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SOLITON MODEL FOR BARYONS∗
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We present a description of low-lying baryon states (below 2 GeV) based
on the general soliton model, which follows from QCD in the limit of large
number of colors. Relation to the quark model is discussed. The model
describes the spectrum of baryons below 2 GeV with no extra nor missing
states. Main properties of baryons (mass splitting and widths) are calcu-
lated and relations independent of the specific soliton model are derived.
These relations agree rather well with the data.
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1. Baryons below 2 GeV

The spectrum of low-lying baryons is very rich. Even below 2 GeV, more
than a hundred of resonances are known. Tables of Particle Data Group [1]
list in this region at least 23 nucleons, 22 ∆-resonances, 18 Λ-hyperons,
26 Σs, 11 Ξs, and 4 Ω-hyperons. It seems that their masses (and other char-
acteristics) give a huge amount of information about very intimate properties
of QCD. In fact, this is not true: the good portion of this data is related to
rather general symmetries of the theory and has nothing to do with specific
dynamics of QCD. They are reproduced in any self-consistent theory.

The oldest [2] and the best-known example of general symmetry is SU(3)
flavor symmetry. Current masses of all quarks which can enter light baryons
(u, d, s) are small as compared to the scale of strong interaction (Λstrong ≈
600 MeV). Additional SU(3) flavor symmetry arises in the limit of quark
current masses equal to zero. This limit is working very well for u- and
d quarks, the mass of the strange quark (ms ≈ 120 MeV) can be accounted
for by the perturbation theory.
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Due to the SU(3) symmetry, baryons can be united into multiplets.
For baryons consisting precisely of 3 quarks, only octets and decuplets are
possible. Octets consists of N , Σ and Λ–hyperons, decuplets consist of
∆-resonances, Σ, Ξ, and Ω-hyperons. Known multiplets below 2 GeV are
collected in two tables: Table I for positive parity baryons and Table II for
negative parity baryons. At least 19 multiplets in this region of masses are
known. There are 5 octets and 5 decuplets with positive parity with different
spins, 5 octets and 3 decuplets have negative parity. Also two SU(3) singlets
exist but they are present only in the negative parity sector.

The first column of Tables I and II lists SU(3) representations, the sec-
ond is a mass of the center of multiplets (presumably it should be close to
the masses of particles in the chiral limit). 6th, 7th, 8th, 9th columns give
the masses of the multiplet members. Not all members of SU(3) multiplets
are known even in this, very well investigated range of energies. Experi-
mentalists have to discover at least 9Ξs, 4Ωs, 2Σs and 1Λ. We underline
the masses of these, not yet known particles predicted by SU(3) symmetry.
However, we have to note that even the identification of the SU(3) multiplets
is still under discussion1.

First of all, the QCD should explain the contents of SU(3) baryon mul-
tiplets, their spin and masses (first 3 columns in Tables I and II). The main
tool used for this purpose is a quark model. In its simplest version, the quark
model describes baryons as non-relativistic bound states of 3 massive (con-
stituent mass) quarks in some phenomenological potential. The potential
is independent of flavor, the main part of potential has spherical symmetry
with relatively small relativistic corrections leading to the interaction of spin
with angular momentum and hyperfine spin–spin interaction. Quark model
picture leads to the idea of SU(6) spin–flavor symmetry for the baryon mul-
tiplets. The lowest SU(6) multiplet is 56. Indeed, the lowest positive parity
multiplets (8, 12)[1151] and (10, 32)[1382] agree very well with this symmetry.
The 230 MeV splitting between these multiplets has to be attributed to the
hyperfine splitting.

Next multiplet of SU(6) corresponds to angular momentum L = 1 of one
quark inside a baryon. This multiplet should have negative parity and it is
70 according to SU(6) classification. This prediction [3] is a main triumph
of the quark model as all low-lying negative parity baryons fit exactly to
these 70 × (2L + 1) = 210 states. It can be seen directly from Table II
that negative parity baryons, indeed, precisely correspond to the required
expansion of SU(6) in SU(3) multiplets.

1 We follow here mainly Ref. [5]. The advantage of this reference is that all SU(3)
predictions (including particle widths) were checked in order to make an appropriate
identification.
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TABLE I

Positive parity baryon multiplets of spin S. M denotes the mass of the multiplet center.
Splitting parameters µ(8)

1,2 are defined later in Table II. Columns labeled by baryon names
correspond to the decay widths discussed in Sec. 6.

S M µ
(8)
1 µ

(8)
2 N or ∆ Σ Ξ Λ or Ω → 8 F/D → 10

8 1
2

1151 40.0 139.5 939 1193 1318 1116 — — —
10 3

2
1382 — 146.6 1232 1385 1530 1672 142 — —

8 1
2

1608 41.1 73.6 1440 1660 1690 1600 32.4 0.37 229

10 3
2

1732 — 156 1600 1690 1900 2050 38.2 — 129.3

8 1
2

1846 34.4 76.9 1710 1880 1950 1810 14.9 0.47 44.9

8 3
2

1865 −25.0 188.8 1720 1840 2035 1890 6.7 1.45 ?
8 5

2
1872.5 45.0 118.8 1680 1915 2030 1820 52.0 0.64 19.2

10 1
2

2060 — 150.0 1910 2060 2210 2360 24.2 — 8.7

10 5
2

2071 — 160.5 1905 2070 2250 2380 45.9 — 39.7

10 3
2

2087 — 181 1920 2080 2240 2470 15.4 — ?
10 7

2
2038 — 99 1950 2030 2120 2250 60.7 −94.1

TABLE II

Negative parity baryon multiplets. Description of columns as in Table I.

S M µ
(8)
1 µ

(8)
2 N or ∆ Σ Ξ Λ or Ω → 8 F/D → 10

1 1
2

1405 — — — — — — 13.1 — —
θ=−48o

1 3
2

1520 — — — — — — 115.4 — —
θ=26o

8 1
2

1592 −43.6 111 1535 1560 1625 1670 7.1 −0.34 93.4

8 3
2

1673 −6.7 158 1520 1670 1820 1690 43.6 2.90 12.7

8 1
2

1716 −93.1 235 1650 1620 1885 1800 8.3 4.05 30.4

10 1
2

1758 — 144 1620 1750 1900 2050 12.4 — 221.4

8 5
2

1801 −26.7 171 1675 1775 1950 1830 26.8 −0.19 158.7

10 3
2

1850 — 150 1700 1850 2000 2150 48.3 — 29.8

8 3
2

1895 45 116 1700 1940 2045 1850 8.3 −0.35 67.2

Unfortunately, the situation is much worse when we proceed to the ex-
cited positive parity baryons. Quark model predicts large number of multi-
plets as the next excited state, 56, 70, 20 are among them. Existing baryons
do not fit this picture: their identification in terms of SU(6) multiplets is
questionable, a large number of missing states is present. It is, of course,
possible that required states have not been discovered yet but, in general, it
seems that quark model fails for excited positive parity baryons.
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The quark model2 became, in fact, a standard language for discussing
hadrons. Meanwhile, it is rather weakly motivated by QCD. First of all, it
cannot be considered as a self-consistent field theory. The notion of exactly
three interacting particles without additional quark–antiquark pairs or ad-
ditional gluons contradicts the basic principles of quantum field theory. It
can be realized only in the non-relativistic limit of the weakly interacting
quark theory. This is definitely not the case for standard baryons. A con-
cept of the constituent quarks is also not derived, strictly speaking, from
QCD. In particular, this concept implies spontaneous breakdown of chiral
symmetry. But spontaneous breakdown of chiral symmetry includes also
another ingredient — massless Goldstone particles (pions). Quark model
fails to recognize this essential QCD degrees of freedom.

We will present here another approach to the description of baryon prop-
erties. It is based on the limit of large number of colors Nc → ∞ and in
this case, it can be derived (to some extent!) directly from QCD. In some
limit, it can be close to the quark model but, in general case, it can be quite
different. We think that it works better than the quark model and, in any
case, it is much better justified by quantum chromodynamics.

2. Baryons at large Nc

It is known that in the limit of large number of colors, QCD simplifies
greatly but remains a non-trivial and very interesting theory. It is believed
that confinement is present at any Nc and, in particular, at Nc →∞, so the
spectrum of the theory consists of an infinite number of hadrons. Mesons
(i.e. hadrons consisting of quark and antiquark, or better to say, made from
a number of quarks independent of Nc) are stable (the width is O(1/Nc))
and non-interacting particles (vertex of the meson–meson interaction with
k legs is 1/N

k/2
c ). The spectrum of mesons is infinite, the distances between

meson masses are O(1).
The baryons at Nc → ∞ are very different from mesons. The reason is

simple — they consist of Nc quarks. This means that at Nc →∞, baryons
are heavy (mass is O(Nc)) and semiclassical objects. Witten proved [6]
a rigorous theorem: at large Nc, baryons can be viewed as semi-classical
solitons of some effective meson Lagrangian. In principle, all meson degrees
of freedom should be included in this Lagrangian. At large Nc, they can be
considered as independent (no interaction) and elementary (stable) degrees
of freedom.

This idea was first realized in the Skyrme [7] model. It is natural to
expect that the lightest mesons are the most important. This can be true
for the ground state baryons if the size of the baryon is large. Skyrme

2 For recent status of the quark model, see, e.g. reviews [4].
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model accounts only for (pseudo) Goldstone mesons, i.e. the octet of pseu-
doscalar mesons. The interaction of pseudoscalar mesons at low energies is
determined by effective chiral Lagrangian (ECL). This Lagrangian is an ex-
pansion in derivatives of the pion fields. Only lowest terms are known in the
ECL (containing 2 and 4 derivatives) but, in fact, all terms are essential for
constructing the soliton. Skyrme suggested to model all higher terms by a
single 4-derivative term. Then, the soliton can be constructed (solving classi-
cal equations of motion following from Skyrme Lagrangian) and it possesses
all expected qualitative properties of the nucleon [8]. Quantitatively, this
model is not very successful. This is not surprising for such a crude model.
To improve the quality, it was suggested to take into account other degrees of
freedom such as vector mesons, modify Skyrme Lagrangian, etc. Nowadays,
it is natural to use ideas of holographic QCD (see, e.g., [9] or [10]). Indeed,
holographic QCD can be formulated as a theory of infinite number of vector
and pseudoscalar mesons with a specific interaction, which reproduces all
known properties of QCD mesons at Nc → ∞. This program is already
partly performed.

