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1. Introduction

In this paper, we review the papers [1–3], where bistochastic matrices
play some important roles from the point of view of characterizations of
positive maps related to the notion of “entropy” and relations between sub-
algebras of matrix algebras. So proofs are often omitted and I refer the
interested reader to the introductory literature on the subject [1–3].

In order to simplify our discussion, throughout this paper, we restrict
our target to the algebra Mn(C) of n× n complex matrices. We denote the
(i, j)-component of x ∈Mn(C) by xij , and the identity matrix by 1 simply.
By Trn (often simply by Tr), we mean the standard trace of Mn(C) such
that Tr(p) = 1 for every minimal projection p. The canonical tracial state
Tr/n is denoted as τ simply.

In Section 2, we review the paper [3] Around Shannon’s Interpretation
for Entropy-preserving Stochastic Averages. The main topic in [3] is char-
acterizations for entropy preserving positive unital trace-preserving maps
via bistochastic matrices. A motivation in [3] is to give a generalized ver-
sion of Shannon’s interpretation for entropy-preserving stochastic averages
of probability vectors in the framework of von Neumann entropy for states
on Mn(C). Shannon states in [4, p. 395] the following: If we perform any
“averaging” operation on the p = {pi}i=1,...,n of the form p′i =

∑
j aijpj ,

(where aij ≥ 0,
∑

i aij =
∑

j aij = 1), the entropy H increases (except in
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the special case where this transformation amounts to no more than a per-
mutation of the pi with H, of course, remaining the same). By replacing a
probability vector (resp. a bistochastic matrix) to a state ρ of Mn(C) (resp.
a unital positive Tr-preserving map Φ on Mn(C)), we showed, among the
others, that the action of Φ on ρ preserves the von Neumann entropy if and
only if Φ behaves just like an automorphism for the state ρ. Furthermore,
we discuss various kinds of entropy in connection to this interpretation.

In Section 3, we describe some results of paper [1]: Relative Entropy for
Maximal Abelian Subalgebras of Matrices and the Entropy of Unistochastic
Matrices. The aim in [1] is to discuss the notion of the entropy for unis-
tochastic matrices from the operator algebraic point of view. There are
several notions on some relative position between two subalgebras of oper-
ator algebras. As one of such notions, Popa [5] introduced the notion of
mutually orthogonal subalgebras. By the terminology complementarity, the
same notion is investigated in the theory of quantum systems (see [6] for
example).

In Section 4, we review some results about mutually orthogonal subal-
gebras. The most primary interest would be the case of two subalgebras
of some full matrix algebra, both of which are either maximal Abelian or
isomorphic to also some full matrix algebra. In such the cases, two subalge-
bras are connected by a unitary. We study the case when the subalgebras A
and B in question are maximal Abelian subalgebras and in the next section,
we study the case when the subalgebras A and B are isomorphic to some
Mn(C), i.e., subfactors. First, we denote the results on mutually orthogonal
maximal Abelian subalgebras in papers [1] and [2] Von Neumann Entropy
and Relative Position Between Subalgebras, and then the results on mutu-
ally orthogonal subfactors in paper [2] by introducing some density matrix
arising from the pair {A,B}. We show that the von Neumann entropy of
the density matrix gives a characterization of the mutual orthogonality by
using the notion of operational partition of unity.

Here, we summarize notations, terminologies and basic facts.
Entropy function η. The entropy function η is defined on [0, 1] by

η(t) = −t log t , 0 < t ≤ 1 and η(0) = 0 . (1.1)

The η is strictly operator-concave, i.e. for a k-tuple of real numbers {ti}ki=1

such that ti > 0,
∑k

i=1 ti = 1 and matrices {xi}ki=1 with eigenvalues in [0,1],
it holds in general that

k∑
i=1

tiη(xi) ≤ η

(
k∑
i=1

tixi

)
(1.2)

and equality implies that xi = xj for all i, j. (See, for example, [7, B], [6, 8].)
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Shannon entropy. Let λ = (λ1, . . . , λn) be a probability vector in Rn.
The Shannon entropy H(λ) for λ is given as

H(λ) = η(λ1) + · · ·+ η(λn) . (1.3)

It holds always that H(λ) ≤ log n and H(λ) ≤ H(λb) ([4], cf. [6]) for
a bistochastic matrix b = [bij ] (i.e. bij ≥ 0,

∑
i bij =

∑
j bij = 1 for all

i, j = 1, . . . , n). A bistochastic matrix is also called a doubly stochastic
matrix (see, for example, [6]).
Density and von Neumann entropy. Every positive linear functional φ
on Mn(C) is of the form

φ(x) = Tr(Dφx) , x ∈Mn(C) (1.4)

for a unique positive element Dφ in Mn(C). Dφ is called the density matrix.
If ρ is a state, then Tr(Dρ) = 1.

