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After reviewing the theory of triangular (causal) and rectangular quan-
tum stochastic double product integrals, we consider examples when these
consist of unitary operators. We find an explicit form for all such rect-
angular product integrals which can be described as second quantizations.
Causal products are proposed as paradigm limits of large random matri-
ces in which the randomness is explicitly quantum or noncommutative in
character.
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1. Introduction: from discrete to continuous double products

Double products of triangular (or causal) and rectangular forms∏
1≤j<k≤N

xj,k ,
∏

(j,k)∈Nm×Nn

xj,k (1)

are problematical when the elements xj,k do not commute with each other
because there is no preferred ordering for them. Thus, while

∏
1≤j≤N xj

is naturally defined as x1x2 . . . xN , respecting the natural ordering of the
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integers, one might define the triangular product in (1) either as

∏
1≤j<N

 ∏
j<k≤N

xj,k

 or as
∏

1<k≤N

 ∏
1≤j<k

xj,k

 . (2)

Similarly, one might take either

∏
1≤j≤m

 ∏
1≤k≤n

xj,k

 or
∏

1≤k≤n

 ∏
1≤j≤m

xj,k

 (3)

to define the rectangular product in (1).
These ambiguities are resolved if the quantities xj,k have the property

which we call weak commutativity, that xj,k commutes with xj′,k′ whenever
both j 6= j′ and k 6= k′ (but not necessarily when j = j′ but k 6= k′ or
vice versa). Under the assumption of weak commutativity, the two alter-
natives (2) are equal as are the two alternatives (3). More generally, weak
commutativity implies the equality of all triangular products of the form∏
1≤r≤ 1

2
N(N−1)

xjr,kr , where
(

(j1, k1) , (j2, k2) , . . . ,
(
j 1
2
N(N−1), k 1

2
N(N−1)

))
is any ordering of the 1

2N(N −1) indices {(1, 2), (1, 3), . . . , (N −1, N)} with
the property that (jr, kr) always precedes (js, ks) whenever both jr ≤ js
and kr ≤ ks. Similarly, given weak commutativity, all rectangular prod-
ucts

∏
1≤r≤mn xjr,kr have the same value for any ordering of the mn indices

{(1, 1), . . . , (m, 1), (1, 2), . . . , (m, 2), . . . , (1, n), . . . , (m,n)} having this same
property.

An example where weak commutativity arises is when each xj,k is ob-
tained by embedding a 2×2 matrix, in the triangular case at the intersections
of the jth and kth rows and columns of an N ×N matrix, and in the rect-
angular case in the intersections of the jth and (m+ k)th rows and columns
of an (m + n) × (m + n) matrix, and then completing by adding 1s and
0s in the remaining diagonal and nondiagonal places respectively. A second
example is when, in the triangular case, each xj,k is the ampliation to the
N -fold tensor product ⊗NH of a Hilbert space H with itself, of an operator
on the 2-fold tensor product H⊗H embedded in the jth and kth copies of
H within ⊗NH, and similarly in the rectangular case if it is the ampliation
to ⊗m+nH of such an operator embedded in the jth and (m+ k)th copies of
H within ⊗m+nH = (⊗mH)⊗ (⊗nH).

This paper concerns double product integrals, denoted∏
<[a,b[

(1 + dr) ,
∏

[a,b[×[c,d[

(1 + dr) , (4)



Unitary Causal Quantum Stochastic Double Products as Universal . . . 1853

which are continuous analogs of such discrete triangular and rectangular
double products defined over either an interval [a, b[ of the real line or the
Cartesian product [a, b[×[c, d[ of two such intervals. Here, we denote by
<[a,b[ the set {(x, y) ∈ R2 : a ≤ x < y < b}. In analogy with and by exten-
sion of the second example above, they consist of operators in continuous
tensor products of Hilbert spaces such as Fock spaces. Each such product
is characterized by a stochastic differential generator dr. This is an element
of I ⊗ I, where I = C〈dP, dQ, dT 〉 is the complex vector space of linear
combinations of the stochastic differentials of the components of a quantum
planar Brownian motion (P,Q) and of the time process T .

The quantum Itô product formula equips the space I, and hence also
I ⊗ I, with an associative multiplication so that both become †-algebras
under natural involutions in which dP, dQ and dT are all self-adjoint.

Alternative notations which we will find useful are∏
<[a,b[

(1 + dr) =
∏

a≤x<y<b
(1 + dr (x, y)) ,

∏
[a,b[×[c,d[

(1 + dr) =
∏

a≤x<b,c≤y <d
(1 + dr (x, y)) .