Soliton picture of baryons has evident advantages as compared to the
quark model. First of all, the main ideas of this picture follow directly from
first principles of QCD. Second, theory based on effective meson Lagrangian
is a self-consistent quantum field theory. One can easily formulate the pro-
cedure to calculate quantum corrections using the standard semiclassical
methods. Soliton–meson models effectively take care of qq̄ pairs in baryons.
The number of additional pairs is not suppressed in the limit Nc → ∞.
On the other hand, information about quark degrees of freedom is lost in
the soliton Skyrme-like models. For this reason, there is no direct way to
describe baryon resonances in such models — these models can be applied
only to the ground state baryons (lowest baryon octet and decuplet). One
has to consider scattering amplitudes in order to discover baryon resonances
as poles of amplitudes in the complex energy plane.

Soliton models and quark model look very different, in spite of the fact
they describe the same object. A bridge between two approaches is pro-
vided by the so-called Chiral Quark–Soliton Model (χQSM) [11, 12]. In the
framework of this model, it is assumed that at large Nc, QCD is reduced
to effective low-energy theory with degrees of freedom which are constituent
quarks and colorless meson fields. This theory is essentially semiclassical:
interaction of mesons is suppressed by Nc. The spectrum of mesons can be
read off from the effective Lagrangian, baryons appear as solitons which are
the bound states ofNc quarks in the self-consistent meson field. Fluctuations
of the meson mean field in baryons are also suppressed by Nc.
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The introduction of separate degrees of freedom for consituent quarks
and mesons should be justified: indeed, as mesons ultimately consist of
quarks, this could be a kind of double-counting. Let us outline the derivation
of such a low energy effective theory from the QCD. At the first stage, one
has to integrate out gluons, then the theory reduces to the theory of quarks
only. Owing to the expected spontaneous chiral symmetry breaking, these
constituent quarks are massive, their interaction is described by a number
of many-fermion non-local terms. In the colorless channels and at large Nc,
this interaction can be rewritten in the bosonized form by means of some
auxiliary meson fields. Meson fields introduced this way do not lead to dou-
ble counting and the corresponding effective theory of constituent quarks
and mesons is self consistent.

This programme was carried out in the framework of the instanton liq-
uid picture of the QCD vacuum [13]. Here, the integration over all gluon
degrees of freedom is restricted to instantons and small fluctuations around
them. One can derive the corresponding low-energy theory, it consists of the
constituent quarks with a momentum-dependent mass M(p) and massless
pions interacting by means of a simple effective Lagrangian [14]. The model
of baryons based on this idea is working rather well describing all known
properties of low-lying baryons except one but, maybe, the most important
feature — the model does not account for the quark confinement (it is not
reproduced in the instanton liquid picture). However, this is only a partic-
ular realization of the effective theory under discussion, in fact, it is easy to
suggest phenomenological generalizations which have confinement built-in.

Quark model at large Nc and the theory of baryon–soliton are extreme
cases of the mean-field effective theory. Quark model represents a non-
relativistic approximation to the theory. In this case, one can neglect quark–
antiquark fluctuations and view baryons as consisting of precisely Nc quarks.
Neglecting also the retarding of the quark–quark interaction, we arrive at
the potential quark model, which one can treat in the mean-field approxi-
mation at large Nc. On the other hand, integrating over quark fields, we
obtain a meson Lagrangian where baryons should appear as solitons. Meson
Lagrangian is constructed as an expansion in gradients of the meson field,
assuming that meson mean field is slowly varying. It can be seen that this
corresponds to the baryon state in which the contribution of Fock compo-
nents with large number of quark–antiquark pairs is dominating and valence
quarks are ultra-relativistic [15]. Hence, this case is opposite to the case of
the quark model.

Baryons in the large Nc limit were studied also using yet another ap-
proach. This approach uses the general rules of Nc counting together with
the chiral symmetry and group-theoretical arguments (for reviews, see [16–
19] and references therein). In this framework, many relations for baryon
resonances can be derived, with no reference to the underlying dynamics.
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The key new point of the approach presented here is that the large-Nc dy-
namics is essentially known and simple. We, thus, give the dynamical inter-
pretation of the general large-Nc relations and find the physical meaning of
the otherwise free numerical coefficients in those relations. We also derive
new relations valid in the large-Nc limit.

3. Symmetry of the mean field

In the mean-field approximation, justified at large Nc, one looks for the
solutions of the Dirac equation for single quark states in the background
mean field. In the most general case, the background field couples to quarks
through all five Fermi variants. The mean field is stationary in time, it leads
to the Dirac eigenvalue equation for the u, d, s quarks in the background
field, Hψ = Eψ, the Dirac Hamiltonian being schematically

H=γ0

(
−i∂iγi+S(x)+P (x)iγ5+Vµ(x)γµ+Aµ(x)γµγ5+Tµν(x)

i

2
[γµγν ]

)
,

(1)
where S, P, V,A, T are the scalar, pseudoscalar, vector, axial and tensor
mean fields, respectively; all are matrices in flavor. In fact, the one-particle
Dirac Hamiltonian (1) is generally non-local, however that does not destroy
symmetries which we are primarily interested in. We include the current
and the dynamically-generated quarks masses into the scalar term S.

The key issue is the symmetry of the mean field. At the moment, we
assume the chiral limit for all quarks mu = md = ms = 0, which is an excel-
lent approximation. A natural assumption, then, would be that the mean
field is flavor-symmetric, and spherically symmetric. However, we know that
baryons are strongly coupled to pseudoscalar mesons (gπNN ≈ 13). It means
that there is a large pseudoscalar field inside baryons; at large Nc, it is a
classical mean field. There is no way of writing down the pseudoscalar field
(it must change sign under inversion of coordinates) that would be com-
patible with the SU(3)flav× SO(3)space symmetry. The minimal extension
of spherical symmetry is to write the “hedgehog” Ansatz “marrying” the
isotopic and space axes3

πa(x) =

{
na F (r) , na = xa

r , a = 1, 2, 3 ,
0, a = 4, 5, 6, 7, 8 .

(2)

This Ansatz breaks the SU(3)flav symmetry. Moreover, it breaks the sym-
metry under independent space SO(3)space and isospin SU(2)iso rotations,

3 A. Hosaka informed us that historically, this Ansatz for the pion field in a nucleon
appears for the first time in a 1942 paper by Pauli and Dancoff [20]; it reappears in
1961 in the seminal papers by Skyrme [7].
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and only a simultaneous rotation in both spaces remains a symmetry, since
a rotation in the isospin space labeled a, can be compensated by the rotation
of the space axes. The Ansatz (2) implies a spontaneous (as contrasted to
explicit) breaking of the original SU(3)flav× SO(3)space symmetry down to
the SU(2)iso+space symmetry. It is analogous to the spontaneous breaking
of spherical symmetry by the ellipsoid form of many nuclei; there are many
other examples in physics where the original symmetry is spontaneously
broken in the ground state.

We list here all possible structures in the S, P, V,A, T fields, compatible
with the SU(2)iso+space symmetry and with the C,P, T quantum numbers
of the fields [21, 22]. The fields below are generalizations of the ‘hedgehog’
Ansatz (2) to mesonic fields with other quantum numbers.

Since SU(3) symmetry is broken, all fields can be divided into three
categories:

I. Isovector fields acting on u, d quarks

pseudoscalar : P a(x) = na P0(r) , (3)
vector, spacecomponents : V a

i (x) = εaik nk P1(r) ,

axial, spacecomponents : Aai (x) = δai P2(r) + nani P3(r) ,

tensor, spacecomponents : T aij(x) = εaij P4(r) + εbij nanb P5(r) .

II. Isoscalar fields acting on u, d quarks

scalar : S(x) =Q0(r) , (4)
vector, timecomponent : V0(x) =Q1(r) ,

tensor,mixedcomponents : T0i(x) = niQ2(r) .

III. Isoscalar fields acting on s quarks

scalar : S(x) =R0(r) , (5)
vector, timecomponents : V0(x) =R1(r) ,

tensor,mixedcomponents : T0i(x) = niR2(r) .

All the remaining fields and components are zero as they do not satisfy
the SU(2)iso+space symmetry and/or the needed discrete C,P, T symmetries.
The 12 ‘profile’ functions P0,1,2,3,4,5, Q0,1,2 and R0,1,2 should be eventually
found self-consistently from the minimization of the mass of the ground-
state baryon. We shall call Eqs. (3)–(5) the hedgehog Ansatz. However,
even if we do not know those profiles, there are important consequences of
this Ansatz for the baryon spectrum.
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Given the SU(2)iso+space symmetry of the mean field, the Dirac Hamilto-
nian for quarks actually splits into two: one for s quarks and the other one
for u, d quarks. It should be stressed that the energy levels for u, d quarks,
on the one hand, and for s quarks, on the other, are completely different,
even in the chiral limit ms → 0.

The energy levels for s quarks are classified by half-integer JP , where P
is parity under space inversion, and J = L+S is quark angular momentum;
all levels are (2J + 1)-fold degenerate. The energy levels for u, d quarks are
classified by integer KP , whereK = T +J is the ‘grand spin’ (T is isospin),
and are (2K + 1)-fold degenerate.

All energy levels, both positive and negative, are probably discrete ow-
ing to confinement. Indeed, a continuous spectrum would correspond to
a situation when quarks are free at large distances from the center, which
contradicts confinement. One can model confinement e.g. by forcing the
effective quark masses to grow linearly at infinity, S(x)→ σr.

The Dirac equation (1) for s quarks in the background field (5) takes
the form of a system of two ordinary differential equations for two func-
tions f(r), g(r) depending only on the distance from the center. The
system of equations depends on the (half-integer) angular momentum of
level under considerations, and on its parity. For s-quark levels with parity
P = (−1)J−

1
2 , e.g. for the levels JP = 1

2

+
, 3

2

−
, 5

2

+
, . . . , the system takes the

form {
E f = −g′ − J+ 3

2
r g +R0 f +R1 f +R2 g ,

E g = f ′ +
−J+ 1

2
r f −R0 g +R1 g +R2 f .