Using the eigenvalue list {λ1, . . . , λn} of Dφ, the von Neumann entropy
S(φ) for a positive linear functional φ and the von Neumann entropy S(Dφ)
for Dφ are defined by

S(φ) = S(Dφ) =

n∑
i=1

η(λi) . (1.5)

Hence, if ρ is a state, then the vector λ = (λ1, . . . , λn) of the eigenvalues of
Dρ is a probability vector and S(ρ) = S(Dρ) = H(λ).
The pair {ρ,Φ} of a state and a positive map. Let ρ be a state of
Mn(C), and let Dρ be the density matrix of ρ. Let Φ :Mn(C)→Mn(C) be
a positive unital Tr-preserving map. Then, Φ(Dρ) is a positive matrix and
Tr(Φ(Dρ)) = 1. The most basic examples of positive unital Tr-preserving
maps are automorphisms and conditional expectations, that is, there exists
always a unique positive linear map EA of Mn(C) onto a subalgebra A of
Mn(C) such that τ(xa) = τ(EA(x)a) for all x ∈ Mn(C), a ∈ A. It is called
the conditional expectation and satisfies that EA(axb) = aEA(x)b, for all
x ∈M, a, b ∈ A.

In order to see the state whose density matrix is Φ(Dρ), we need the
Hilbert–Schmidt inner product of Mn(C). The inner product is given by

〈x, y〉 = Tr (y∗x) , x, y ∈Mn(C) (1.6)

and the adjoint map Φ∗ :Mn(C)→Mn(C) of Φ is given by

Tr (yΦ∗(x)) = Tr (Φ(y)x) , x, y ∈Mn(C) . (1.7)
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Since Φ is positive and Tr-preserving, it implies that Φ∗ is positive and
unital so that ρ ◦ Φ∗ is a state, whose density matrix is Φ(Dρ)

ρ ◦ Φ∗(x) = Tr (DρΦ
∗(x)) = Tr(Φ(Dρ)x) , x ∈Mn(C) . (1.8)

Let
λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) ,

be the probability vectors of the eigenvalues of Dρ and Φ(Dρ) respectively.
Here, we arrange them always in a decreasing order

λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn .

Let {e1, . . . , en} (resp. {p1, . . . , pn}) be the mutually orthogonal minimal
projections inducing the following decomposition of Dρ (resp. Φ(Dρ))

Dρ =
n∑
i=1

λiei and Φ(Dρ) =
n∑
j=1

µjpj . (1.9)

We denote by u(ρ,Φ) the unitary such that

u(ρ,Φ)eiu(ρ,Φ)
∗ = pi for each i = 1, . . . , n . (1.10)

Also we denote by A (resp. B) the maximal Abelian subalgebra ofMn(C)
generated by {e1, . . . , en} (resp. {p1, . . . , pn}).

2. Around Shannon’s interpretation

2.1. The bistochastic matrix bρ(Φ) for the pair {ρ, Φ}
For a state ρ of Mn(C) and a unital positive Tr-preserving map Φ on

Mn(C), we define the matrix bρ(Φ) by

bρ(Φ)ij = Tr(Φ(ei)pj) , 1 ≤ i ≤ n , 1 ≤ j ≤ n . (2.1)

Our discussions do not depend on this kind of matrix representations as
follows, we denote them simply by bρ(Φ):

Assume that λi > λi+1 and µi > µi+1 for all i = 1, . . . , n − 1. Then,
the value bρ(Φ)ij is uniquely determined for all i, j because the spectral
projections {ei}i and {pj}j are uniquely determined. In the other case, the
value bρ(Φ)ij is not always uniquely determined. For example, if it happened
that D =

