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The vast majority of mesons can be understood as quark–antiquark
states. Yet, various other possibilities exists: glueballs (bound-state of glu-
ons), hybrids (quark–antiquark plus gluon), and four-quark states (either
as diquark–antidiquark or molecular objects) are expected. In particular,
the existence of glueballs represents one of the first predictions of QCD,
which relies on the non-Abelian feature of its structure; this is why the
search for glueballs and their firm discovery would be so important, both
for theoretical and experimental developments. At the same time, many
new resonances (X,Y, and Z states) were discovered experimentally, some
of which can be well understood as four-quark objects. In this paper, we
review some basic aspects of QCD and show in a pedagogical way how
to construct an effective hadronic model of QCD. We then present the
results for the decays of the scalar and the pseudoscalar glueballs within
this approach and discuss the future applications to other glueball states.
In conclusion, we briefly discuss the status of four-quark states, both in
the low-energy domain (light scalar mesons) as well as in the high-energy
domain (in the charmonia region)

DOI:10.5506/APhysPolB.47.7

1. Introduction

A big part of the Particle Data Group [1] contains a list of strongly
interacting and short-living resonances (τ ∼ 10−22 s), whose properties and
decay channels were determined via many experimental collaborations in the
last decades.
∗ Presented at the LV Cracow School of Theoretical Physics “Particles and Resonances
of the Standard Model and Beyond”, Zakopane, Poland, June 20–28, 2015.
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Quantum Chromodynamics (QCD) contains only quarks and gluons and
is based on the invariance under local color transformations, denoted as
SUc(3). There are 6 types (flavors) of quarks: the quarks u, d, s are light
withmu = 1.8–3.0 MeV,md = 4.5–5.3 MeV, andms = 95±5 MeV, while the
quarks c, b, t are heavy with mc = 1.275±0.025 GeV, mb = 4.18±0.03 GeV,
andmt = 173.2±1.2 GeV (mass values from [1]). Each quark flavor carries a
color: red, green, or blue. Moreover, there are 8 gluons. Each gluon appears
as a color–anticolor state, such as red–antigreen. There is no colorless white
gluon, explaining why there are only 8 of them.

QCD could not be analytically solved in its low-energy domain because
perturbation theory does not apply: this is due to the fact that the run-
ning coupling constant increases for decreasing energy. A related property
is confinement: only ‘white’ states, i.e. states which are invariant under lo-
cal SUc(3) transformations, are realized in Nature. Colored objects, such as
quarks and gluons (but also diquarks), are not states which hit our detectors.

Which are then the asymptotic states of QCD? They are called hadrons
(hadrons means ‘thick’ in ancient Greek). Two types of hadrons exist:
mesons and baryons. For a proper definition of them, we need to intro-
duce the baryon number: each quark, independently of its flavor and color,
carries a baryon number Bq = 1/3, while each gluon has a vanishing baryon
number, Bg = 0. Then, the following general definitions apply:

Mesons are white states (i.e. invariant under color transformations)
which have a vanishing total baryon number. Quark–antiquark states of
the type |q̄q〉, such as pions, kaons, etc., are mesons [2]. In fact: Bq̄q =
Bq +Bq̄ = 1

3 −
1
3 = 0. They are regarded as conventional mesons, but they

are not the only possibility [3]. Glueballs are mesonic states made solely
of (two or more) gluons and are denoted as |gg〉 . They are a long-standing
but not yet fulfilled promise of QCD. Glueballs are mesons because their
baryon number is obviously zero, since each gluon is such. In addition, there
are also mesonic tetraquark states made out of a diquark and an antidi-
quark, |(q̄q̄) (qq)〉, or mesonic molecular states |(q̄q) (q̄q)〉. Hybrids are also
outstanding candidates [4]: they are made of a quark–antiquark couple plus
one (or more) gluon(s), |q̄qg〉. In general, each state made of n quarks,
n antiquarks, and m gluons has total baryon number equal to zero and is,
in principle, a meson. Yet, while quark–antiquark states were measured in
countless experiments, only very recently it was possible to confirm the exis-
tence of mesons beyond the quark–antiquark picture (four-quark states, ei-
ther in the tetraquark or molecular-like picture and/or admixtures of them),
see, for instance, [5–7]. For what concerns glueballs, some candidates exist
(especially for the lightest scalar glueball), but the final verification of their
existence has still to come.
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Baryons are hadronic states with total baryon number B = 1. Three-
quark states |qqq〉, such as the neutron and the proton, are baryons. Also
in this case, there are other possible configurations, such as pentaquarks
|(qq)(qq)q̄〉 (diquark–diquark–antiquark) and molecular-like objects as |(qqq)
(q̄q)〉, see the recent result in Ref. [8].