(6)

To find an s-quark energy level E with these quantum numbers, one has to

solve Eq. (6) with the initial condition f(r) ∼ rJ−
1
2 , g(r) ∼ rJ+

1
2 , and both

functions decreasing at infinity.
For levels with opposite parity P = (−1)J+ 1

2 , e.g. JP = 1
2

−
, 3

2

+
, 5

2

−
, . . . ,

one has to solve another system{
E f = −g′ − −J+ 1

2
r g +R0 f +R1 f +R2 g ,

E g = f ′ +
J+ 3

2
r f −R0 g +R1 g +R2 f .

(7)

We note that in the absence of the R1,2 fields, the energy spectrum is sym-
metric under simultaneous change of parity and energy signs.

Dirac equation for u, d quarks in the background fields (3), (4) is more
complicated: one has here a system of four ordinary differential equations.
There are two different types of Dirac equations for the states with par-
ity (−1)K+1, (namely KP = 1+, 2−, . . . ) and with parity (−1)K . These
equations are derived in [23].



68 V. Petrov

The case of K = 0 is special, since the angular momentum is restricted
to only one value J = K + 1

2 = 1
2 . At K = 0, a system of 4 equations for

the KP = 0− level reduces to two equations

E j =−h′ + (Q0 +Q1 + P2 − P3 + P4 − P5)j + (P0 − 2P1 +Q2)h ,

E h= j′ +
2

r
j + (−Q0 +Q1 − 3P2 − P3 + 3P4 + P5)h+ (P0 − 2P1 +Q2)j

(8)

with h ∼ r0, j ∼ r1. Similarly, to find the KP = 0+ levels, one has to solve
only two equations

E j =−h′ + (−Q0 +Q1 + P2 − P3 − P4 + P5)j − (P0 + 2P1 +Q2)h ,

E h= j′ +
2

r
j + (Q0 +Q1 − 3P2 − P3 − 3P4 − P5)h− (P0 + 2P1 +Q2)j .

(9)

In Fig. 1, we show an example of quark levels obtained from a ‘natural’
choice of external fields Q0−2, P0−5. We take a confining scalar field S(r) = σr
with a standard string tension σ = (0.44 GeV)2, and a topological chiral
angle field P (r) = 2 arctan(r2

0/r
2) such that the profile functions introduced

in Eqs. (3), (4) are Q0(r) = S(r) cosP (r), P0(r) = S(r) sinP (r); the other
profile functions are exponentially decaying at large distances. The external
fields are shown in Fig. 1 (left), and the resulting quark levels with various
KP are shown in Fig. 1 (right). These or similar levels dictate the masses
of baryon resonances.
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Fig. 1. An illustrative example of intrinsic quark levels with quantum numbers KP

(right) generated by the mean fields shown in the left panel.

According to the Dirac theory, all negative-energy levels, both for s and
u, d quarks, have to be fully occupied, corresponding to the vacuum. It
means that there must be exactly Nc quarks antisymmetric in color occu-
pying all degenerate levels with J3 from −J to J , or K3 from −K to K;
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they form closed shells. Filling in the lowest level with E > 0 by Nc quarks
makes a ground state baryon, see Fig. 2. A similar picture arises in the chi-
ral Bag Model [26]. Excited baryons can be related to different 1,2,3-quark
excitations to the other levels. We will try to advocate the point of view that
known baryon resonances below 2 GeV are related to one-quark excitations
only.

E=0

u,d s

KP= 0

P=1/2J

... ...

+

+

Ξ
−

Ξ
−

Ξ
0

Ω
−

Ξ

Σ

∆

Σ
−

Σ
0

Σ
+

Λ

n p

Y Y

T3 T3

Y=1

( () )8, 10,1/2 3/2
+ +

Fig. 2. Filling u, d and s shells for the ground-state baryon (left), and the two
lowest baryon multiplets that follow from quantizing the rotations of this filling
scheme (right).

The mass of a baryon is the aggregate energy of all filled states, and
being a functional of the mesonic field, it is proportional to Nc since all
quark levels are degenerate in color. Therefore, quantum fluctuations of
mesonic field in baryons are suppressed as 1/Nc so that the mean field is
indeed justified.

It is primarily the symmetry of the mean field which distinguishes the
quark model at large Nc and the soliton model considered here. Quark
model corresponds to the SU(6) symmetrical mean field. It appears in our
approach in the case when only scalar field is present, while all other fields
vanish. In particular, mean field corresponding to Goldstone pseudoscalar
field is absent in the quark model. It is not surprising, as quark model does
not take into account spontaneous breakdown of chiral symmetry in QCD.

4. Rotational bands about around quark levels

Hedgehog mean field breaks both the flavor and rotational symmetry.
General semiclassical considerations tell us that breakdown of continuum
symmetry implies that there are a number of zero modes around the semi-
classical soliton mean field. Zero modes should be taken into account exactly.
One has to introduce corresponding number of collective coordinates. Inte-
gration in this coordinates restores symmetries which were broken down and
determine the quantum numbers of solitons.
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Every intrinsic level is accompanied by the rotational band of the states.
It appears as a result of the quantization of the slow rotations both in the
flavor and ordinary space. The theory of rotational bands over the ground
state was developed years ago [11], but for excited states and for general
case of the mean field, it has some specifics [23].

4.1. Rotational Lagrangian and ground state baryons

Rotations slowly depending on time split the energy into the rotational
bands. It is convenient to describe this effect by means of an effective La-
grangian depending on collective coordinates which are rotational matrices.

Let R(t) be an SU(3) matrix for slow rotations in flavor space, and S(t)
be an SU(2) matrix for slow space (and spin) rotations. They rotate quark
wave functions φαi(x) (α = 1 . . . 3 is flavor, i = 1 . . . 2 — spin indices) in the
given mean field as

φ̃n(x)αi = Rαα′(t)Sii′(t)φα
′i′
n (O(t)x) , Oik(t) = 1

2Tr
[
S+(t)σkS(t)σi

]
.

(10)
Then, it is easy to see that simultaneous transformation of the meson fields

P̃ a(x) = Oab[R]P b(O(S)x) , Ṽ ai(x) = Oab[R]Oij [S]V bj(x) ,

Ãai(x) = Oab[R]Oij [S]Abj(x) , (11)

etc. leaves Dirac equation in the mean-field invariant, provided that matrices
R and S are constant in time.

Let us integrate out quarks. Then, the effective action of the theory is a
sum of meson Lagrangian plus the contribution of constituent quarks which
is the determinant of the Dirac equation in the mean field

Seff =

∫
dt L(M)− i

∑
c

SpoccupLog

{
i
∂

∂t
−H[M ]

}
. (12)

Here, sum denotes the summation over color indices and trace Sp is running
over all occupied states. As the meson field M and the Hamiltonian H are
color blind, usually the sum in color produces a factor of Nc. This is not
true for one-particle excitations where one term out of Nc corresponds to
some different filling of the levels.

Slow rotations S(t), R(t) are part of the quantum fluctuations of the
general meson field M . These fluctuations are suppressed in the limit of
large Nc. Rotations are not suppressed as they zero modes but their fre-
quencies are small in Nc.
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Let us parametrize the general meson field asM = M̄+δM (where M̄(x)
is a time-independent mean field and δM(x, t) are quantum fluctuations)
and calculate the effective action of (12) on the set of slowly rotated states
(10), (11)

Seff =

∫
dt Lmeson

(
M + δM, Ω̃, ω̃

)
−i
∑
c

SpoccupLog

{
i
∂

∂t
−H[M + δM ]− Ω̃ata − ω̃iji

}
. (13)

Here, Ω̃a and ω̃i are flavor and angular frequencies in the body-fixed frame

Ω̃a = −iTr
[
R+Ṙλa

]
, ω̃i = −iTr

[
S+Ṡσi

]
(14)

(λa are Gell-Mann flavor and σi are Pauli spin matrices), ta and ji are one-
particle operators of flavor and total angular momenta

ta =
1

2
λa , ji = si + li =

1

2
σi + iεiklxk

∂

∂xl
. (15)

Let us expand Eq. (13) in small δM, Ω̃, ω̃. The linear term should be
absent, as mean field M̄(x) is a solution of equations of motion. There is
a famous exclusion from this rule — Witten–Wess–Zumino term which is
linear in Ω8 and proportional to the baryon charge B of the state

δS(1) = − Nc

2
√

3

∫
dtΩ̃8 . (16)

The second order correction is in general

δS(2) =
1

2

∫
d4xδMWδM +

∫
d4x

(
δMKa

ΩΩ̃a + δMKi
ωω̃i

)
−1

2

∫
dt
[
IΩΩab Ω̃aΩ̃b + I

(ωω)
ab ω̃iω̃j + I

(ωΩ)
ai Ω̃aω̃i

]
. (17)

Here, the first term is a quadratic form for the quantum fluctuations which
are not rotations, second term describes mixing of rotations and other quan-
tum fluctuations, and the third one is a generic quadratic form for space and
flavor rotations. All terms are proportional to Nc. Thus, quantum fluctua-
tions δM = O

(
1/
√
Nc

)
. As to the frequencies Ω̃, ω̃, we will see that they

are Ω̃, ω̃ = O(1/Nc).
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We are interested in the collective rotational Lagrangian, i.e. the La-
grangian depending only on angular and flavor frequencies. We see that
there are two sources for such a Lagrangian. First, it comes from the im-
mediate expansion of the original action Eq. (13). Second, in presence of
mixing it can arise after integration in other quantum fluctuations of the
meson field δM . Indeed, in this case, the correction to the mean field

δM = W−1
[
Ka
ΩΩ̃a +Ki

Ωω̃i

]
(18)

appears already in the first order in frequencies and should be accounted in
the leading order rotational Lagrangian

S
(2)
rot = −

∫
dt
[

1
2Ω̃aI

(ΩΩ)
ab Ω̃b + 1

2 ω̃iI
(ωω)
ij ω̃j + 1

2Ω̃aI
(ωΩ)
ai ω̃i

]
,

I(ΩΩ)
ab = I

(ΩΩ)
ab +Ka

ΩW
−1Kb

Ω , I(ωω)
ij = I

(ωω)
ij +Ki

ωW
−1Kj

ω ,

I(ωΩ)
ai = I

(ωΩ)
ai +Ka

ωW
−1Ka

Ω +Ka
ΩW

−1Ka
ω , (19)

i.e. the mixing leads to the renormalization of the moments of inertia. It is
essential that the terms arising from mixing are of the same order in Nc (as
K ∼ O(Nc) and W ∼ O(Nc)) and contribute to the collective action.

