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We show that microwave networks simulating quantum graphs are very
useful in an experimental investigation of isoscattering phenomena in a
broad frequency range from 0.01 to 5 GHz.
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1. Introduction

In 1966, Mark Kac [1] asked “Can one hear the shape of a drum?” The
question of a great practical significance turned out to be also a great theo-
retical challenge and remained without any conclusive answer till 1992, when
Gordon et al. [2, 3] show theoretically that it is possible to construct pairs
different in shape but isospectral domains. Two years later this result was
confirmed experimentally by Sridhar and Kudrolli [4] and later on by Dhar
et al. [5], who obtained the same spectra for microwave cavities of different
shapes.

It is natural to generalize Kac question to other physical systems. In
2001, almost ten years after Gordon et al. [2, 3], Gutkin and Smilansky [6]
proved that spectra uniquely identify quantum graphs, which consist of ver-
tices connected by one-dimensional bonds, only if they have bonds of in-
commensurate lengths. The graphs with commensurate bonds may have the
same spectra. A method of construction of isospectral graphs was presented
by Band et al. [7] and Parzanchevski and Band [8] in 2009. A procedure is
similar to that in the case of two-dimensional systems and consists of cutting
one system into subsystems and rearrangement, transplantation them into
the second one.
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However, in 2005, Okada et al. [9] showed, using numerical simulation,
that in scattering experiments, it is possible to distinguish shapes of the
domains from their spectra. Thus, isospectrality of the systems does not
prejudge that they are also isoscattering. In the case of the graphs, it was
shown by Band et al. [10, 11] that any pair of isospectral quantum graphs
obtained by the procedure described in [7, 8] is isoscattering provided that
infinite leads are attached to the graphs in a way preserving the symmetry
of their isospectral construction.

The first experimental confirmation of existing of isoscattering graphs
was reported in [12]. The experiment was performed with a pair of different
microwave networks simulating quantum graphs.

2. Microwave networks simulating quantum graphs

Quantum graphs are idealizations of physical systems whose elements
have one dimension much bigger than the other two. A theoretical descrip-
tion of their properties and applications in modeling physical problems was
given in [13]. There are several methods of experimental realization of sys-
tems which can simulate quantum graphs [14, 15]. In the paper of Hul et al.
[16], it was shown that microwave networks can be used to simulate quantum
graphs with and without times reversal symmetry. Microwave networks en-
abled for comprehensive investigation of a broad variety of quantum graphs
features [17–28].

A microwave network consists of B bonds, which are coaxial cables,
connecting n vertices. It may be described by a n× n connectivity matrix,
whose elements Cij equal 1 if the vertices i and j are connected and 0
otherwise. A valency vi of the vertex i means that the vertex i is connected
to other vertices by vi bonds.

A coaxial cable is made up of an inner conductor of radius r1 surrounded
by a concentric conductor of inner radius r2. A homogeneous material with
dielectric constant ε is used to fill the space between conductors. Only a
fundamental TEM mode, called Lecher wave, can propagate in the cable
below the onset of the next TE11 mode [29]. The propagation of Lecher
wave in the bond joining vertices i and j can be described by the continuity
equation for a charge and current [16, 30]. In the case of an ideal lossless
cable, it leads to the telegraph equation

d2

dx2
Uij(x) +

ω2ε

c2
Uij(x) = 0 , (1)

where Uij(x, t) is the potential difference between conductors, ω = 2πν, ν is
frequency, c is speed of light in a vacuum and ε is the dielectric constant.
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On the other hand, the one-dimensional Schrödinger equation (with ~ =
2m = 1) describing a quantum graph with time reversal symmetry is of the
form [31]

d2

dx2
Ψij(x) + k2Ψij(x) = 0 . (2)

Equations (1) and (2) are formally equivalent due to the correspondence
of Ψij(x)⇔ Uij(x) and k2 ⇔ ω2ε

c2
.

The above situation is similar to the analogy between microwave cavities
and quantum billiards which is based upon the equivalency of the Helmholtz
equation and the Schrödinger one [32–35].

3. Experiment

An experimental setup consisting of a microwave network connected to
the vector network analyzer (VNA) Agilent E8364B is shown in Fig. 1. Two
isoscattering graphs obtained by attaching two infinite leads L∞

1 and L∞
2 to

Fig. 1. Experimental setup. The Vector Network Analyzer (VNA) connected to
the network of a shape “O” by means of the two microwave coaxial cables.

isospectral ones are presented in Fig. 2 (a) and Fig. 2 (b). The graph of a
shape “H” (Fig. 2 (a)) consists of n = 6 vertices connected by B = 5 bonds.
Four of vertices, with numbers 1, 2, 3, 5, satisfy Neumann boundary condi-
tions, and the two others 4, 6, the Dirichlet one. The Neumann boundary
condition imposes a continuity of waves propagating in bonds meeting in
vertex i and vanishing of a sum of their derivatives calculated in this vertex.
The Dirichlet boundary condition requires vanishing of the waves at the ver-
tex. In the case of the graph of a shape “O”, there are n = 4 vertices, only
one, number 4, with the Dirichlet boundary condition, and vertices 1, 2, 3
with the Neumann boundary condition, connected by B = 4 bonds. The
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valency of vertices 1 and 2 including leads of both graphs is v1,2 = 4, while
for the other ones vi = 1. In Figs. 2 (c) and (d), we show the microwave
networks simulating quantum graphs of shapes “H” and “O”, respectively.

