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We review some aspects of recent work concerning double scaling limits
of singularly perturbed Hermitian random matrix models and their con-
nection to Painlevé equations. We present new results showing how a
Painlevé III hierarchy recently proposed by the author can be connected
to the Lenard recursion formula used to construct the Painlevé I and II
hierarchies.
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1. Introduction

The semi-classical one-Hermitian matrix model is defined as the measure

1

Zn
e−nTrV (M)dM (1)

on the set Hn×n(J) of n×n Hermitian matrices whose spectrum is a subset
of J . Here the potential V is such that V ′ is a rational function. The angular
degrees of freedom of M may be integrated out of this model to give a jpdf
for the eigenvalues xi of M ,

1

Ẑn
∆(x)2

n∏
i=1

w(xi)dxi , (2)

where w(x) := e−nV (x) and ∆ is the Vandermonde determinant. Such mod-
els are a very general class of models for which the method of orthogonal

∗ Presented at the Conference “Random Matrix Theory: Foundations and Applica-
tions”, Kraków, Poland, July 1–6, 2014.

(1825)



1826 M. Atkin

polynomials can be used to give a solution. The method of orthogonal poly-
nomials expresses the eigenvalue k-point correlation functions in terms of
the correlation kernel,

Kn(x, y) = h−1n−1

√
w(x)w(y)

x− y
(pn(x)pn−1(y)− pn(y)pn−1(x)) , (3)

where pj , j = 0, 1, . . . are a family of monic polynomials of degree j charac-
terised by the relations

∞∫
0

pj(x)pm(x)w(x)dx = hjδjm . (4)

The limiting mean eigenvalue density is given by

ρ(x) := lim
n→∞

1

n
Kn(x, x) , (5)

and describes the macroscopic behaviour of the eigenvalues for large n.
Such models have been studied at finite n in [1] and their relation to

integrable systems fully described. What is less known are the types of
critical behaviour in such a model. In the case that V is polynomial and
J = R, a number of distinct critical points have been identified and studied
over the last two decades. These have been classified as:

— Type I — The spectral density acquires extra zeros at the edge a
of its support. The usual behaviour of ρ near a is ρ(x) ∝ (x − a)

1
2 ,

however, when extra zeros are present, the possible behaviours of ρ are
ρ(x) ∝ (x−a)

k
2 with k ∈ N. The limiting kernel in the neighbourhood

of such points is constructed in terms of solutions to the kth Painlevé I
equation.

— Type II — The spectral density acquires new zeros at some point a in
the bulk of its support. The behaviour of ρ near a is ρ(x) ∝ (x− a)2k
with k ∈ N. The limiting kernel in the neighbourhood of such points
is constructed from solutions to the kth Painlevé II equation.

— Type III — The spectral density acquires a new cut in its support. This
transition is known as a “birth of a cut” [8]. Here, the limiting kernel
is constructed from Hermite polynomials and the local behaviour in
the new cut mimics a GUE matrix model.

In the more general case of the semi-classical model, no such classification
exists, however a number of special cases have been investigated in the recent
literature.
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— The effect of logarithmic singularities in the potential have been inves-
tigated in a number of works. In [7], the effect of a singularity in the
bulk results in a kernel constructed with Bessel functions. In [9], the
situation of a logarithmic singularity coinciding with a Type II critical
point was found to lead to kernels containing solutions to the general
Painlevé II equation. Finally, logarithmic singularities at the edge of
the spectrum results in general Painlevé XXXIV equations.

— The addition of a hard edge also results in a new behaviour. It has
long been known that the kernel near the hard edge can be constructed
in terms of Bessel functions. More recent work [10] has considered the
case of a hard edge meeting a soft edge, with the resulting kernel con-
structed in terms of Painlevé XXXIV transcendents. This was further
extended in [11] to a hard edge meeting a Type I critical point in which
it was shown that the associated Painlevé transcendents satisfy the kth
member of the Painlevé XXXIV hierarchy.

— Finally, very recently, the behaviour of eigenvalues near poles in the
potential have been studied. The case of a simple pole both in the bulk
and at the hard edge have been investigated in [2–5] and it was shown
that the kernel can be constructed using solutions of Painlevé III. The
case of higher order poles at a hard edge was studied in [6] by the
author and collaborators and the kernel in the neighbourhood of the
pole was constructed using solutions of a member of a Painlevé III
hierarchy.

In this short note, we report on some new aspects of the work in [6]. In
particular, we give a relation between the Painlevé III hierarchy defined in
[6] and the Lenard recursion relations that are ubiquitous in the Painlevé I
and II hierarchies.