We also write, for example, when

dr = dP ⊗ dQ− dQ⊗ dP , (5)

∏
<[a,b[

(1 + dr) =
∏

a≤x<y<b
(1 + dP (x) dQ (y)− dQ (x) dP (y)) ,

∏
[a,b[×[c,d[

(1+dr) =
∏

a≤x<b,c≤y <d
(1+dP (x)⊗ dQ (y)−dQ (x)⊗ dP (y)) .

The latter rectangular product integral lives in a double continuous tensor
product, namely the tensor product of two Fock spaces.

In both cases, the product integrals (4) can be approximated heuristi-
cally by partitioning the underlying intervals and replacing each differential
in I contributing to dr by increments of the corresponding process over the
subintervals of the partition, so that∏

<[a,b[

(1 + dr) '
∏

1≤j<k≤N
(1 + δj,kr) ,∏

[a,b[×[c,d[

(1 + dr) '
∏

(j,k)∈Nm×Nn

(1 + δj,m+kr) ,
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where, for example, in the case (5), with the partition

[a, b[ =
N⋃
j=1

[xj−1, xj [ with xj = a+
j

N
(b− a) ,

δj,kr = (P (xj)− P (xj−1)) (Q (xk)−Q (xk−1))

− (Q (xj)−Q (xj−1)) (P (xk)− P (xk−1)) .

Because of the commutation relations

[P (s) , Q (t)] = −2imin {s, t} I, [P (s) , P (t)] = [Q (s) , Q (t)] = 0 (6)

satisfied by the processes P and Q, we have weak commutativity of the δj,kr
and the approximating discrete double products are thus well-defined in all
cases.

In some cases, this form of approximation can be used to explicitly eval-
uate the corresponding continuous double product as a limit. Indeed, if one
follows the original philosophy of Volterra [1], that product integrals are di-
rect multiplicative analogues of additive integrals such as those of Riemann,
Lebesgue and Itô [2], then our double products should properly be defined
as such limits. However, there are formidable technical difficulties in making
such a definition general and rigorous in the triple generalization involved in
quantum, stochastic, double product integrals. So we follow an alternative
definition.

We define our double product integrals as solutions of quantum stochastic
differential equations (QSDEs) which are themselves driven by solutions of
QSDEs, using quantum stochastic calculus. There are two definitions in
the rectangular case, corresponding to the two equivalent forms (3) of the
approximations, namely∏

[a,b[×[c,d[

(1 + dr) = b
a

∏ (
1 +

∏̂
d
c (1 + dr)

)
(7)

=
∏

d
c

(
1 +b

a

∏̂
(1 + dr)

)
. (8)

Here, the single product integrals are all defined as solutions of quantum
stochastic differential equations (QSDEs). For example,

∏̂
d
c (1 + dr) is the

value X(d) at d of the solution of the QSDE

dX = (X + 1) dr , X (c) = 0

in which the second copy of I in I ⊗ I is operative in the QSDE, the first
copy being an initial system algebra in which the basis elements dP, dQ and
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dT are multiplied according to the quantum Itô product rule. Note that the
algebra I is nonunital so that an initial condition X (c) = 1 is meaningless;
the 1 in the QSDE is the identity operator in the Fock space.

∏̂
d
c(1 + dr) is

thus of the form

X (d) = dP ⊗ Jdc (α) + dQ⊗ Jdc (β) + dT ⊗ Jdc (γ) ,

where the operators Jdc (α), Jdc (β) and Jdc (γ) are finite sums of iterated quan-
tum stochastic integrals over [c.d[ of at most second order because I3 = 0.
The right-hand side of (7) becomes

b
a

∏(
1+
∏̂

d
c (1+dr)

)
=b
a

∏(
1+dP ⊗ Jdc (α)+dQ⊗ Jdc (β)+dT ⊗ Jdc (γ)

)
which is, by definition, the value Y (b) at b of the solution of the QSDE

dY = Y
(
dP ⊗ Jdc (α) + dQ⊗ Jdc (β) + dT ⊗ Jdc (γ)

)
, Y (a) = I .

Here, the system algebra consists of finite sums of iterated stochastic inte-
grals over [c.d[ and is on the right, so that the solution Y consists of operators
on the tensor product of two Fock spaces. Existence and uniqueness follow
using results of Fagnola [3].