This phenomenon is well-known from the nuclear physics. The approxi-
mation where we neglect mixing is called the cranking one [24]. The impor-
tance of the mixing was pointed out by Thouless–Valatin [25]. The mixing
of the rotations and quantum fluctuations, however, is absent in many rel-
ativistic theories (at least this is true for models based only on pions). In
such theories, the cranking approximation is exact [23].

Cranking moments of inertia I(ΩΩ)
ab , I(ωω)

ij , I(ωΩ)
ai also consist of two parts,

fermion and meson ones. The second one is the result of substitution of the
rotated meson fields Eq. (11) into the meson Lagrangian (and substituting
the meson fields by their mean-field approximations). If the meson La-
grangian L contains some time derivatives, this substitution produces terms
quadratic in frequencies Ω̃, ω̃ (one should neglect the higher terms) and,
therefore, contributes to the moments of inertia. The quark part of mo-
ments of inertia can be obtained directly expanding fermion determinant of
Eq. (13) in Ω̃, ω̃. Corresponding part of the moments of inertia is given by
well-known Inglis expression [23].

Hedgehog symmetry of the mean field leads to the following relations for
tensor of moments of inertia:

I(ΩΩ)
ab =

 I1δab, a, b = 1 . . . 3 ,
I2δab, a, b = 4 . . . 7 ,

0, a, b = 8 ,
I(ωΩ)
ai = −2I1δai , I(ωω)

ij = I1δij ,

(20)
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and hence the quadratic part of the rotational action reduces to

S
(2)
rot = −

∫
dt

3∑
i=1

I1

2

(
Ω̃i − ω̃i

)2
+

7∑
a=4

I2

2
Ω̃2
a . (21)

The complete rotational Lagrangian is

Lrot =

3∑
i=1

I1

2

(
Ω̃i − ω̃i

)2
+

7∑
a=4

I2

2
Ω̃2
a +

BNc

2
√

3
Ω̃8 . (22)

This is a Lagrangian for spherical top both in the flavor and usual space.
We calculate operators of angular momentum J̃ and flavor momenta T̃

J̃ = −1
2 Tr

[
Sσ δ

δS

]
=
∂Lrot

∂ω
= I1(ω −Ω) ,

T̃a = −1
2 Tr

[
Rλa

δ

δR

]
=
∂Lrot

∂Ωa
=


I1(Ωa − ωa) , a = 1 . . . 3 ,
I2Ωa , a = 4 . . . 7 ,
Nc

2
√

3
, a = 8 .

(23)

The following quantization rules applied to the rotational bands of ground
state baryons:

J̃ + T̃ = 0 , T̃8 =
Nc

2
√

3
. (24)

The second is celebrated Witten quantization rule [8] which claims that
hypercharge in the body-fixed frame is Ỹ = 2√

3
T̃8 = Nc/3. It is completely

due to the hedgehog symmetry and the fact that Nc valence quarks with
the hypercharge Ỹ = 1/3 are put to some bound state in the sector of
u, d quarks.

The Hamiltonian of rotations determined from Eq. (22) should be ex-
pressed in terms of momenta T̃ , J̃

Hrot =

3∑
a=1

T̃ 2
a

2I1
+

7∑
a=4

T̃ 2
a

2I2
=
c2(r)− T̃

(
T̃ + 1

)
− 3

4 Ỹ

2I2
+
T̃
(
T̃ + 1

)
2I1

. (25)

Here, c2(r) =
∑

a T̃
2
a is Casimir operator in the given SU(3) representa-

tion r. It is easy to determine also the collective wave function which is an
eigenfunction of the Hamiltonian and operators of momenta in the lab fixed
frame

Ta = −1

2
Tr

[
λaR

δ

δR

]
, J = −1

2
Tr

[
σS δ

δS

]
. (26)
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Wave function is a product of two Wigner D-functions, one for SU(3) and
one for SU(2) group

Ψrot (R,S) =
√

dim(r)(2J + 1)
∑
T̃ ,T̃3,

C00
T̃ T̃3 JT̃3

D(r)

Ỹ T̃ T̃3;Y Tt3

(
R+
)
DJ
J̃3;J3

(
S+
)

=
√

dim(r)(−1)J+J3D(r)

Ỹ J,−J3;Y TT3

(
SR+

)
. (27)

This function is an eigenfunction of spin J2 = J̃
2

= T̃
2
, J3, isospin T 2

and T3 and hypercharge Y , index (r) labels the SU(3) representations with
dimension dim(r). According to Eq. (24), the hypercharge Ỹ = Nc/3. At
last, Clebsh–Gordan coefficients C00

T̃ T̃3 JJ̃3
sum isospin T̃ and angular mo-

mentum J̃ to zero in order to obey the other quantization rule Eq. (24). In
fact, rotational wave function depends only on the combination RS+. This
is natural because owing to the hedgehog symmetry flavor isospin rotation
can be compensated by space one.

4.2. Rotational bands of 1-particle excitations

Let us proceed now with 1-quark excitations, i.e. excitations where only
one quark out of Nc is taken from the ground level and is put to some excited
one. The effective Lagrangian Eq. (13) is only slightly changed: one term in
the sum over theNc quarks has different scheme of occupied levels. The other
Nc − 1 terms, however, remain the same. This means that in the leading
order in Nc, the mean field does not change (the correction to the mean
field is O(1/Nc)). This is also true for moments of inertia I1 and I2 — they
acquire corrections O(1) as compared to the leading order O(Nc). Hence,
the effective rotational Lagrangian Eq. (22) remains the same. However,
additional linear terms in frequencies Ω and ω can appear. The reason is
that the mean field is a solution of equations of motion for the ground state
only, and not for excited ones. Hence, there is no theorem that linear terms
in the perturbation (which is rotation in this case) should be absent. The
corresponding linear terms are of the form of

δLrot = 〈excited|(ω · j +Ω · t)|excited〉+ 〈excited|δM |excited〉 , (28)

where the second term accounts for possible change of the contribution of
the correction Eq. (18) to the mean field as due to rotations. This correction
should be also calculated only in the ground state (it is determined mainly
by rotation of other Nc− 1 quarks) and assumed to be already known. It is
also linear in frequencies ω̃, Ω̃.
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Excited states are usually degenerate. Indeed, excitations in s-quark
sector have degeneracy 2S+ 1 (where S = 1

2 , . . . is a total momentum of the
state), excitations in sector u, d quarks are degenerate 2K + 1 fold where K
is the grand spin of the state. Any of degenerate states or their mixture can
be taken as an excitation. We define

|excited〉 =
∑

χK3 |KK3JL〉 (29)

(we are dealing now, for definiteness, with the excitation to some K 6= 0)
where |KK3JL〉 is the wave function of some excited state with grand
spin K, and projection K3 and χK3 are amplitudes for different values of
projection. Energy does not depend on χK3 . Hence, it is a new zero mode
and should be considered as collective coordinate together with S and R.
Effective rotational Lagrangian should be written for χK3 slowly changing
with time, evidently, the complete Lagrangian is

Lexcited[χ,R, S] =
∑
K3

χ+
K3
i
∂

∂t
χK3 + Lrot + δLrot , (30)

where Lrot is the rotational Lagrangian for the ground state, Eq. (22).
Plugging Eq. (29) into Eq. (28), we obtain

δLrot =
∑
K3K′3

χ+
K′3
χK3

[
〈KK3JL|(ω · j +Ω · t)|KK ′3JL〉

+(ω −Ω)〈KK ′3JL|
∂δM

∂ω
|KK3JL〉

]
. (31)

We used here a property that due to the hedgehog symmetry of the ground
state, the rotational Lagrangian should depend only on the difference of
flavor and space frequencies: δM ∼ ω −Ω.

One-quark flavor momentum t and angular momentum j are not con-
served in the hedgehog field. Nevertheless, as they transformed as vectors
under simultaneous flavor and spin rotations, their matrix elements should
be proportional to the matrix elements of the conserved quantity — grand
spin K

〈KK3jl| t
∣∣KK ′3jl〉 = aK 〈KK3|K

∣∣KK ′3jl〉 ,
〈KK3jl| j

∣∣KK ′3jl〉 = (1− aK) 〈KK3|K
∣∣KK ′3jl〉 ,

〈KK3jl|
∂δM

∂ω

∣∣KK ′3jl〉 = ζ 〈KK3jl|K
∣∣KK ′3jl〉 , (32)

where aK and ζK are some constants specific for a given excited level. The
expression for them can be found in [23]. Coefficient ζ depends on the form
of meson Lagrangian. It renormalizes the coefficient aK . Fortunately, the
correction to the mean field δM is zero in the wide class of theories.
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Collecting all terms, we obtain the collective Lagrangian for 1-quark
excitations in the sector of u, d quarks

LK [χ,R, S] =
∑
K3

χ+
K3
i
∂χK3

∂t
+

Nc

2
√

3
Ω̃8

+ [(1− ãK)ω + ãKΩ]
∑
K3K′3

χ+
K′3
χK3 〈KK3jl|K

∣∣KK ′3jl〉
+

3∑
i=1

I1

2

(
Ω̃i − ω̃i

)2
+

7∑
a=4

I2

2
Ω̃2
a (33)

(ãK = aK − ζ). Quantization of χK3 with Lagrangian (33) is trivial. Due
to the presence of collective variable χK3 , the quantity∑

K3K′3

χ+
K3
χK′3 〈KK3jl|K

∣∣KK ′3jl〉 = K̂ (34)

behaves as a quantum operator of angular momentum K. Differentiating
over ω,Ω, we obtain momenta in the body fixed frame

J̃ = I1(ω −Ω) + (1− ãK)K̂ , T̃ = I1(Ω − ω) + ãKK̂ ,

T̃a = I2Ω (a = 4 . . . 8) , T̃8 =
Nc

2
√

3
. (35)

It leads to the following quantization conditions instead of Eq. (24):

T̃ + J̃ = K̂ , Ỹ =
Nc

3
. (36)

Constructing now the Hamiltonian from the Lagrangian Eq. (33), we obtain

HK =
1

2I2

7∑
a=4

(
T̃a

)2
+

(
T̃− ãKK̂

)2

2I1
=

1

2I2

7∑
a=4

(
T̃a

)2
+

(
T̃− ãK

(
J̃ + T̃

))2

2I1
.