2. A Painlevé III hierarchy

In [6], the kth member of the Painlevé III hierarchy was defined as the
system of k ODEs (p = 1, . . . , k),

p∑
q=0

(
`k−p+q+1`k−q − (`k−p+q`k−q)

′′ + 3`′k−p+q`
′
k−q − 4u`k−p+q`k−q

)
= τp ,

(6)
for k unknown functions `1 = `1(s), . . . , `k = `k(s), with `k+1(s) = 0 and
`0(s) =

s
2 . The τps are constants that act as times. The quantity u = u(s)

is defined by

u(s) = − 1

4`2k

((
`2k
)′′ − 3

(
`′k
)2

+ τ0

)
. (7)
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Example 2.1. For k = 1, we have the equation

`′′1(s) =
`′1(s)

2

`1(s)
− `′1(s)

s
− `1(s)

2

s
− τ0
`1(s)

+
τ1
s
, (8)

which we identify as a special case of the Painlevé III equation.

Example 2.2. If k = 2, we have a system of two ODEs:

τ1
2`1(s)`2(s)

− τ0
`2(s)2

+
`′2(s)

2

`2(s)2
− `
′
1(s)`

′
2(s)

`1(s)`2(s)
+
`′′1(s)

`1(s)
− `
′′
2(s)

`2(s)
− `2(s)

2`1(s)
= 0 , (9)

and

`1(s)
2`′2(s)

2

`2(s)2
− `′1(s)2 +

s`′2(s)
2

`2(s)
− `′2(s)−

τ0`1(s)
2

`2(s)2
− sτ0
`2(s)

− τ2

=
2`1(s)

2`′′2(s)

`2(s)
− 2`1(s)`

′′
1(s) + s`′′2(s) + 2`2(s)`1(s) . (10)

3. A Riemann–Hilbert problem for the Painlevé III hierarchy

In [6], it was shown that a solution to the kth Painlevé III equation may
be extracted from the following RH problem:

(a) Φ : C \Σ → C2×2 analytic. See figure 1.

W2

W3

W1

S1

S2

S3

O

p/3

Fig. 1. The jump contour Γ for the model RH problem for Ψ . Contours are labelled
by Σ and sectors by Ω.
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(b) Φ has the jump relations Φ+(z) = Φ−(z)ji for z ∈ Σi

j1 =

(
1 0

−eπiα 1

)
, j2 =

(
0 −1
1 0

)
, j3 =

(
1 0

−e−πiα 1

)
.

(11)

(c) As z →∞, Φ has the asymptotic behaviour

Φ(z) =

(
1 0
v(s) 1

)(
I +

1

z

(
w(s) v(s)
h(s) −w(s)

)
+O

(
z−2
))

×e
1
4
iπσ3z−

1
4
σ3Nesz

1/2σ3 , (12)

where N = 1√
2
(I + iσ1) and v, h and w are functions of s.

(d) As z → 0, there exists a matrix Φ0(s), independent of z, such that Φ
has the asymptotic behaviour

Φ(z) = Φ0(s)(I +O(z))e
(−1)k+1

zk
σ3z

α
2
σ3Hj (13)

for z ∈ Ωj , where H1, H2, H3 are given by

H1 = I , H2 =

(
1 0

−eπiα 1

)
, H3 =

(
1 0

e−πiα 1

)
. (14)

We then have as a corollary of [6] Theorem 1:

Theorem 3.1. Let α > −1, and let Φ(z; s) be the unique solution of the
above model RH problem for s > 0. Then, the limit

y(s) = −2 d
ds

[
lim
z→∞

sΦ(z, s)e−sz
1/2σ3N−1z

1
4
σ3e−

1
4
iπσ3

]
21

(15)

is a solution of the kth member of the Painlevé III hierarchy.

Remark 3.2. The proof of this theorem identifies y with `1 in the Painlevé III
hierarchy. Furthermore, it also demonstrates that the Lax pair for Φ takes
the form:

A(z, s) = a(z, s)σ3 + b(z, s)σ+ + c(z, s)σ− , (16)
B(z; s) = (z − u(s))σ− + σ+ , (17)

where a, b and c are related by

a(z, s) = −1
2∂sb(z, s) , (18)

c(z, s) = (z − u)b(z, s)− 1
2∂

2
s b(z, s) , (19)

∂sc(z, s) = 1 + 2(z − u(s))a(z, s) . (20)
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Substituting (18) and (19) into (20) yields

z∂sb(z, s) =
1
4

(
∂3s b(z, s) + 4u(s)∂sb(z, s) + 2u′(s)b(z, s)

)
+ 1

2 . (21)

We may compute b(z, s) by substituting b(z, s) = 4
(4z)k+1

∑k
j=0 `k−j(s)(4z)

j

into the above equation to get,

`′j+1(s) = `′′′j (s) + 4u(s)`′j(s) + 2u′(s)`j(s) . (22)

4. Integration of Lenard-type recursion relations

The recursion relation (22) is the Lenard recursion relation appearing
in the Painlevé I and II hierarchies. In those cases, the initial condition is
`0 = 1

2 whereas here we have `0 = s/2. Let us consider the general case
where `0 and `k+1 are known functions. The fact that `k+1 is known implies
u(s) satisfies an integro-differential equation of the order of 3k + 1. The
following lemma gives k + 1 constants of motion, i.e. functions of u(s) and
its derivatives which are constant in s. This allows the equation for u(s) to
be reduced to an ODE of the order of 2k and we will see that these constants
of motion are precisely the ODEs appearing in (6).