∑
i λifi and Φ(D) =

∑
j µjqi for some projections {fi}ni=1 and

{qj}nj=1 different from {ei}ni=1 and {pj}nj=1, then the matrix bρ(Φ)
e,p with

the (i, j)-coefficient Tr(Φ(ei)pj) may be different from the matrix bρ(Φ)f,q
with the (i, j)-coefficient Tr(Φ(fi)qj). But the difference is covered by the
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permutation matrices [σ] and [π] via the permutations σ and π such that
fi = eσ(i) and qi = pσ(i) for all i and j: bρ(Φ)f,q = [σ]bρ(Φ)

e,p[π]. Then,
bρ(Φ) is a bistochastic matrix, i.e.,

bij ≥ 0 and
∑
i

bij =
∑
j

bij = 1 for all i, j

and bρ(Φ) transposes the vector λ to the vector µ, i.e. λbρ(Φ) = µ.
By using this bistochastic matrix bρ(Φ), in [3] we had the following:

Theorem 2.1. Let ρ be a state on Mn(C) and let Φ : Mn(C) → Mn(C) be
a unital positive Tr-preserving map. Then, the following are equivalent:

(i) S(ρ ◦ Φ∗) = S(ρ), i.e. S(Φ(Dρ)) = S(Dρ).

(ii) λ = µbρ(Φ)
T , where xT denotes the transpose of the matrix x.

(iii) λi = µi for all i = 1, . . . , n.

(iv) Φ(Dρ) = uDρu∗ for some unitary u ∈Mn(C).

(v) Φ∗Φ(Dρ) = Dρ.

Remark 2.2. Under the assumption that Φ is 2-positive, the corresponding
relation to (i) ⇔ (v) is obtained for the discussion on relative entropy in
[9, Theorem 7.1].

In our case, Φ is not necessarily 2-positive.

Example 2.3. Now, we consider the transpose mapping Φ : x → xT on
Mn(C). It is a typical example of a unital Tr-preserving positive but not
2-positive map, and Φ satisfies the all conditions in the theorem for every
state ρ.

In fact, the Φ is a symmetry as follows:

〈Φ∗(x), y〉 = 〈x, Φ(y)〉 = Tr (Φ(y)∗x) = Tr
((
yT
)∗
x
)

=

n∑
i,j=1

yi,jxj,i =

n∑
i,j=1

yj,ixi,j = Tr
(
y∗xT

)
= Tr(y∗Φ(x))

= 〈Φ(x), y〉 for all x = (xij) , y = (yij) .

Hence, Φ∗Φ is the identity map on Mn(C).

Remark 2.4. If the state ρ is the normalized trace Tr /n, then Dρ = In/n
so that the statements (i)–(v) are all trivial for every Φ.
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2.2. Relations among various entropies

Definition 2.5. We modify the notion of weighted entropy for a bistochastic
matrix defined in [10] to our bistochastic matrix bρ(Φ). We let

Hλ(bρ(Φ))=

n∑
i=1

λi

n∑
j=1

η (bρ(Φ)ij) and Hµ(bρ(Φ))=

n∑
j=1

µj

n∑
i=1

η (bρ(Φ)ij) .

This is well-defined, i.e. the valuesHλ(bρ(Φ)) andHµ(bρ(Φ)) depend only
on the pair {ρ, Φ}. In fact, assume that Dρ =

∑
i λifi and Φ(Dρ) =

∑
j µjqi

for minimal projections {fi}ni=1 and {qj}nj=1 which are not always the same
as {ei}ni=1 and {pj}nj=1. Then, there are permutations σ and π of {1, . . . , n}
such that fi = eσ(i) and qi = pπ(i) for all i. If λi = λσ(i) for all i, then

n∑
i=1

λi

n∑
j=1

η (Tr (Φ(fi)qj)) =
n∑
i=1

λi

n∑
j=1

η
(
Tr
(
Φ
(
eσ(i)

)
pπ(j)

))
=

n∑
i=1

λσ(i)

n∑
j=1

η
(
Tr
(
Φ
(
eσ(i)

)
pπ(j)

))
=

n∑
i=1

λi

n∑
j=1

η (Tr (Φ(ei)pj)) .

Hence, the value Hλ(bρ(Φ)) does not depend on the choice of minimal pro-
jections. Similarly, it holds for Hµ(bρ(Φ)) since µj = µπ(j) for all j.