More details of the construction of both rectangular and triangular dou-
ble product integrals, in particular proof of the equivalence of the two forms
(7) and (8), can be found in [4]. It is also proved in [4] that a necessary and
sufficient condition for either a rectangular or triangular double product in-
tegral to be unitary valued is that the differential generator dr satisfy the
condition

dr + dr† + drdr† = 0 . (9)

In the present paper, we analyze some examples of generators dr satisfy-
ing the unitarity condition (9) and show how the corresponding unitary dou-
ble product integrals can be constructed as second quantizations of unitary
operators which can be determined explicitly as limits of discrete products.
Finally, we discuss the possibility that such product integrals provide alter-
native paradigms to models of random evolutions in terms of large random
matrices.

2. Analysis of the unitarity condition

The components P and Q of quantum planar Brownian motion [5] (P,Q)
are individually classical one-dimensional Brownian motions, so that for ex-
ample, for each t > 0, P (t) is a normally distributed random variable of zero
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mean and variance t. But P and Q do not commute with each other, instead
they satisfy the Heisenberg commutation relations (6) in the rigorous Weyl
sense. The pair (P,Q) is realised [5] as processes of self-adjoint operators
in the Fock space F = Γ (L2[0,∞[) over the Hilbert space L2[0,∞[ (some
definitions are given in Section 4 below). Probabilities are determined in
the usual quantum probabilistic way [6, 7] using the vacuum as state vector.
Corresponding to each natural direct sum decomposition such as

L2[0,∞[= L2[0, s1[⊕
N−1⊕
j=1

L2[sj , sj+1[⊕L2[sN ,∞[ ,

the Fock space F decomposes into a tensor product

F = Fs10 ⊗
N−1⊗
j=1

Fsj+1
sj ⊗F∞sN

in such a way that each exponential vector is a product vector

e (f) = e (fs10 )⊗ e
(
f s2s1
)
⊗ e

(
fs3s2
)
⊗ · · · ⊗ e

(
fsNsN−1

)
⊗ e (f∞N )

formed from the restrictions of the function f ∈ L2[0,∞[ to the intervals
[0, s1[, [s1, s2[, [s2, s3[, . . . , [sN−1, sN [, [sN ,∞[.

The quantum Itô product table for planar Brownian motion (P,Q) en-
ables quantum stochastic integrals [8] to be multiplied according to the
Leibniz–Itô formula for the stochastic differential of their product

d (MN) = (dM)N +MdN + dMdN ,

where the product dMdN is evaluated from the Itô multiplication rule for
the basic differentials, namely

dP dQ dT

dP dT −idT 0
dQ idT dt 0
dT 0 0 0

Here, the time process T consists of multiples of the identity operator I,
T (t) = tI.
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The Itô algebra I is nilpotent, I3 = 0, and I2 = CdT is one-dimensional.
It follows that all products in I ⊗ I are scalar multiples ηdT ⊗ dT, where
the scalars η for products of the basis elements drj,k = dRj ⊗ dRk, j, k =
1, 2, 3 where (dR1, dR2, dR3) = (dPσ, dQσ, dT ), are given by the table for

η dr11 dr12 dr21 dr22

dr11 1 −i −i −1
dr12 i 1 1 −i
dr21 i 1 1 −i
dr22 −1 i i 1

j, k ∈ {1, 2}, while all such products involving j = 3 vanish.
Let a general element of I ⊗ I be expanded in the form

dr = i
3∑

j,k=1

ρj,kdrj,k

for complex scalars ρj,k.

Theorem 1. The unitarity condition (9) holds if and only if ρj,k is real for
all (j, k) 6= (3, 3), and

i (ρ33 − ρ̄33) + (ρ11 − ρ22)2 + (ρ21 + ρ12)
2 = 0 . (10)

Proof. We have dr† = −i
3∑

u,v=1
ρ̄u,vdru,v and so, using the table,

drdr† =
{(
|ρ11|2 + |ρ12|2 + |ρ21|2 + |ρ22|2

)
+2iIm ((ρ12 + ρ21) (ρ̄11 − ρ̄22))
+2Re (ρ12ρ̄21 − ρ22ρ̄11)} dT ⊗ dT . (11)

Thus, for the condition (9) to hold, we require firstly that ρuv − ρ̄uv = 0 for
all (u, v) 6= (3, 3), so that these ρuv must all be real numbers. When this is
the case, (11) becomes

drdr† = (ρ11 − ρ22)2 + (ρ21 + ρ12)
2 .