(37)
Energy levels are

EK =
c2(r)− T̃

(
T̃ + 1

)
− 3

4 Ỹ
2

2I2
(38)

+
1

2I1

[
(1− ãK) T̃

(
T̃ + 1

)
+ ãKJ(J + 1)− ãK(1− ãK)K(K + 1)

]
.

We used here that J̃ = J . Available spins are determined by the quantization
rule Eq. (36): J = |T̃ −K| . . . T̃ +K.
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It is easy to construct the collective wave function. For this case, it
depends on S, R and χK3

ΨK(R,S, χ) =

√
dim(r)(2J + 1)

2K + 1

×
∑
T̃ ,T̃3,

CKK3

T̃ T̃3 JJ̃3
D(r)

Ỹ T̃ T̃3;Y TT3

(
R+
)
DJ
J̃3;J3

(
S+
)
χK3 . (39)

This wave function is an eigenfunction of hypercharge Y , isospin T and its
projection T3 as well as spin J and its projection J3. In fact, it is completely
fixed by the symmetry and quantization requirements (36).

At last, let us describe excitations in the sector of s quarks. Let us
assume that we consider the 1-quark excitation where one quark is taken
from ground state K = 0 and put to the level for s-quark with some total
angular momentum S. Excited state is 2S + 1 fold degenerate, we take the
mixture

|excited〉 =
∑
S3

χS3 |S3〉 , (40)

where |S3〉 are one-quark wave functions with different projections of S. The
calculation of matrix elements gives now instead of Eq. (32)

〈S3| j
∣∣S′3〉 = 〈S3|S

∣∣S′3〉 , 〈S3|
∂δM

∂ω

∣∣S′3〉 = ζS 〈S3|S
∣∣S′3〉 (41)

and matrix elements of t are zero as s-quark does not carry isospin. Thus,
these matrix elements are those of Eq. (32) with aK = 0. It is straight-
forward to proceed now. The quantization rule of Eq. (36) changes now to

T̃ + J̃ = Ŝ , Ỹ =
Nc − 3

3
. (42)

The first rule is the one from Eq. (36) with evident substitution K → S.
The second rule appears because we substitute the quark with hypercharge
1/3 (one of u, d quarks in the ground state) by one s-quark (on excited level)
with hypercharge −2/3. This rule can be also derived by calculating directly
a coefficient in front of the Wess–Zumino–Witten term.

Levels of energy for s-quark excitations can be obtained from Eq. (39)
with substitutionK→S and aK =0. Available spins are J= |T̃−S| . . . T̃+S;
collective wave function is an analogue of Eq. (39)

ΨS(R,S, χ) =

√
dim(r)(2J + 1)

2S + 1

×
∑

T̃ ,T̃3,S3

CSS3

T̃ T̃3 JJ̃3
D(r)

Ỹ T̃ T̃3;Y TT3

(
R+
)
DJ
J̃3;J3

(
S+
)
χS3 . (43)
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To summarize: rotational bands around the given excited intrinsic en-
ergy should be constructed in the following way. One has to choose SU(3)-
multiplets which contain states obeying quantization rule for Ỹ , read off the
value of T̃ corresponding to this Ỹ , and use formulae (25), (39) for their
rotational energy.

Quark wave functions in the mean-field approximation are the product
of one-particle wave functions of the filled levels. One has to rotate them
according to Eq. (10) and then project to collective wave functions obtained
above (see Eqs. (27), (39), (43)). (“Projection” means that one has to multi-
ply rotated quark wave function by conjugated collective wave function and
integrate over matrices R and S.) This will produce quark wave functions
of the excited baryons with given quantum numbers.

Multiplets we are dealing with are not completely arbitrary but obey
Witten quantization rule. For these multiplets, one can rewrite formula (39)
in the following simple form [29]

∆M = ∆E
+

1

2I1

[
ãKJ(J+1) + (1− ãK) T̃

(
T̃+1

)
− ãK (1−ãK)K(K+1)

]
+

(1 +X)
(

2 + 3Ỹ
)

2I2
+
T̃max

(
T̃max + 1

)
− T̃

(
T̃ + 1

)
2I2

. (44)

Here, ∆E is the energy of excited level, Ỹ — hypercharge according to the
Witten quantization rule, J — spin of the baryon, K — grand spin of the
level. At last, X is exoticness of the excited baryon which is defined as a
minimal number of quark–antiquark pairs which we have to add to usual Nc

quarks. For non-exotic multiplets, X = 0 and always T̃max = T̃ .
We see that I2 plays the role of the moment of inertia for exotic states;

their spectrum is equidistant and distances between states are of the order
of unity (we remind that I2 ∼ Nc and Ỹ ∼ Nc). Moment of inertia I1 gov-
erns ordinary excitations splittings [29]. We will not consider the rotational
exotics here, they have some specifics related to the fact that their width
is ∼ O(1) [30, 36]. Anyway, they are separated from the normal rotational
band by the interval ∼ O(1).

We arrive at the following picture of excited states depicted in Fig. 3.
Every excited state has a restricted number of non-exotic states entering the
rotational band with definite T̃ . They are determined from the condition
that both p > 0 and q > 0. In particular, for excitations in sector of
s quarks at Nc = 3, Ỹ = 0, we get only one state — singlet with spins
J = S ± 1/2 (where S is the spin of excited states) and other multiplets
are exotic. Excitations in sectors of u, d quarks have more reach structure.
For non-exotic states (X = 0) at Nc = 3 and Ỹ = 1, we have only two
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possibilities: T̃ = 1
2 and T̃ = 3

2 . In other words, they can come only as
octets or decuplets. At larger Nc, other multiplets become non-exotic. At
K = 0, we obtain the rotational band of J = T̃ with different spins changing
in the limits of 1

2 < J < Nc
2 . Their energies are given by general formula

Eq. (44) with X = 0, ãK = 0.

Fig. 3. Structure of excitations in sector of u, d quarks and s quarks.

4.3. Spurious states: Skyrme example

Not all states present in the mean-field approximation are realized in
nature. Approximation of the mean field which is valid at Nc → ∞ corre-
sponds to the infinitely heavy nucleon with the center of mass located at
the point R → 0. Only in this frame, the wave function of baryon can be
presented as the product of one-particle wave functions.

The correct solution should satisfy translational invariance and hence
should depend only on the differences of quark coordinates. One can consider
the projection of the given state to the state with definite total momentum P .
However, the problem is that there is a mixing of the total momentum
with individual angular momenta of the quarks. For this reason, the total
scheme of the quantization should be reconsidered. Together with Pauli
principle, this forbids a number of states. These states correspond to the
pure movement of the center of mass and are spurious.

For the nuclear physics this problem is well-known, for the first time, it
was considered in reference [27]. This paper considers the simplest quantum
mechanical example: N particles interacting by pair oscillator potential.
One can trace that some particular wave functions (after a shift of center-
of-mass coordinate) representing excitations of the oscillator wave functions
reduce to the ground state wave function multiplied by center-of-mass coor-
dinate rc.
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The systematic theory of the center-of-mass motion (in the limit of Nc →
∞) is based on the observation that transformed wave function

φ̃n(x)αi = Rαα′(t)S
i
i′(t)φ

α′i′
n (O(t)x− rc(t)) ,

Oik(t) = 1
2Tr

[
S+(t)σkS(t)σi

]
,

HI [π
rot((O(t)x− rc(t))]φn = εnφn , (45)

where rc(t) is a slowly varying function of time. Substituting it into the
Hamiltonian leads to the modification of our Hamiltonian

S[C] = −
∫
dt

∫
Cχ

dε

2πi
Spx log γ0

[
ε+ i

∂

∂t
− Ω̃ata − ω̃iji − V c · ∇+HI [π]

]
.

(46)
Here V c = ∂trc is the speed of the center-of-mass motion.

Let us construct expansion in the center-of-mass velocity V . Linear
terms of the expansion of Eq. (46) in the soliton velocity

S linear
V = V c

∑
n=filled

〈n|∇|n〉 (47)

are absent. The quadratic terms are

Squad
V =

∑ 〈n|∇i|m〉〈m|∇j |n〉
εn − εm

V iV j ≡ 1
2MinV

2 , (48)

where Min is an inertial mass of the soliton. It is the same in the leading
order O(Nc) for one-quark excited baryons as for ground state baryons.
Moreover, it can be shown by means of equations of motion that this inertial
mass coincides with the gravitational one: Min =M.

We return now to the discussion of spurious states, let us consider the
same example of the spurious state that is considered in Ref. [27]. The
example is α-particle — the nucleus of He4. In the mean-field approximation,
the ground state has a wave function which is a product

ΨHe = εi1i2i3i4ϕ(r1)ϕ(r2)ϕ(r3)ϕ(r4) . (49)

Here, we used SU(4)-notation for spin, isospin of the nucleons. ϕ is a mean-
field one-particle wave function which we assume to be the oscillator one.
Let us consider now an excited wave function of He4 with L = 1. We can
look for such a wave function in the form of

Ψ ′He = εi1i2i3i4Symr1...r4 {ϕL=1(r1)ϕ(r2)ϕ(r3)ϕ(r4)} . (50)

This is the correct wave function and it inevitably appears in the mean-field
approximation. It has correct properties under the exchange of nucleons too.
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Nevertheless, it is spurious. The reason is obvious in the case of oscillator
wave functions, where

ϕL=1(r1) = r1ϕ(r1) (51)
(different projections m = −1, 0, 1 correspond to different components of
this vector). Hence,

Ψ ′He = rcΨHe . (52)
In other words, this wave function corresponds to the movement of the center
of inertia of He4.