Definition 2.6. Since Φ is a positive unital Tr-preserving map, Φ(ei) and
Φ∗(pj) are density matrices for all i, j. We put Sρ(Φ) and Sρ(Φ∗) as the
following:

Sρ(Φ) =

n∑
i=1

λiS(Φ(ei)) and Sρ(Φ∗) =

n∑
j=1

µjS(Φ
∗(pj)) .

Similarly to the case of Hλ(bρ(Φ)) and Hµ(bρ(Φ)), the values Sρ(Φ) and
Sρ(Φ∗) are uniquely determined by the pair {ρ, Φ}.

Proposition 2.7. For the conditional expectation EB (resp. EA) onto B
(resp. A), the following holds:

1. EB(Φ(ei)) =
∑n

j=1 bρ(Φ)ijpj, EA(Φ
∗(pj)) =

∑n
i=1 bρ(Φ)ijei,

2. Hλ(bρ(Φ)) =
∑

i λiS(EB(Φ(ei))), Hµ(bρ(Φ)) =
∑

j µjS(EA(Φ
∗(pj))).
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For a probability vector λ = (λ1, . . . , λn), we set

Jλ = {k;λk 6= 0} . (2.2)

Theorem 2.8. Let ρ be a state of Mn(C), and let Φ be a unital positive
Tr-preserving map on Mn(C). Then, the following statements hold:

1. Sρ(Φ) ≤ Hλ (bρ(Φ)) ≤ S (ρ ◦ Φ∗) = S (Φ (Dρ)) ≤ S(ρ) + Sρ(Φ)

∨ ‖
S(ρ) = S (Dρ) .

2. Sρ(Φ) = Hλ(bρ(Φ)) if and only if Φ(ei) ∈ B for all i ∈ Jλ:

Φ(ei) =
n∑
j=1

bρ(Φ)ijpj , for all i ∈ Jλ .

3. Hλ(bρ(Φ)) = S(ρ ◦Φ∗) if and only if bρ(Φ)ij = µj for all i ∈ Jλ and j:

Φ(Dρ) =
n∑
j=1

bρ(Φ)ijpj .

4. Sρ(Φ) = S(ρ ◦ Φ∗) if and only if Φ(Dρ) = Φ(ei) for every i ∈ Jλ.

5. S(ρ ◦ Φ∗) = S(ρ) + Sρ(Φ) if and only if the ρ is a pure state.

Corollary 2.9. Assume that all eigenvalues of Dρ are non-zero and that
Hλ(bρ(Φ)) = S(ρ ◦ Φ∗). Then the state ρ ◦ Φ∗ is the canonical tracial state,
and so that Hλ(bρ(Φ)) = S(ρ ◦ Φ∗) = log n.

Remark 2.10. (Unistochastic matrix and Hadamard matrix.) A bis-
tochastic matrix b is said to be unistochastic if it is induced from a unitary
matrix u by that bij = |uij |2 for all i, j. A unitary matrix u is called a
Hadamard matrix if |uij | = 1/

√
n for all i, j. The above shows that if all

eigenvalues of Dρ are non-zero and if Hλ(bρ(Φ)) = S(Φ(Dρ)) then bρ(Φ) is
a unistochastic matrix induced from a Hadamard matrix.

Example 2.11.

(1) Assume that ρ is a pure state. Then, it is clear that

S(ρ) = 0 and Sρ(Φ) = Hλ(bρ(Φ)) = S(ρ ◦ Φ∗)

for every positive unital Tr-preserving map Φ.
Furthermore, for any given value s with 0 ≤ s ≤ log n, there exists a
positive unital Tr-preserving map Φ such that Sρ(Φ) = s.
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(2) If Φ is a *-isomorphism, then for each state ρ,

Sρ(Φ) = Hλ(bρ(Φ)) = 0 and S(ρ ◦ Φ∗) = S(ρ) .

(3) If Φ is a map Mn(C)→ C1M , then for every state ρ

Sρ(Φ) = Hλ(bρ(Φ)) = S(ρ ◦ Φ∗) = logn .

(4) A typical counter example of Φ for the statement (4) in the above
theorem is the transpose mapping Φ(x) = xT , where ρ is not a pure
state.