Thus for (9) to hold, we must have (10). Conversely these conditions imply
(9). �

Thus, the unitary generators without any time terms, that is, with ρuv=0
if either u or v = 3, so that in particular ρ33 = 0, are of the form

drλ,µ = i (λ (dP ⊗ dQ− dQ⊗ dP ) + µ (dP ⊗ dP + dQ⊗ dQ)) , (12)

where λ = ρ12 = −ρ21 and µ = ρ11 = ρ22 are real parameters.
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3. Approximation by discrete double products

We approximate the rectangular and triangular double product integrals∏
[a,b[×[c,d[ (1+drλ,µ) and

∏
<[a,b[

(1+drλ,µ), where drλ,µ is the generator (12)
as follows. We partition the intervals [a, b[ and [c, d[ intom and n equal sized
subintervals,

[a, b[=

m⊔
j=1

[xj−1, xj [, [c, d[=

n⊔
k=1

[yk−1, yk[ , (13)

where xj = a + j
m(b − a), yk = c + k

n(d − c). Writing the right-hand side
of (12) as

i (λ (dP ⊗ dQ−dQ⊗ dP )+µ (dP ⊗ dP+dQ⊗ dQ)) = i
2∑

u,v=1

ρuvdRu ⊗ dRv

we then make the approximation

∏
[a,b[×[c,d[

(1 + drλ,µ) =
∏

[a,b[×[c,d[

1 + i
2∑

u,v=1

ρuvdRu ⊗ dRv


'

∏
(j,k)∈Nm×Nn

1 + i

 2∑
u,v=1

ρuvδj (Ru)⊗ δ′k (Rv)

 ,

(14)

where

δj (Ru) = Ru (xj)−Ru (xj−1) , δ′k (Rv) = Rv (yk)−Rv (yk−1) .

Because of the commutation relation (6) each of the pairs (R1(xj)−R1(xj−1),
R2(xj)−R2(xj−1)) satisfies the commutation relation

[R1 (xj)−R1 (xj−1) , R2 (xj)−R2 (xj−1)] = −2i (xj − xj−1) = −2i
b− a
m

and each of R1(xj)−R1(xj−1) and R2(xj)−R2(xj−1) commutes with each of
R1(xk)−R1(xk−1) and R2(xk)−R2(xk−1). Hence, the operators (pj , qj)

m
j=1

defined by

pj =

√
m

b− a
(R1 (xj)−R1 (xj−1)) ,

qj =

√
m

b− a
(R2 (xj)−R2 (xj−1))
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satisfy the standard1 canonical commutation relations

[pj , qk] = −2iδjk, [pj , pk] = [qj , qk] = 0 , j, k = 1, 2, . . . ,m .

Similarly, the operators (p′k, q
′
k)
m
k=1 defined by

p′k =

√
n

d− c
(R1 (yk)−R1 (yk−1)) ,

q′k =

√
n

d− c
(R2 (yk)−R2 (yk−1))

satisfy the standard canonical commutation relations. The approximation
(14) becomes∏

[a,b[×[c,d[

(1 + drλ,µ)

'
∏

(j,k)∈Nm×Nn

(
1 + iθmn

(
λ
(
pj ⊗ q′k − q′j ⊗ pk

)
+ µ

(
pj ⊗ p′k + qj ⊗ q′k

)))
,

(15)

where θmn =

√
(b−a)(d−c)

mn .

4. A one-parameter unitary group in two degrees of freedom

We consider the self-adjoint operator

L (λ, µ) = λ
(
pq′ − qp′

)
+ µ

(
pp′ + qq′

)
, (16)

where (p, q) and (p′, q′) are mutually commuting standard canonical pairs,
together with the one-parameter unitary group (eixL(λ,µ))x∈R of which L(λ, µ)
is the infinitesimal generator. It is convenient to make use of two different
unitarily equivalent standard representations of the quantum system of two
degrees of freedom described by (p, q), (p′, q′).

The Schrödinger representation is in the Hilbert space L2(R2) and is
given informally by

p = −
√

2i
∂

∂s
, q =

√
2s , p′ = −

√
2i
∂

∂t
, q′ =

√
2t

1 In quantum probability, it is most convenient to normalise Planck’s constant to the
value 4π.
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in terms of the components of the vector2 (s, t)τ in R2. More rigorously, the
corresponding one-parameter unitary groups (eixp)x∈R, (eixq)x∈R, (eixp

′
)x∈R

and (eixq
′
)x∈R are given by the actions:(

eixpf
)

((s, t)τ ) = f
((
s+
√

2x, t
)τ)

,(
eixqf

)
((s, t)τ ) = ei

√
2xsf ((s, t)τ ) ,(

eixp
′
f
)

((s, t)τ ) = f
((
s, t+

√
2x
)τ)

,(
eixq

′
f
)

((s, t)τ ) = ei
√
2xtf ((s, t)τ ) .