For oscillator potential V (r) = κ2r2, it is easy to visualize the difference
between mean field and exact solution. Indeed, the mean-field one-particle
wave functions Ψmf (which are the product of one-particle oscillator wave
functions) obey Schrödinger equation with the potential

Vmf = κ2N

N∑
i

r2
i , (53)

while the correct potential is

V = 1
2κ

2N
N∑
i 6=j

(ri − rj)2

= κ2(N − 1)
N∑
i

r2
i − κ2

∑
i 6=j
ri · rj

= κ2(N − 1)

N∑
i

r2
i −

N∑
j

κ2(Nrc − rj) · rj = Vm.f. −N2κ2r2
c , (54)

i.e. mean-field potential is

Vmf = V + κ2r2
c . (55)

Hence, it differs from the true potential by the some additional term which
is, again, the potential of oscillator. Therefore, mean-field approximation
produces oscillator wave function as the wave function of the center-of-mass
motion. The general mean-field function is a product

Ψmf = ΨinΨcm(rc) , (56)

where Ψin is a wave function of the internal motion (it depends only on
differences of the coordinates) and Ψcm(rc) is some (oscillator) wave function
of the center-of-mass motion. In the case of He4, Ψcm(rc) is a wave function
with L = 1 (instead of L = 0 for the ground mean-field state), while Ψin

remains the function of the ground state. This is why this state is, in fact,
spurious, it is completely induced by the mean-field approximation.
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4.4. Spurious states in rotational bands
When comparing the mean-field predictions (valid at Nc → ∞) with

the data, it should be kept in mind that certain rotational states are in
fact spurious, as they are artifacts of the mean-field approximation where
the spatial wave function is a product of one-particle wave functions. When
averaging over the center of mass is taken into account (which is an O(1/Nc)
effect) the baryon wave functions depend only on the differences of quark
coordinates, which for some states may contradict the Pauli principle. The
simplest way to identify spurious states is to continuously deform the mean
field to the non-relativistic oscillator potential where the wave functions
are explicit. Again, they can be written directly projecting rotated mean-
field quark wave functions with collective wave functions constructed here.
If some state is absent in that limit, it cannot appear from a continuous
deformation. An independent way to check for spurious states is to deform
the problem at hand to the exactly solvable (0+1)-dimensional four-fermion
interaction model [23, 34] where the large-Nc approximation is also possible
and reveals extra states.

Specifically, in the parity-plus sector, the spurious state is (10, 1/2+)
arising from the rotational band about the (0+ → 2+) transition. Such
state arises also from the (0+ → 1+) transition but then it is allowed.

In the parity-minus sector, there are more spurious states: the multiplets
(10, 5/2−) and (10, 7/2−) stemming from the (0+ → 2−) transition are spu-
rious, two out of three multiplets (10, 3/2−) arising from (0+ → 0−, 1−, 2−)
transitions are spurious, and one out of two multiplets (10, 1/2−) stemming
from (0+ → 1−, 2−) transitions is spurious, too. As it was already said,
remaining negative parity multiplets exactly coincide with octets and decu-
plets from (70,1) multiplet of SU(6)⊗O(3) of the quark model.

Spurious rotational states should be deleted when comparing with the
data.

4.5. Parity-plus resonances
The two lowest multiplets (8, 1/2+, 1152) and (10, 3/2+, 1382) (the last

number in the parentheses is the center of the multiplet) form the rotational
band about the ground-state filling scheme shown in Fig. 2. Fitting these
masses by Eq. (44), we findM0 + 3

4I2
= 1090 MeV, 1/I1 = 153 MeV.

Apart from the two lowest multiplets, there is another low-lying pair with
the same quantum numbers, (8, 1/2+, 1608) and (10, 3/2+, 1732). Other
parity-plus multiplets are essentially higher. Therefore, one needs a 0+ → 0+

transition to explain this pair. From the fit to the masses, one finds that
the second KP = 0+ intrinsic quark level must be 482 MeV higher than
the ground state 0+ level, ∆E(0+→0+) = 482 MeV. The moment of iner-
tia appears to be considerably larger than for the ground-state multiplets,
1/I1 = 83 MeV. Although the difference is an O(1/Nc) effect, it may be
enhanced if the radially excited 0+ level has a much larger effective radius.
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TABLE III

Interpretation of all baryon resonances below 2 GeV, as rotational excitations on
top of intrinsic quark states.

Quark levels Rotational bands (I1)−1 [MeV] ãK

KP = 0+ ground
(8, 1/2+, 1152) (10, 3/2+, 1382) 153state

0+ → 0+ 482 MeV (8, 1/2+, 1608) (10, 3/2+, 1732) 83
0+ → 2+ 722 MeV (8, 3/2+, 1865) (8, 5/2+, 1873)

(10, 3/2+, 2087) (10, 5/2+, 2071) 131 −0.050
(10, 7/2+, 2038)

0+ → 1+ ∼ 780 MeV N(1/2+, 1710) N(3/2+, 1900)
∆(1/2+, 1910) ∆(3/2+,∼1945)?
∆(5/2+, 2000)

0+ → 1− 468 MeV (8, 1/2−, 1592) (8, 3/2−, 1673) 171 0.336
(10, 1/2−, 1758) (10, 3/2−, 1850)

0+ → 0− 563 MeV (8, 1/2−, 1716) 155(fit)
0+ → 2− 730 MeV (8, 3/2−, 1896) (8, 5/2−, 1801) 155(fit) −0.244

There is a group of five multiplets, (8, 3/2+, 1865), (8, 5/2+, 1873),
(10, 3/2+, 2087), (10, 5/2+, 2071), (10, 7/2+, 2038), that are good candi-
dates for the rotational band about the 0+ → 2+ transition. Indeed, this is
precisely the content of the rotational band for this transition (the spurious
multiplet (10, 1/2+) excluded), and a fit to the masses according to Eq. (44)
gives a small

√
χ2 = 15 MeV. It should be kept in mind, though, that not

all members of all multiplets are well-established [5], and those that are, have
an experimental uncertainty in the masses. It means that the ‘experimental’
masses for the centers of multiplets are known at best to an accuracy of 20–
40 MeV. We find from the fit 1/I1 = 131 MeV, ∆E(0+→ 2+) = 722 MeV.
Therefore, the intrinsic 2+ level must be higher than the 0+ one.

The only relatively well-established multiplet that is left in the range be-
low 2 GeV is (8, 1/2+, 1846). It prompts that it can arise from the rotational
band about the 0+ → 1+ transition, however, other parts of the band are
poorly known. If one looks into non-strange baryons that are left, one finds
N(1/2+, 1710∗∗∗), N(1/2+, 1900∗∗), ∆(1/2+, 1910∗∗∗) and ∆(5/2+, 2000∗∗),
with ∆(3/2+) missing. The quantum numbers and the masses of these sup-
posed resonances fit rather well the hypothesis that they arise as a rotational
band about the 0+ → 1+ transition, however, their low status prevents a
definite conclusion. The intrinsic 1+ level must be approximately 60 MeV
higher than the 2+ quark level.



84 V. Petrov

4.6. Parity-minus resonances

The situation here is similar to the parity-plus sector: one needs intrinsic
quark levels with KP = 0−, 1−, 2− to explain the resonances as belonging
to rotational bands about these transitions. Given that several rotational
states in the parity-minus sector are spurious, one expects to find the follow-
ing multiplets stemming from these transitions: (8, 1/2−)×2, (8, 3/2−)×2,
(8, 5/2−), (10, 1/2−), (10, 3/2−): these are precisely the observed multi-
plets.

We know that all remaining multiplets are spurious but we do not know
the way to assign specific K to the observed one. We attribute them ac-
cording to Eq. (44) requiring that no mixing can happen (ζ = 0). There is
only one way to do this.

We assign the four lowest multiplets (8, 1/2−, 1592), (8, 3/2−, 1673),
(10, 1/2−, 1758) and (10, 3/2−, 1850) to the rotational band K = 1− level.
The fit tells that corresponding moment of inertia is 1/I1 = 171 MeV and
the energy of the level is close ∆E(0+→ 1−) = 468 MeV to ∆E(0+→ 0+).
This does not look impossible.

The multiplet (8, 1/2−, 1716) should be ascribed as 0+ → 0− transition
and two remaining multiplets (8, 3/2−, 1896) and (8, 5/2−, 1801) to 0+ → 2−

transition.
These assignments produce reasonable values of mixing coefficients ãK

which can be explained without mixing of rotations and other degrees of
freedom in the effective meson Lagrangian. Probably, some other informa-
tion (mass splittings or resonance widths) should be used to fix finally the
attribution of multiplets to the rotational bands. If the final scheme would
be different from the assumed here, it will witness the large role of other
than pion mesons in formation of negative parity baryons.

To summarize, all parity-plus and parity-minus baryons around 2 GeV
and below can be accommodated by the scheme, assuming they all arise
as rotational excitations about the 0+ → 0+, 1+, 2+ and 0+ → 0−, 1−, 2−

transitions, see Table I. There are no unexplained resonances left, but there
appears an extra state ∆(3/2+,∼1945) stemming from the 0+ → 1+ transi-
tion, which is so far unobserved, so this state is a prediction.

4.7. Strange quarks

Strange quarks are in a completely different external field than u, d
quarks, even in the chiral limit. Only the confining forces which we model
by a linear rising scalar field are the same for all quarks. The two excited
levels for s quarks are shown in Fig. 3: they are needed to explain the singlet
Λ(1/2−, 1405) and Λ(3/2−, 1520) resonances. No more singlet Λs are known
below 2 GeV, therefore there should be no intrinsic s-quark levels either with
positive or negative parity in this range.
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5. Mass splittings

Non-zero mass of the strange quark ms breaks down SU(3) flavor group
and splits SU(3) multiplets. Let us calculate these splittings. Inserting
quark mass m (a matrix in flavor) into the quark determinant Eq. (13) and
expanding up to the first order in m, we obtain

δmS = −i
∑
c

Spoccup

{
R+mRγ0 1

i ∂∂t −H(M + δM)− Ω̃ta − ω̃iji

}
. (57)

Strange quark mass has both singlet and octet part m = m01 + m8λ8 and
m8 = ms/

√
3 and splittings are determined only by the octet part m8.

We want to calculate mass splitting in zero and first order in angular
and flavor frequencies ω̃ and Ω̃. For ground-state baryons, this calculation
was carried out in many papers (see, e.g. [15, 28]). Result reads

δmS =
ms√

3

[
D(8)

8a (R)
∑

occup

〈n|λaγ0|n〉+ 2K1

3∑
i=1

D(8)
8i (R)

(
Ω̃i − ω̃i

)

+ 2K2

7∑
a=4

D(8)
8a (R)Ω̃a

]
. (58)

Here, the first term is of zero order in frequencies, second and third ones
represent first order corrections. K1 andK2 are some constants analogous to
the moments of inertia (see [15]). (If there is a mixing of rotations with δM ,
expressions from [15] should be modified.) SU(3) Wigner D-functions belong
to the adjoint representation of SU(3).