More general examples are given as follows: Let D =
∑

i λiei be a given
density matrix. Let {pj}nj=1 be mutually orthogonal minimal projections.
Then, we have a family of partially isometries {vij}ij such that v∗ijvij = ej
and vijv∗ij = pj . Let a = [aij ] be a bistochastic matrix and let

Φ(x) =
∑
i,j

aijvijxv
∗
ij , x ∈Mn(C) .

Then, Φ is a unital positive Tr-preserving map and

Φ(D) =
∑
i

(
∑
j

aijλj)pi and Φ(ei) =
∑
j

ajipj for all i .

Hence, Φ(ei) ∈ B for all i, that is the condition (2).
Also we can choose bistochastic matrices a = [aij ], one of which induces Φ

satisfying the condition (4) and the other of which induces Φ not satisfying
the condition (4).

The following show us that the bistochastic matrix bρ(Φ) plays an im-
portant role:

Theorem 2.11. Let ρ be a state of Mn(C), and let Φ be a unital positive
Tr-preserving map on Mn(C). Then, the following conditions are equivalent:

(0) Hλ(bρ(Φ)) = 0,

(1) for each i ∈ Jλ, there exists a unique j(i) such that

λi = µj(i) and Φ(ei) = pj(i) ,

(2) S(ρ) = S(ρ ◦ Φ∗) = S(Φ(Dρ)),

(3) there exists a unitary u such that Φ(Dρ) = uDρu
∗,

(4) Φ∗Φ(Dρ) = Dρ.
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3. Relative entropy and the entropy of unistochastic matrices

In this section, we restrict our attention to the maximal Abelian subal-
gebras (abbreviated as MASA’s) of Mn(C). The most typical example of a
MASA is the algebra Dn(C) of all diagonal matrices.

IfA andB are two MASAs ofMn(C), then there exists a unitary matrix u
with B = uAu∗, which we denote by u(A,B). Each unitary matrix u induces
a unistochastic matrix b(u), which is a typical example of a bistochastic
matrix.

The aim of this section is to discuss the notion of the entropy for unis-
tochastic matrices from the operator algebraic point of view.

3.1. Relative entropy of Connes–Størmer

First, we review about the formula of the relative entropy defined by
Connes and Størmer in [2] (cf. [11]).

Let S be the set of all finite families (xi) of positive elements in Mn(C)
with 1 =

∑
i xi. Let A and B be two subalgebras of Mn(C). The relative

entropy H(A|B) is

H(A | B) = sup
(xi)∈S

∑
i

(τηEB(xi)− τηEA(xi)) .

Let φ be a state onMn(C) and let Φ be the all finite families (φi) of positive
linear functionals on Mn(C) with φ =

∑
i φi. The relative entropy Hφ(A|B)

of A and B related to φ is defined by

Hφ(A|B) = sup
(φi)∈Φ

∑
i

(S(φi |A, φ |A)− S(φi |B, φ |B)) .

Here, S(ψ|ϕ) is the relative entropy for two positive linear functionals ψ and
ϕ such that ψ ≤ λϕ for some λ > 0 given as

S(ψ,ϕ) = Tr(Dψ(logDψ − logDϕ)) .

3.2. Conditional relative entropy

As a replacement of H(A|B) (resp. Hφ(A|B)), we defined h(A|B) (resp.
hφ(A|B)) in [1] as follows:

The conditional relative entropy h(A | B) conditioned by A is

h(A | B) = sup
(xi)∈S

∑
i

(τηEB(EA(xi))− τηEA(xi)) .



1892 M. Choda

Let S(A) ⊂ S be the set of all finite families (xi) of positive elements in
A with 1 =

∑
i xi. Then, it is clear that

h(A | B) = sup
(xi)∈S(A)

∑
i

(τηEB(xi)− τη(xi)) .

Let S′(A) ⊂ S(A) be the set of all finite families (xi) with each xi a
scalar multiple of a projection in A. Then, by the same proof as in [12], we
have

h(A | B) = sup
(xi)∈S′(A)

∑
i

(τηEB(xi)− τη(xi)) .

Hence, we only need to consider the families consisting of scalar multiples
of orthogonal minimal projections.

The conditional relative entropy of A and B with respect to a state φ
conditioned by A is defined in [1] as

hφ(A|B) = sup
(φi)∈Φ

∑
i

(S(φi |A, φ |A)− S((φi ◦ EA) |B, (φ ◦ EA) |B)) .