By contrast, the Fock representation, which we will now describe, is in
the Fock space Γ (C2) over the Hilbert space C2. It is convenient to define
the Fock space Γ (H) over an arbitrary Hilbert space H abstractly as an-
other Hilbert space generated by a family (e(f))f∈H of so-called exponential
vectors satisfying

〈e (f) , e (g)〉 = e〈f,g〉

for arbitrary f, g ∈ H. Any two candidate Fock spaces are then unitarily
equivalent under a unique unitary operator which exchanges the families of
exponential vectors, and can thus be identified. If R is a unitary operator
on H, then there is a unique unitary operator Γ (R) on Γ (H), called the
second quantization of R, such that for each f ∈ H, Γ (R)e(f) = e(Rf). If
H = H1 ⊕ H2 is a direct sum, we identify Γ (H) with the tensor product
Γ (H1)⊗ Γ (H2) with e(f1 ⊕ f2) = e(f)⊗ e(f2).

The family of Weyl operators (W (f))f∈H consists of the unitary opera-
tors for which, for arbitrary f, g ∈ H,

W (f) e (g) = e−〈f,g〉−
1
2
‖f‖2e (f + g) .

They satisfy the Weyl relation

W (f)W (g) = e−iIm〈f,g〉W (f + g) .

For arbitrary unitary R on H and f ∈ H, we have

Γ (R)W (f)Γ (R)−1 = W (Rf) . (17)

We realise (p, q) and (p′, q′) in Γ (C2) in terms of Weyl operators by
defining

eixp = W ((x, 0)τ ) , eixq = W ((−ix, 0)τ ) ,

eixp
′

= W ((0, x)τ ) , eixq
′

= W ((0,−ix)τ ) .

2 τ denotes transposition.
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These satisfy the canonical commutation relations because, for example, the
Weyl relation implies that

eixpeiyq = e2ixyeiyqeixp

which is the rigorous form of the commutation relation

[p, q] = −2i .

To establish the unitary equivalence with the Schrödinger realisation, we
first make the chain of identifications

Γ
(
C2
)

= Γ (C⊕ C) = Γ (C)⊗ Γ (C) = l2 ⊗ l2 ,

where Γ (C) is identified with the standard Hilbert space l2 of square-sum-
mable sequences with

e (z) =

(
1,

z√
1!
,
z2√
2!
, . . .

)
.

Next, we map the space l2 onto L2(R) by mapping the sequence (zn)∞n=0 ∈ l2
to
∑∞

n=0 znhn, where (hn)∞n=0 is the orthonormal basis of Hermite functions
in L2(R). Finally, we identify L2(R)⊗L2(R) with L2(R2) by extending the
identification (f ⊗ g)((s, t)τ ) = f(s)g(t), and thereby map Γ (C2) = l2 ⊗ l2
onto L2(R)⊗L2(R) = L(R2). The Fock vacuum vector e(0C2) = e(0)⊗ e(0)
is mapped to h0 ⊗ h0 which is the Gaussian function

G (s, t) =
1

π
e−

1
2(s2+t2) .

Note that in the Schrödinger representation,

L (λ, µ)
(
h0 ⊗ h′0

)
= 0 (18)

since ((
pq′ − qp′

)
G
)

(s, t) = −2i

π

(
∂

∂s
t− s ∂

∂t

)
e−

1
2(s2+t2) = 0 ,

((
pp′ + qq′

)
G
)

(s, t) =
2

π

(
− ∂2

∂s∂t
+ st

)
e−

1
2(s2+t2) = 0 .

Let us now realise eixL(λ,µ) in the Fock representation as the second
quantization of a unitary operator given on C2 by left multiplication by a
unitary 2× 2 matrix. We introduce the notation

ν = λ+ iµ = eiφ |ν| .
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Theorem 2. In the Fock representation,

eixL(λ,µ) = Γ

([
cos (2x |v|) −e−iφ sin (2x |v|)
eiφ sin (2x |v|) cos (2x |v|)

])
. (19)

Proof. We use the notation

ξ(λ,µ) (x) =

[
cos (2x |v|) −e−iφ sin (2x |v|)
eiφ sin (2x |v|) cos (2x |v|)

]
.

Note first that (ξ(λ,µ)(x))x∈R is indeed a one-parameter unitary group. Now,
consider

Γ
(
ξ(λ,µ) (x)

)
eiypΓ

(
ξ(λ,µ) (x)

)−1
= Γ

(
ξ(λ,µ) (x)

)
W ((y, 0)τ )Γ

(
ξ(λ,µ) (x)

)−1
= W

(
ξ(λ,µ) (x) (y, 0)τ

)
= W

((
cos (2x |v|) y, eiφ sin (2x |v|) y

)τ)
= W ((cos (2x |v|) y, 0)τ )W

((
0, eiφ sin (2x |v|) y

)τ)
.