Expression (58) is valid for rotational bands above the ground state and
one-particle excitations. The first term for ground state baryons is non-
zero only at a = 8, it can be expressed through the experimentally known
quantity — a so-called Σ-term∑

c

∑
occup

〈n|λ8γ
0|n〉 =

1

3

ms

mu +md
Σ , Σ = (mu +md)

∂M
∂(mu +md)

.

(59)
In this relation, it was used that all valence levels are located in the sector
of u, d quarks. We will imply below only this case. Indeed, we have seen
that at Nc = 3, one-particle excitations in the sector of s quarks (from the
ground state) are singlets, so there is no mass splitting present for this type
of excitations.

In the sector of u, d quarks, there is also another possibility a = 1, 2, 3
for an excited level

〈excited|λi
2
γ0|excited〉 = dK

∑
K3,K′3

χ+
K′3
χK3

〈
K ′3|Ki|K3

〉
, (60)
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where dK is some constant which is determined by the wave function of the
level (for its calculation, see [23]).

First order terms in frequencies in Eq. (58) can be simplified as well. We
substitute frequencies by operators T̃a according to Eq. (35). Using relation

T8 =
8∑

a=1

D(8)
8a (R)T̃a ,

one can express the last term in Eq. (58) in terms of the sum with a = 1, 2, 3
and hypercharge Y = 2T8/

√
3. Proceeding to the Hamiltonian

Hm = αD(8)
88 (R) + βY +

√
3γ

3∑
i=1

D(8)
8i (R)T̃i +

√
3δ

3∑
i=1

D(8)
8i (R)K̂i , (61)

where

α = −2

3

ms

mu +md
Σ +ms

K2

I2
, β = −ms

K2

I2
,

γ =
2ms

3

(
K1

I1
− K2

I2

)
, δ =

2ms

3

(
dK −

K1

I1
ãK

)
, (62)

we see that the mass splittings are determined by four possible structures.
Only the last term is novel, other three are known for ground-state baryons.
Moreover, constants α, β, γ up to corrections of the order of 1/Nc are the
same for all levels. As to δ, it is determined by the properties of the excited
level and is individual for a given level. Nevertheless, δ is the same for
all rotational bands of the given level. Note also that α ∼ O(Nc), while
β, γ, δ ∼ O(1).

Mass splittings are determined by the average of the Hamiltonian (61)
over the collective wave functions. Resulting expressions, of course, respect
Gell-Mann–Okubo formula. We parametrize the masses of particles in the
octet as

MN = M8 −
7

4
µ

(8)
1 − µ

(8)
2 , MΛ = M8 − µ(8)

1 ,

MΣ = M8 + µ
(8)
1 , MΞ = M8 +

3

4
µ

(8)
1 + µ

(8)
2 (63)

and masses of decuplet particles as

M∆ = M10 − µ(10) , MΣ = M10 ,

MΞ = M10 + µ(10) , MΩ = M10 + 2µ(10) . (64)

This parametrization obeys Gell-Mann–Okubo formula automatically. In
Table IV, we give the values of µ in terms of α, β, γ, and δ for different
values of K and the spin of the multiplet J .
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TABLE IV

Mass splittings for octet and decuplet particles for different K.

K Rep. J µ
(8)
1 µ

(8)
2 µ(10)

0 8 1
2 − α

10 −
3γ
20 −α8 − β + 5γ

16

10 3
2 −α8 − β + 5γ

16

1

8
1
2 − α

10 −
11γ
20 −

3δ
5 −α8 − β + 55γ

48 −
5δ
4

3
2 − α

10 + γ
20 + 3δ

10 −α8 − β −
5γ
48 −

5δ
8

10
1
2 −α8 − β + 35γ

48 + 5δ
8

3
2 −α8 − β + 23γ

48 + δ
4

5
2 −α8 − β + γ

16 −
3δ
8

2

8
3
2 − α

10 −
3γ
4 −

9δ
10 −α8 − β + 25γ

16 + 15δ
8

5
2 − α

10 + γ
4 + 3δ

5 −α8 − β −
25γ
48 −

5δ
4

10

1
2 −α8 − β + 17γ

16 + 9δ
8

3
2 −α8 − β + 13γ

16 + 3δ
4

5
2 −α8 − β + 19γ

48 + δ
8

7
2 −α8 − β −

3γ
16 −

3δ
4

Experimental values for 19 multiplets below 2 GeV are given in Tables I
and II in columns 4 and 5. Accepting some model for soliton Lagrangian,
one can immediately calculate α, β, γ, and δ and compare the splitting with
experimental data. On the other hand, expressions for mass splittings give
rise to the number of relations between masses of the particles entering
the same rotational band. These relations are similar to the well-known
Guadagnini [33] relation which is valid for the ground state octet and de-
cuplet (see, e.g., [35]). These relation are model independent. Let us list
them here for K = 2 rotational band of the baryons with positive parity, for
octets and decuplets

5µ
(8)
2

(
3
2

)
+ 9µ(10)

(
5
2

)
= 14µ(10)

(
3
2

)
,

5µ
(8)
2

(
5
2

)
+ 11µ(10)

(
3
2

)
= 16µ(10)

(
5
2

)
, (65)

and for decuplets only

5µ(10)
(

7
2

)
+ 7µ(10)

(
3
2

)
= 12µ(10)

(
5
2

)
,

3µ(10)
(

5
2

)
+ 5µ(10)

(
1
2

)
= 8µ(10)

(
3
2

)
(66)

(we put in parenthesis the spin of the particles). All these relations work
with accuracy better than 10% and some even with accuracy 1–2%.
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For K = 1 (negative parity), we get two relations

7µ(10)
(

1
2

)
+ 3µ

(8)
2

(
3
2

)
= 10µ(10)

(
3
2

)
,

5µ(10)
(

3
2

)
+ 3µ

(8)
2

(
1
2

)
= 8µ(10)

(
1
2

)
. (67)

While the first is fulfilled with accuracy of 2%, the second one is broken at
the level of 10%.

The last relation for K = 0 (which is precisely Guadagnini’s one but for
excited baryons) reads: µ(10)

(
3
2

)
= µ

(8)
2

(
1
2

)
. This relation which is satisfied

rather well for the ground state octet and decuplet is surprisingly strongly
broken for K = 0+ excited state.

The situation changes in the strict limit Nc → ∞, in the approach ad-
vocated in [16]. The difference is that we have to consider Clebsch–Gordan
coefficients in the same limit. They can be extracted, e.g., from [23].

Results demonstrate different Nc counting than in previous logic. It
appears that mass splittings are not O(msNc) but only O(ms). Both con-
stants α and β enter the leading term, while γ and δ appear in corrections
O(ms/Nc). Probably, this picture is more satisfactory from the purely the-
oretical point of view. Let us note that it coincides with Nc counting de-
veloped in [16, 17] (all mass relations derived there are also automatically
fulfilled here).

Gell-Mann–Okubo relations appear to be still valid. This is not trivial,
especially for “decuplets”, where not one but two final states at arbitrary Nc

are available (so it is possible to talk about F - andD-scheme for “decuplets”).
However, at large Nc Gell-Mann–Okubo relations are restored, up to the
order O(1/Nc) inclusive (they are not exact in Nc!). To save space, we will
not fill up the complete table of masses analogous to the table at Nc = 3.
Instead, we write down only mass relations which are independent of the
concrete model (some of them were already known). For K = 0,

µ(10)
(

3
2

)
= µ

(8)
2

(
1
2

)
− 1

4µ
(8)
1

(
1
2

)
, (68)

which substitutes Guadagnini’s relation derived at Nc = 3 (see above). We
see that the accuracy of this relation is less than of original one. It is not
surprising, as the continuation of the Clebsch–Gordan coefficient introduces
a new source of inaccuracy. At K = 1, there are the following relations:

12µ
(8)
2

(
3
2

)
− 3µ

(8)
1

(
3
2

)
+ 14µ(10)

(
3
2

)
= 26µ(10)

(
1
2

)
,

12µ
(8)
2

(
1
2

)
− 3µ

(8)
1

(
1
2

)
+ 20µ(10)

(
3
2

)
= 32µ(10)

(
1
2

)
. (69)

And at last, for K = 2,

20µ
(8)
2

(
5
2

)
− 5µ

(8)
1

(
5
2

)
+ 44µ(10)

(
3
2

)
= 64µ(10)

(
5
2

)
,

20µ
(8)
2

(
3
2

)
− 5µ

(8)
1

(
3
2

)
+ 34µ(10)

(
3
2

)
= 54µ(10)

(
5
2

)
(70)
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(relation for decuplets is the same as at Nc = 3). In general, these relations
are less accurate than the original ones at Nc = 3.

6. Decays of excited baryons

Typical decays of excited baryons below 2 GeV are of the type Bi →
BfM with one emitted meson, at least such decays always give essential
part of the width. To be specific, we will talk about decays into Goldstone
octet of π mesons. Let us estimate the width in the limit of large Nc (see
[18, 23, 37]). One-pion decays of the excited baryons are described by the
effective Lagrangian of the type

Leff =
ga
Fπ

∫
d3x Ψ̄

(f)
B γµγ5

λa

2
Ψ

(i)
B ∂µπ . (71)

Here, Ψ (i)
B and Ψ

(f)
B are fields of initial and final baryon, π is the π-meson

field with flavor a, λa is the corresponding Gell-Mann matrix. At last, ga is
a transitional axial coupling constant. The width Γfi of partial decay to Bfπ
is proportional to this coupling constant squared and the phase volume

Γfi ∼
g2
a

8πF 2
π

∆3 (72)

(see, e.g. [36]), where ∆ = Mi −Mf is the difference of mass of the initial
and final baryon.