Assume that Dφ ∈ A. Let Φ(A) ⊂ Φ be the set of all finite families (φi)i
such that (Dφi)i ⊂ A. Then, by the fact that Dφi◦EA

= EA(Qi), we have

hφ(A|B) = sup
(φi)∈Φ(A)

∑
i

(S(φi |A, φ |A)− S(φi |B, φ |B)) .

Here, we just remark the following facts:

(1) If φ is the normalized trace τ , then by [11, Theorem 2.3.1(x)]

hτ (A|B) = h(A | B) .

(2) In general, 0 ≤ hφ(A|B) ≤ Hφ(A|B). If A and B are contained in an
Abelian algebra, then hφ(A | B) coincides with the conditional entropy
in the ergodic theory by a similar proof as in [11, p. 158].

3.2.1. Relation to Schur’s Lemma

What is the meaning of the entropy H(b(u)) from the theory of operator
algebras?

We would like to consider that it should be an invariant related to inner
automorphisms. For example, we just remember Schur’s Lemma. Let

λ = (λ1, . . . , λn) , λi ∈ R and d = (d1, . . . , dn) , di ∈ R .
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Then, Schur’s Lemma says that if λ is the eigenvalue sequence of a self-
adjoint matrix a ∈ Mn(C), and if d is the diagonal sequence of a, then λ
majorizes d, that is, for each k with 1 ≤ k ≤ n,∑

the k largest λ′s ≥
∑

the k largest d′s ,

and
n∑
i=1

λi =

n∑
i=1

di .

These were shown by using the fact that there exists a unitary matrix u =
(u(i, j))ij such that

di =
∑
j

|u(i, j)|2λj , j = 1, . . . , n .

Thus, a unitary u and the unistochastic matrix b(u) defined by u appeared
in the step to get a diagonal matrix from d with d = d∗.

3.3. Relations between hφ(A|uAu∗) and H(b(u))

Let φ be a positive linear functional onMn(C). We set the eigenvalues of
the density Dφ as λ = (λ1, λ2, . . . , λn). Let us decompose Dφ into the form
of Dφ =

∑n
i=1 λiei, where {e1, . . . , en} are mutually orthogonal minimal

projections in Mn(C), which we fix. By keeping in mind that each MASA
is isomorphic to the algebra Dn(C) of diagonal matrices, we describe our
characterizations in [1] by the following simple form:

Theorem 3.1. Let φ be a state of Mn(C), and let u ∈Mn(C) be a unitary.
Then, we have that

hφ(Dn(C) | uDn(C)u∗) = Hλ(b(u)
∗) + S(φ|Dn(C))− S(φ|uDn(C)u∗) . (3.1)

In the special case, where φ = τ ,

h(Dn(C) | uDn(C)u∗) = H(b(u)) = maxφhφv(Dn(C) | uDn(C)u∗) , (3.2)

where the maximum is taken over all states φ of Mn(C) and φv is the state
given by the inner perturbation of φ by v : φv(x) = φ(vxv∗).

4. Mutually orthogonal subalgebras

Popa [5] defined that two subalgebras A and B of Mn(C) are mutually
orthogonal (sometimes denoted as A ⊥ B) if τ(ab) = 0 for a ∈ A, b ∈ B
with τ(a) = τ(b) = 0.
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4.1. Maximal Abelian subalgebras via crossed product decomposition

First, remark that Mn(C) is represented as the crossed product of a
maximal Abelian subalgebra A by the group Zn with respect to α

Mn(C) = A×α Zn ,

where α is the automorphism of A with α(ei) = ei+1, (mod n) for a mu-
tually orthogonal minimal projections {e1, e2, . . . , en} of A. Let {eij ; i, j =
1, 2, . . . , n} be a system of a matrix units of Mn(C) with eii = ei for all i.
Then, the unitary v =

∑n
i=1 ei i−1 satisfies that α(a) = vav∗ for all a ∈ A.