Since

W
((

0, eiφ sin (x |v|) y
)τ)

= W ((0, cosφ sin (2x |v|) y + i sinφ sin (2x |v|) y)τ )

= ei cosφ sinφ sin(2x|v|)2y2W ((0, cosφ sin(2x |v|) y)τ )W ((0, i sinφ sin(2x |v|) y)τ )

= ei cosφ sinφ sin(2x|v|)2y2eiy cosφ sin(2x|v|)p′e−iy sinφ sin(2x|v|)q′

= ei sin(2x|v|)y(cosφp
′−sinφq′) ,

we get

Γ
(
ξ(λ,µ) (x)

)
eiypΓ

(
ξ(λ,µ) (x)

)−1
= eiy(cos(2x|v|)p+sin(2x|v|)(cosφp′−sinφq′)) .

Forming −i ddy
∣∣∣
y=0

, we deduce that

Γ
(
ξ(λ,µ) (x)

)
pΓ
(
ξ(λ,µ) (x)

)−1
=cos (2x |v|) p+sin (2x |v|)

(
cosφp′ − sinφq′

)
.

Forming d
dx

∣∣
x=0

, in turn, we get

[iK, p] = 2 |v|
(
cosφp′ − sinφq′

)
= 2

(
λp′ − µq′

)
= [iL (λ, µ) , p] ,
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where K is the self-adjoint infinitesimal generator of the one-parameter uni-
tary group (Γ (ξ(λ,µ)(x)))x∈R. Similarly, we find that

[iK, q] = [iL (λ, µ) , q] ,
[
iK, p′

]
=
[
iL (λ, µ) , p′

]
,[

iK, q′
]

=
[
iL (λ, µ) , q′

]
.

Since the Fock representation is irreducible, we deduce that K differs from
L(λ, µ) by at most a multiple of the identity. But the second quantizations
Γ (ξ(λ,µ)(x)) all map the vacuum vector e(0C2) = e(0)⊗ e(0) to itself, hence
K annihilates e(0) ⊗ e(0). Moreover, L(λ, µ) also annihilates e(0) ⊗ e(0),
since by (18), its Schrödinger equivalent annihilates the equivalent vector in
the Schrödinger representation. It follows that K = L(λ, µ). �

5. Realisation of rectangular double products
as second quantizations

Since θmn =

√
(b−a)(d−c)

mn , for large m and n, we can make the approxi-
mation

1 + iθmnL (λ, µ) ' exp (iθmnL (λ, µ)) ,

for mutually commuting pairs (p, q) and (p′, q′), to obtain from (15) the
further approximation∏
[a,b[×[c,d[

(1+drλ,µ)'
∏

(j,k)∈Nm×Nn

exp
(
iθmn

(
λ
(
pjq
′
k−qjp′k

)
+µ

(
pjp
′
k+qjq

′
k

)))
.

(20)
We embed the Hilbert space Cm+n = Cm⊕Cn into L2([a, b[)⊕L2([c, d[) by
mapping each element εi of the canonical orthonormal basis of Cm+n to the
vector χi, where

χi =


√

m
b−aχ[a+ i−1

m (b−a),a+ i
m (b−a)[

⊕ 0 if i = 1, 2, . . . ,m

0⊕
√

n
d−cχ[c+ i−m−1

n (d−c),c+ i−m−1
n (d−c)[

if i=m+ 1,m+ 2, . . . ,m+ n
.

We regard each complex (m + n) × (m + n) matrix M = [Mi,l]i,l∈Nm+n

acting on Cm+n by left multiplication as an operator on L2([a, b[)⊕L2([c, d[)
given by

m+n∑
i,l=1

Mi,l |χi〉 〈χl| .
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Then using (19), the approximation (20) becomes

∏
[a,b[×[c,d[

(1 + drλ,µ) '
∏

(j,k)∈Nm×Nn

Γ





1 · · ·
(j)

0 · · ·
(m+k)

0 · · · 0
...

. . .
... · · ·

... · · ·
...

(j)0 · · · cos (2θmn |v|) · · · −e−iφ sin (2θmn |v|) · · · 0
... · · ·

...
. . .

... · · ·
...

(m+k)0 · · · eiφ sin (2θmn |v|) · · · cos (2θmn |v|) · · · 0
... · · ·

... · · ·
...

. . .
...

