one-dimensional Laplace operator in (17).
The two-dimensional pattern of the diffusion equation origins form the chi-
ral symmetry — the spectrum of (37) is invariant under the transformation
K → Keiφ, where φ represents azimuthal angle. Historically, Bessel func-
tions were derived to describe the cylindrically symmetric propagation of
the heat, hence the omnipresence of the Bessel functions in the description
of universal properties of the chiral models should not be puzzling. The
chirally-symmetric analog of the Pearcey function is sometimes called the
spun cusp or the Bessoid. The Pearcey function has a direct analogy in the
diffractive optics, corresponding to the so-called cusp catastrophe [16]. The
spun cusp (Bessoid) can be also, in principle, measured in certain dichroic
crystals [17]. In Fig. 1, we compare the “interference” patterns of both func-
tions, plotting the modulus of the Bessoid function versus the modulus of
the Pearcey function.

Fig. 1. We compare the modulus of the Pearcey function P (x, t) =
´∞
−∞

ei(y
4+ty2+xy)dy (right) to the modulus of the Bessoid function B(x, t) =

´∞
0

yei(y
4+ty2)J0(xy) (left).
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7. Conclusions

In these notes, we concentrated on links between the diffusive behavior
of certain random matrix models and QCD. In particular, we stressed that
two most spectacular phenomena of strong interactions — the weak–strong
coupling transition and the spontaneous breakdown of the chiral symme-
try — require qualitatively similar massive rearrangement of the eigenvalues
of pertinent operators (here Wilson loop and Euclidean–Dirac operator, re-
spectively). Such rearrangements belong to the universality classes of certain
random matrix models. In the case of the spontaneous breakdown of the chi-
ral symmetry, agreement of spectral properties of QCD with chiral Random
Matrix Theory was confirmed in an impressive way in several lattice stud-
ies, for various realizations of fermions, various values of number of flavors,
topological charges, finite masses and temperatures, etc. [18]. As far as we
know, the Bessoid-like kernel was not yet measured, despite it is known how
to construct the microscopic spectral densities in such cases [19–21]. The
Pearcey character of the Durhuus–Olesen phase transition was convincingly
confirmed in large Nc Yang–Mills lattice studies [22]. The joint simulation
of the microscopic Dirac spectrum and the Wilson loop spectrum at the clo-
sure of the gap was also not done. We believe that such simulation could
shed more light on the mutual relation between both phase transitions in
QCD. Last but not least, we express the belief that the presented here “hy-
drodynamic” way of approaching the spectral properties of QCD may also
turn out beneficial in still mysterious domains of strong interactions, alike
finite density, strong CP violating angle or strongly correlated quark–gluon
plasma.
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