Each x ∈Mn(C) is uniquely written as

x =

n−1∑
i=0

xiv
i , xi ∈ A . (4.1)

The conditional expectation EA of M onto A is given by EA(x) = x0, and
it holds that xi = EA(xv

i∗) for all i = 0, . . . , n− 1 and x ∈Mn(C).
We defined in [2] the entropy S(u) of a unitary u ∈Mn(C) by using the

decomposition of u =
∑n−1

j=0 ujv
j as the following:

S(u) =
n−1∑
j=0

τAη
(
uju
∗
j

)
=

1

n

n−1∑
j=0

Tr η
(
uju
∗
j

)
=

1

n

n−1∑
j=0

S
(
uju
∗
j

)
.

Remark that the family {uiu∗i ; i = 0, . . . , n− 1} is a finite partition of unity
in A and so the entropy S(u) is nothing else but the average of the von
Neumann entropy {S(uju∗j ) : j = 0, 1, . . . , n− 1}.

Now, we can give characterization for the notion of mutually orthogo-
nality by entropy as the following:

Theorem 4.1.

(I) Let A be a maximal Abelian subalgebras of Mn(C), and let u be a
unitary. Then the following characterization in [2] holds:

A ⊥ uAu∗ ⇐⇒ S(u) = log n = max{S(w) | w ∈M , unitary} .

(II) Another characterization in [1] is the following: Let {A0, B0} be a pair
of maximal Abelian subalgebras of Mn(C). Then,

A0 ⊥ B0 ⇐⇒ h(A0 | B0) = log n = max h(A | B) ,

where the maximum is taken over the set of pairs {A,B} of maximal
Abelian subalgebras of Mn(C).
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Remark 4.2. Jones and Sunder [13] characterized that a unitary u is com-
plex Hadamard matrix if and only if Dn(C) ⊥ uDn(C)u∗.

Here, our characterization is that u is a complex Hadamard matrix if
and only if S(u) = logn.

4.2. Case of subfactors

In the case of mutual orthogonality for subfactors, we need to use another
kind of entropy to get a characterization. Now, let M = Mn(C) ⊗Mm(C),
and let τM = Trn/n⊗ Trm/m. Consider the subalgebra N = Mn(C)⊗ 1 ⊂
M . Then, the conditional expectation EN on N has the following form:

EN (x⊗ y) = x⊗ Trm
m

(y)1Mm(C) , x ∈Mn(C) , y ∈Mm(C) .

As an easy consequence, for each unitary u ∈M , we have the following:

N ⊥ uNu∗ ⇐⇒ EN (u
∗(a⊗ 1L)u) =

Tr(a)

n
1M , ∀a ∈Mn(C) .

Now, let {eij ; i, j = 1, . . . , n} be a system of matrix units of Mn(C).
Each x in M =Mn(C)⊗Mm(C) is written in the unique form

x =

n∑
i,j=1

eij ⊗ xij , xij ∈Mm(C) .

We apply the notion of a finite operational partition X of unity and the
density matrix ρφ[X] introduced by Lindblad [12]:

A finite operational partition of unity is a subset X = {x1, . . . , xk} of
Mn(C) such that

∑k
i x
∗
ixi = 1. The k is called the size of X. To a finite

operational partition X of unity of size k, we associate a k×k density matrix
ρ[X] given by ρ[X]ij = τ(x∗jxi) = Tr/n(x∗jxi), (i, j = 1, . . . , k).

4.2.1. Finite operational partition induced by a unitary u

Let M = Mn(C) ⊗ Mm(C) so that τM = Trn/n ⊗ Trm/m. Let u =∑
i,j eij ⊗ uij , (uij ∈ Mm(C)) be the decomposition of a unitary u ∈ M ,

where {eij}i,j is a set of matrix units of Mn(C). We set

U =

{
1√
n
uij ; i, j = 1, . . . , n

}
.

It is clear that U is a finite operational partition of unity of size n2. We call
this set U the finite operational partition of unity induced by u.
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4.2.2. Mutually orthogonal subfactors

First, we remark that every subfactor of Mk(C) is isomorphic to Mn(C)
for some n, and let N ⊂ Mk(C) be isomorphic to Mn(C). Then, k = mn
for some m. We can assume that Mk(C) = Mn(C) ⊗ Mm(C) and N =
Mn(C) ⊗ C1. Let u ∈ Mk(C) be a unitary. Then, by considering the von
Neumann entropy S(ρ[U ]), we had the following characterization in [2]

N ⊥ uNu∗ ⇐⇒ S(ρ[U ]) = 2 log n = log dimN ,

where U is the finite operational partition of unity induced by u.
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