Theorem 4.1. Let `j be the integro-differential polynomials in u gener-
ated by the Lenard recursion relation (22) together with an initial condition
for `0. Furthermore, let `k+1 also have a given form. The integro-differential
equation corresponding to `k+1 has the following constants of motion:

τp = −`k+1`k−p +

p∑
q=0

(`k−q`k−p+q+1 −Ωk−p+q,k−q) , 0 ≤ p ≤ k (23)

if `′k+1 = 0, and

σp = −`0`p +
p−1∑
q=0

(Ωp−1−q,q − `p−1−q`q+1) , 0 ≤ p ≤ k (24)

if `′0 = 0. In the above expressions, we have introduced

Ωn,m(s) := (`n`m)
′′ − 3`′n`

′
m + 4u`n`m . (25)

Proof. We begin with the following identity

`m`
′
n+1 + `n`

′
m+1 = Ω′n,m . (26)
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This identity can be established by the following argument

`m(`n+1)
′ = `m`

′′′
n + 4u`m`

′
n + 2u′`m`n (27)

= `m`
′′′
n + 4u`m`

′
n + 4u′`m`n − `n

(
`′m+1 − 4u`′m − `′′′m

)
(28)

= `m`
′′′
n + `n`

′′′
m + 4(u`m`n)

′ − `n`′m+1 (29)
⇒ `m`

′
n+1 + `n`

′
m+1 = Ω′n,m , (30)

where (27) is the Lenard-type recursion relation multiplied by `m, (28) is ob-
tained by grouping terms and applying the recursion relation for `m. (30) is
obtained from the elementary identity

`m`
′′′
n + `n`

′′′
m = (`n`m)

′′′ − 3
(
`′n`
′
m

)′
. (31)

Now note that integrating (26) by parts and letting n 7→ n− 1 gives

`m`
′
n = `m+1`

′
n−1 + [Ωn−1,m − `n−1`m+1]

′ . (32)

Geometrically, this equation says that the quantity `m`′n only picks up total
derivatives if we move along the anti-diagonals of the lattice points labelled
(m,n) for 0 ≤ m,n ≤ k + 1. We can now see how the constants of motion
arise. If, due to the boundary conditions on `0 and `k+1, the quantity `m`′n
is a total derivative on the border of the lattice (i.e. when m or n are 0 or
k + 1), then we can produce a total derivative equal to zero by using (32)
to move across the lattice from one border to another. Explicitly, moving a
distance r along an anti-diagonal gives

`m`
′
n = `m+r`

′
n−r +

r−1∑
q=0

Ωn−q−1,m+q − `n−q−1`m+q+1

′ . (33)

If `′k+1 = 0, then let m = k − p, n = k + 1 and r = p+ 1. This gives

d

ds

`k+1`k−p +

p∑
q=0

(Ωk−p+q,k−q − `k−q`k−p+q+1)

 = 0 (34)

which integrating gives the first part of the theorem. If l′0 = 0, then let
m = 0 and r = n. This gives

d

ds

`0`p − p−1∑
q=0

(Ωp−1−q,q − `p−1−q`q+1)

 = 0 , (35)

which integrating gives the second part of the theorem. 2
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Remark 4.2. Setting `k+1 = 0 and ` = s/2 in the Lenard recursion relation
implies the τp are constant and we recover (6).

Remark 4.3. Consider the standard Lenard differential polynomials ob-
tained with the boundary condition `0 = 1

2 and setting all integration con-
stants to zero. From the above theorem, we find that σp are constants, which
by the definition of the standard Lenard differential polynomials must be
zero. We therefore have, after some rearranging,

`p =

p−2∑
q=0

(Ωp−1−q,q − `p−1−q`q+1) +Ω0,p−1 . (36)

The right-hand side of the above equations only contains `n with n < p,
while the left-hand side only contains `p. Hence, we can use these equa-
tions to recursively determine `p, which are exactly the Lenard differential
polynomials. Note that this shows each Lenard differential polynomial is,
indeed, a differential polynomial, a fact that is not obvious from their usual
definition (22).
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