The coupling constant can be calculated as a matrix element of the
corresponding quark operator between mean-field initial and final state

ga(k) ∼
∫
d3x 〈fin|ψ̄γ5γµψ(x)|in〉eikx . (73)

The role of quark operator is played by axial current for decays with π me-
sons, vector current for decays into ρ mesons, etc. Expression (73) already
implies the Nc → ∞ limit, as baryons are considered to be heavy (mass
O(Nc)) non-relativistic objects. (Expression (72) is also written in this
limit.) Plane wave eikx represents the wave function of emitted meson,
k being its momentum. At last |in〉 and |fin〉 are mean-field approximations
for initial and final baryon quark wave functions. They are product of all
1-quark wave functions — solutions of the Dirac equation in the mean field
— for all filled levels. In general, one has to write here wave functions ro-
tated by matrices R and S in order to take into account degeneracy of the
mean field. After the calculation of matrix element (73), we obtain some
operator depending on collective coordinates. Averaging this operator with
collective wave functions of initial and final baryon, we obtain the coupling
constant for some specific decay.
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In fact, Eq. (73) is only the first term of an expansion in the time deriva-
tives of the collective coordinates. Next terms can be obtained in the same
manner as it was done for corrections in ms. Due to the limit Nc → ∞,
all collective coordinates are slowly varying functions of coordinates, so this
expansion is the expansion in 1/Nc, Eq. (73) being its leading term.

Decays of excited baryons are possible either to baryons belonging to
the same rotational band or to the baryons which have the different filling
of intrinsic quark levels (e.g. to ground state baryons). In the first case,
the coupling constant is large, O(Nc). An example is a transitional axial
constant [8]. In the second case, the coupling constant is always smaller.
This difference is clearly seen from Eq. (73).

Indeed, since the configuration of levels is the same in the initial and
final state, the coupling constant is a sum of Nc 1-particle matrix elements
corresponding to all Nc quarks. If excited quark changes its intrinsic state,
then only one ofNc contributions survives which is the overlap of one-particle
matrix element between initial and final states of this quark (all other are
zero due to orthogonality of wave functions). However, if the final state is
the ground state, an additional factor

√
Nc appears, which is due to the

different normalization of initial and final wave functions

ga(R,S) ∼
∫
d3xφ∗f (x)S+γ3γ5SR

+λ
a

2
Rφi(x)jl(k|x|)Dlm1,m2

(S)Ylm2

(
x

|x|

)

×

 Nc i, f = the same band ,√
Nc i = excited , f = ground ,
1 i = excited , f = excited′ .

(74)

This expression is written a bit schematically. Wave functions ψi and ψf are
initial and final wave functions of excited quark, R is a rotational matrix in
flavor and S in ordinary space, Dlm1m2

(S) is Wigner function and Ylm is an
ordinary spherical harmonics (summation over all possiblem2 is implied). At
last, jl(kr) is a spherical Bessel function. It appears (together with spherical
harmonics) as a result of expansion of a plane wave in Eq. (73) into a set of
spherical waves. If the momentum of emitted meson is small, ka � 1 (a is
the scale of wave functions ψi,f which coincides with the characteristic size
of the baryon), it is sufficient to account for the lowest angular momentum
l = 0 (angular momentum of emitted pion is 1).

Axial constant (74) is an operator in the space of collective coordinates
(derived in the leading order in Nc). To obtain coupling constant responsible
for the decay of a concrete baryon to some other one, we have to average
expression (74) over collective wave functions

ga(i→ f) =

∫
dRdS ψ

(rot)∗
f (R,S)ga(R,S)ψ

(rot)
i (R,S) . (75)



Soliton Model for Baryons 91

Despite of the fact that coupling constant is smaller, the widths of decays
to the different quark levels are typically larger in Nc. The reason is that
phase volume in this case is always larger. The mass differences are O(1/Nc)
for decays inside the same rotational band but O(1) for transitions with
change intrinsic state of excited quark. As a result, the width of decays
inside the rotational band is suppressed as O(1/N2

c ), while decays of excited
baryons with discharge of the excitation are always O(1) (and decays to the
other levels are suppressed). In particular, the total width of ground state
baryons (decuplet with spin 3

2 ) is only O(1/N2
c ), while all remaining baryons

have the total width of O(1).
In practical terms, only decays to the ground octet or decuplet are ob-

servable. For all baryons, they have partial widths independent of Nc up to
corrections in 1/Nc which can be still essential at Nc = 3. Let us prove a
theorem: widths of all baryons belonging to the same rotational band are
the same in the leading order in Nc.

Indeed, mass differences of all baryons entering the same rotational band
are the same in the leading order in Nc. Hence

Γ
(i)
tot =

∑
f

Γ (i→ f) =
∆3

8π

∑
f

g2
a(i→ f) = Γlevel . (76)

However, the sum of axial constants squared over all possible final states
does not depend on the initial state of the band. According to Eq. (75),
axial constant squared contains two integrals over R,S and R′, S′. The
completeness of final baryon rotational functions,∑

f

ψ
(rot)∗
f (R,S)ψ

(rot)
f

(
R′, S′

)
= δ

(
R−R′

)
δ
(
S − S′

)
,

leads to R = R′ and S = S′. Then, the sum over all possible flavors of
pseudoscalar mesons and directions of axial current gives the expression
which does not depend on R and S due to Fiertz identities. Dependence
on matrices remains only in initial wave function. Integral over R and S is
becoming the normalizing integral for initial collective wave function and the
dependence on initial state disappears completely. A total width obtained
in this way has a sense of the complete width of the intrinsic quark level and
is universal for the whole rotational band around it.

The proved theorem is strongly broken in nature. There are many rea-
sons for that: corrections in Nc and mass of the strange quark ms to the
coupling constants, mixing of multiplets, etc. Perhaps, the strongest source
of the deviations is simply the difference in the phase volumes (which is
O(1/Nc effect) for different baryons entering the same rotational band.
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The fact that widths of excited baryons are not suppressed in the large
Nc limit makes these baryons not well-defined. One can count only on
numerical smallness of the width not related to Nc. In such a situation,
baryon resonances can be defined only as poles in the complex plane of
meson–nucleon scattering amplitude. This approach was applied in [36] to
the problem of pentaquark (which also has width independent of Nc) for the
Skyrme model but, in general case, it looks too complicated. If the width is
small, one returns to the self-consistent field description presented here.

It seems that width of the baryon which is not suppressed at Nc → ∞
possesses the danger to our approach in general. Indeed, due to unitarity
non-zero width implies not only imaginary part of the pole but also a shift
in the real part, i.e. leads to the change of the baryon mass. It can be small
numerically but it is O(1) in Nc. If it is different for the baryons entering the
same rotational band, our formulae for mass splittings inside the rotational
band become pointless. Fortunately, it is not the case.

Corrections to the mass which are due to decays into the π mesons are
presented by the self-energy diagram of Fig. 4. The imaginary part of this
diagram gives the width of Bi → BfM decay, real part gives the shift of mass.
The point is that the mass shift being again the sum over all rotational states
does not depend on the baryon Bi from the same rotational band

∆M ∼
∑

f

∫
d4k

(2π)4

g2
a(i→ f)

k2(∆+ k0)

as it was proved above. Hence, we arrive at conclusion that the mass shift
is universal for all baryons inside the rotational bands. It contributes to the
general shift of the given intrinsic level and does not break the mass relations
in the O(1/Nc) order. Next order corrections in Nc due to the finite width
of the resonance also do not destroy these relations. However, they can
renormalize the moment of inertia I1. An example of such a situation is
given by pentaquark in the Skyrme model [36].

B
i B

iB
f

M

g
a g

a

Fig. 4. Self energy correction to the excited baryon mass.

The experimental values for widths to one meson plus ground state
baryons are listed in columns 8–10 of Tables I and II. Decays to the ground
state octet and decuplet are possible. The first decay is determined by two
coupling constants, their ratio F/D is presented in column 9.
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There is a number of model-independent, Guadagnini-type relations be-
tween coupling constants following from the general expression (74). Con-
sideration of these relations is outside the scope of this paper.

7. Conclusions

We presented here an approach to low-lying baryon resonances which is
valid at large number of colors. In this approach, baryons can be described
as bound states of quarks in the mean meson field. We believe that it
works much better than the usual quark model. The quark model fails to
incorporate spontaneous breakdown of chiral symmetry which is the most
essential feature of QCD at small energy. The main difference between
suggested approach and the quark model is a symmetry of mean field: in
the quark model, we deal with mean field which keeps SU(6) symmetry,
while the soliton approach starts from the hedgehog symmetry which breaks
SU(6) strongly.

All low-lying baryons below 2 GeV can be described as 1-particle excita-
tions in the mean field. There are no extra and no missing states: rotational
bands around one-particle excitations fit exactly to the data.

A soliton picture of the baryons gives a self consistent relativistic quan-
tum field description of the properties of baryon resonances. There is a
systematic way to calculate quantum corrections (which include creation of
additional qq̄ pairs). These corrections are small in 1/Nc parameter. This
parameter introduces a definite hierarchy in the splitting of multiplets.

In reality, Nc is only 3 and the above idealistic hierarchy of scales is
somewhat blurred. Nevertheless, an inspection of the spectrum of baryon
resonances reveals certain hierarchy schematically summarized as follows:

— Baryon mass: O(Nc), numerically 1200 MeV, the average mass of the
ground-state octet.

— One-quark and particle-hole excitations in the intrinsic spectrum: O(1),
typically 400 MeV, for example, the excitation of the Roper resonance.

— Splitting between the centers of SU(3) multiplets arising as rotational
excitations of a given intrinsic state: O(1/Nc), typically 133 MeV.

— Splitting between the centers of rotational multiplets differing by spin,
that are degenerate in the leading order: O(1/N2

c ), typically 44 MeV.

— Splitting inside a given multiplet owing to the nonzero strange quark
mass: O(msNc), typically 140 MeV.

In practical terms, we have shown that all baryon resonances up to 2 GeV,
which are made of light quarks, can be understood as rotational excita-
tions about certain transitions between intrinsic quark levels. The quantum
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numbers of the resonances and the splittings between multiplets belonging
to the same rotational band are dictated by the quantum numbers of the
intrinsic quark levels, and appear to be in a good agreement with the data.

Of course, the concrete form of the effective meson Lagrangian is un-
known. One can try different ideas about this Lagrangian. However, as we
have shown, there is a number of relations which are model independent.
All these relations agree very well with the data.

I would like to thank the organizers of the LV Cracow School and espe-
cially Michał Praszałowicz for the kind hospitality in Zakopane and careful
reading of the manuscript. This work is supported by the Russian Scientific
Foundation, grant 14-22-00281.
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