0 · · · 0 · · · 0 · · · 1




which is equal to the second quantization of the matrix operator

∏
(j,k)∈Nm×Nn



1 · · ·
(j)

0 · · ·
(m+k)

0 · · · 0
...

. . .
... · · ·

... · · ·
...

(j)0 · · · cos (2θmn |v|) · · · −e−iφ sin (2θmn |v|) · · · 0
... · · ·

...
. . .

... · · ·
...

(k)0 · · · eiφ sin (2θmn |v|) · · · cos (2θmn |v|) · · · 0
... · · ·

... · · ·
...

. . .
...

0 · · · 0 · · · 0 · · · 1


.

We denote by this matrix operator by Wm,n. The limit lim
m,n→∞

Wm,n may

then be found in two stages as follows. First, consider Wm,1 and W1,n,
which are respectively given by

m∏
j=1



1 0 · · ·
(j)

0 0 · · · 0
(m+1)

0
0 1 · · · 0 0 · · · 0 0
...

...
. . .

...
... · · ·

...
...

(j)0 0 · · · α 0 · · · 0 β
0 0 · · · 0 1 · · · 0 0
...

... · · ·
...

...
. . .

...
...

0 0 · · · 0 0 · · · 1 0
(m+1)0 0 · · · γ 0 · · · 0 δ
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=



α βγ βδγ · · · βδm−3γ βδm−2γ βδm−1

0 α βγ · · · βδm−4γ βδm−3γ βδm−2

0 0 α · · · βδm−5γ βδm−4γ βδm−3

...
...

...
. . .

...
...

...
0 0 0 · · · α βγ βδ
0 0 0 · · · 0 α β
γ δγ δ2γ · · · δm−2γ δm−1γ δm


(21)

and

n∏
k=1



α 0 · · ·
k+1
β 0 · · · 0

0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

(k+1)γ 0 · · · δ 0 · · · 0
0 0 · · · 0 1 · · · 0
...

... · · ·
...

...
. . .

...
0 0 · · · 0 0 · · · 1



=



αn β αβ α2β · · · αn−2β αn−1β
γαn−1 δ γβ γδβ · · · γαn−3β γαn−2β
γαn−2 0 δ γβ · · · γαn−4β γαn−3β
γαn−3 0 0 δ · · · γαn−5β γαn−4β
...

...
...

...
. . .

...
...

γα 0 0 0 · · · δ γβ
γ 0 0 0 · · · 0 δ


, (22)

where

α = δ = cos

(
2

√
(b− a) (d− c)

mn
|v|

)
and

β = −γ̄ = −e−iφ sin

(
2

√
(b− a) (d− c)

mn
|v|

)
.

Using the limits

lim
m→∞

δm = lim
m→∞

1− 1

2

(
2

√
(b− a) (d− c)

mn
|v|

)2
m

= e−2(b−a)(d−c)|v|
2/n ,
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the limit of the operator (21) is the matrix operator on L2([a, b[)⊕ C

lim
m→∞

Wm,1 =

 I +An −e−iφ
∣∣∣f (d−c)/n[a,b[

〉
eiφ
〈
g
(d−c)/n
[a,b[

∣∣∣ e−2(b−a)(d−c)|ν|
2/n

 . (23)

Here,
∣∣∣f (d−c)/n[a,b[

〉
and

〈
g
(d−c)/n
[a,b[

∣∣∣ denote respectively the map C→L2 ([a, b[) ,

z 7→ zf
(d−c)/n
[a,b[ and the covector L2 ([a, b[) → C, h 7→

〈
g
(d−c)/n
[a,b[ , h

〉
, where

for s ∈ [a, b[

f
(d−c)/n
[a,b[ (s) = e−2(d−c)|ν|

2(b−s)/n , g
(d−c)/n
[a,b[ (s) = e−2(d−c)|ν|

2(s−a)/n ,

and An is the integral operator on L2 ([a, b[) whose kernel is

(s, t) 7→ −2 |ν|2 χ<[a,b[
e−2|ν|

2(d−c)(t−s)/n .