Fig. 2. A pair of isoscattering quantum graphs and the pictures of two isoscatter-
ing microwave networks are shown in the panels (a)–(b) and (c)–(d), respectively.
Using the two isospectral graphs, (a) with n = 6 vertices (shape “H”) and (b) with
n = 4 vertices (shape “O”), isoscattering quantum graphs are formed by attaching
the two infinite leads L∞

1 and L∞
2 (dashed lines). The vertices with Neumann

boundary conditions are denoted by full circles, while the vertices with Dirichlet
boundary conditions by the open ones. The two isoscattering microwave networks
with n = 6 (shape “H”) and n = 4 (shape “O”) vertices which simulate quantum
graphs (a) and (b), respectively, are shown in the panels (c)–(d).

The optical length of bonds, a physical length times
√
ε (ε ' 2.08), of

the microwave networks are the following:

a = 0.0985± 0.0005 m ,
b = 0.1847± 0.0005 m ,
c = 0.2420± 0.0005 m ,

2a = 0.1970± 0.0005 m ,
2b = 0.3694± 0.0005 m ,
2c = 0.4840± 0.0005 m .
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The main source of the uncertainties of the bond lengths was a process
of preparation of the vertices with the Dirichlet and v1,2 = 4 vertices with
Neumann boundary conditions. The Dirichlet vertices were prepared by
shorting the internal and external conductors of the coaxial cable using brass
caps. To get the Neumann boundary condition, it was necessary to solder
internal conductors of the cables meeting at the vertex.

The vector network analyzer allowed us to preform two-port measure-
ments to determine a two-dimensional scattering matrix S(ν) describing a
relation between amplitudes of incoming to and outgoing from the networks
electromagnetic waves

S(ν) =

(
S1,1(ν) S1,2(ν)
S2,1(ν) S2,2(ν)

)
. (3)

In this paper, we present the results of the new measurements in the
frequency range of 4–5 GHz. The results for the frequency range of 0.01–
1.7 GHz and 0.01–3 GHz were shown in [12, 36]. Figure 3 (a) shows the
comparison between the determinants of the S(I)(ν) of the “H” network (solid
line) and the S(II)(ν) of the “O” network (open circles) in the frequency range
of 4–5 GHz. In Fig. 3 (b), we present cumulative phases of the determinants
of the scattering matrices S(I)(ν) (solid line) and S(II)(ν) (open circles). In
panels (c) and (d) of Fig. 3, we remind the results for the same networks
obtained in the lower frequency range of 0.5–1.5 GHz.

The inspection of Figs. 3 (a) and (b) shows that the networks remain
isoscattering also for the higher frequency range of 4–5 GHz in spite of
the limitation connected with the accuracy of their preparation. However,
comparing these results to the ones in the frequency range of 0.5–1.5 GHz
enables one to see bigger difference between spectra of the networks. The
discrepancies increased for both, positions and amplitudes. It should be
noticed that for both networks, a number of the observed resonances for
lower and higher frequencies is in the agreement with the Weyl formula [31]

N(k) =
2L

2π
k +

1

2
, (4)

where L is a total optical length of a graph and k is a wave vector.
The maximal relative shifts of the positions of the resonances connected

with the networks length uncertainties are 0.01 and 0.04 for the frequency
range of 0.5–1.5 GHz and 4–5 GHz, respectively. Figure 4 shows that the
experimental shifts of the resonances are smaller than the ones expected due
to the estimated accuracy of the networks preparation.
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Fig. 3. The amplitude of the determinant of the scattering matrix obtained for the
microwave networks “H” with n=6 (solid line) and “O” with n=4 (open circles)
vertices in the frequency range of 4–5 GHz and 0.5–1.5 GHz in panels (a) and (c),
respectively. The cumulative phase of the determinant of the scattering matrix
obtained for the microwave networks “H” (solid line) and “O” (open circles) in the
frequency range of 4–5 GHz and 0.5–1.5 GHz in the panels (b) and (d), respectively.

Fig. 4. The relative differences between the positions of the resonances of microwave
networks “H” and “O” for frequency ranges of 4–5 GHz and 0.5–1.5 GHz in panels
(a) and (b), respectively.
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4. Conclusions

We report new results of the investigations of the isoscattering phenom-
ena in the microwave networks simulating quantum graphs. The measure-
ments were performed in the high frequency range of 4–5 GHz. We show that
even for such a high frequency range, in spite of the limitations connected
with the accuracy of the preparation of microwave networks, it was possible
to obtain conclusive results that the networks of different topology may have
the same scattering properties. Thus, we show that microwave networks can
be used as a powerful tool to investigate isospectral and isoscattering prob-
lems.

This work was partially supported by the Polish Ministry of Science and
Higher Education grants N N202 130239 and UMO-2013/09/D/ST2/03727.
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