Similarly, since

lim
n→∞

αn = e−2(b−a)(d−c)|v|
2/m ,

the limit of the operator (22) is the matrix operator on C⊕ L2([c, d[)

lim
n→∞

W1,n =

 e−2(b−a)(d−c)|v|
2/m

〈
g
(b−a)/m
[c,d[

∣∣∣∣∣∣f (b−a)/m[c,d[

〉
I +Dm

 . (24)

The matrix product rules (21) and (22) continue to hold even if the
scalars α, β, γ and δ are replaced by a scalar, a covector, a vector and an
operator on L2 (R) in the first case, and by an operator, a vector, a covector
and a scalar, respectively, in the second. It is thus possible to evaluate
lim
m→∞

(
lim
n→∞

Wm,n

)
and lim

n→∞

(
lim
m→∞

Wm,n

)
by substituting into (21) and (22)

respectively the four entries in the matrix (24) and in (23). Denoting by V[a,b[
the integral operator on L2([a, b[)

(
V[a,b[f

)
(s) =

b∫
s

f (t) dt, s ∈ [a, b[

and using the limits

lim
m→∞

(I +Dm)m = e−|v|
2(b−a)V[c,d[ , lim

n→∞
(I +An)n = e−|v|

2(d−c)V[a,b[ ,
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one finds after some computation that the two iterated limits are equal, and
that their common value is

lim
m,n→∞

Wm,n =

[
I +A B
C I +D

]
, (25)

where A, B, C and D are respectively integral operators from L2([a, b[) to
itself, from L2([c, d[) to L2([a, b[) and vice versa, and from L2([c, d[) to itself,
whose kernels are given respectively by

KerA (s, t) = χ<[a,b[
(s, t)

∞∑
N=0

(t− s)N
(
− |v|2 (d− c)

)N+1

N ! (N + 1)!
,

KerB (s, t) = νχ[a,b[×[c,d[

∞∑
N=0

(
− |v|2 (b− s) (t− c)

)N
(N !)2

,

KerC (s, t) = −ν̄χ[c,d[×[a,b[

∞∑
N=0

(
− |v|2 (d− s) (t− a)

)N
(N !)2

,

KerD (s, t) = χ<[c,d[
(s, t)

∞∑
N=0

(t− s)N
(
− |v|2 (b− a)

)N+1

N ! (N + 1)!
.

See [9] for more details of essentially this argument in the case of µ = 0
and [10] for an alternative derivation where also it is shown rigorously that
the limit (25) is indeed a unitary operator and that these heuristics are
rigorously justified. Namely,

Γ

([
I +A B
C I +D

])
=

∏
[a,b[×[c,d[

(1 + iλ (dP ⊗ dQ− dQ⊗ dP ))

in so far as the relevant QSDEs are satisfied.
An explicit form similar to (25) for the corresponding unitary operator

W<[a,b[
such that

Γ
(
W<[a,b[

)
=
∏
<[a,b[

(1+i (λ (dP ⊗ dQ−dQ⊗ dP )+µ (dP ⊗ dP−dP ⊗ dP )))

is more difficult to obtain. However, it has been found provisionally and ver-
ified to be unitary [11]. At present, it remains to be verified that Γ

(
W<[a,b[

)
satisfies the defining QSDE.



1868 R.L. Hudson, Y. Pei

6. Universality

The unitary generators of form drλ,µ of form (12) can be characterized
among all such generators by their invariance under rotational automor-
phisms of the form

(dP, dQ) 7→ (cos θ dP − sin θ dQ, sin θ dP + cos θ dQ)

of the Itô algebra I. The corresponding double products are likewise invari-
ant under gauge transformations

(P,Q) 7→ (cos θ P − sin θ Q, sin θ P + cos θ Q)

of the underlying quantum planar Brownian motion.
The generators drλ,µ are complemented by a second real two-parameter

family

dr′λ,µ = i (λ (dP ⊗ dQ+ dQ⊗ dP ) + µ (dP ⊗ dP − dQ⊗ dQ))+ηλ,µdT⊗dT

of unitary generators which require the additional non-zero time term of the
form of ηλ,µdT⊗dT to satisfy the unitarity condition (9). The corresponding
double products are no longer given by second quantizations. However,
they can be characterized as unitary implementors of explicit Bogolubov
transformations, that is, invertible real-linear transformations of the complex
Hilbert space L2(R+) ⊕ L2(R+) which preserve the imaginary part of the
inner product. See [12] for the case when µ = 0.

It is expected that the full 4-dimensional manifold of unitary double
products, with generators of the form of

dρλ,µ,λ′,µ′ = drλ,µ + dr′λ′,µ′ + ηλ,µ,λ′,µ′dT ⊗ dT ,

admits a similar characterization as unitary implementors of explicit Bogol-
ubov transformations, but this has yet to be established in full generality.

We propose that triangular (or causal) double products of the form of∏
<[a,b[

(
1 + dρλ,µ,λ′,µ′

)
provide a randomized model for unitary time evolution of complex non-
relativistic quantum systems, and conjecture that these products offer para-
digm universal limits for large random unitary matrices.
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