In this paper, we concentrate on mesons. In Sec. 2, we review some ba-
sic properties of the QCD Lagrangian (symmetries and large Nc) as well as
some general properties of conventional quark–antiquark mesons. In Sec. 3,
we turn our attention to the construction of an effective hadronic model
of QCD, the so-called extended Linear Sigma Model (eLSM). We present
its building blocks in detail since the considerations leading to it are quite
general and are based solely on symmetry. A primary element of the eSLM
is the dilaton field, which is naturally linked to the scalar glueball. Glue-
balls are then studied in Sec. 4: the decays and the assignment of the scalar
glueball are presented (the resonance f0(1710) is the most prominent can-
didate). Then, the branching ratios of a not yet discovered pseudoscalar
glueball are calculated. In Sec. 5, we move to four-quark objects. We first
study the light scalar sector, where the resonances f0(500), f0(980), a0(980),
and K∗0 (800) are most probably not q̄q states; then, we briefly discuss the
status of X,Y, and Z states in the region between 3–5 GeV, where recent
experimental discoveries have nicely shown the existence of mesons which
go beyond the quark–antiquark picture. Finally, in Sec. 6, we present our
conclusions.

This work is based on two lectures given at the LV Cracow School of
Theoretical Physics (Zakopane, Poland, 2015). The most important original
papers are Refs. [9–15] as well as my habilitation [16].

2. QCD and its symmetries, mesons, and large Nc

2.1. Lagrangian of QCD and its symmetries

As a first step, we write the Lagrangian of QCD for an arbitrary number
of colors Nc and quark flavors Nf (see, for instance, [17])

LQCD = Tr
[
q̄i(iγ

µDµ −mi)qi − 1
2GµνG

µν
]
, Dµ = ∂µ − ig0Aµ ,

Gaµν = ∂µAν − ∂νAµ − ig0[Aµ, Aν ] , Aµ = Aaµt
a , (1)

where a = 1, . . . , N2
c − 1 is the color index, ta are Nc × Nc matrices cor-

responding to the generators of SU(Nc) (see below), fabc are the structure
constants of SU(Nc), and i = 1, . . . , Nf is the flavor index (Nf is the num-
ber of quark flavors). The part containing gluons only is called Yang–Mills
(YM) Lagrangian

LYM = Tr
[
−1

2GµνG
µν
]

= −1
4G

a
µνG

a,µν . (2)



10 F. Giacosa

For Nc > 1, the YM Lagrangian contains 3-gluon and 4-gluon vertices. The
gluonic self-interactions are a fundamental property of non-Abelian theories,
which is believed to be one of the reasons for the emergence of glueballs.

In Nature, Nc = 3 and Nf = 6. However, depending on the problem, one
can consider different values for Nc and Nf . This is why it is useful to have
general expressions.

We now list the symmetries of LQCD as well as their spontaneous and
explicit breakings:

(i) Local color symmetry SU(Nc).

(ii) Dilatation symmetries and its anomaly (denoted as trace anomaly),
i.e. its breaking through quantum fluctuations.

(iii) Chiral symmetry U(Nf)R × U(Nf)L ≡ U(1)V × SU(Nf)V × U(1)A ×
SU(Nf)A.

(iv) Axial symmetry U(1)A and the corresponding anomaly (also broken
by quantum fluctuations).

(v) Spontaneous chiral symmetry breaking SU(Nf)V×SU(Nf)A→SU(Nf)V.

(vi) Explicit breaking of U(1)A and SU(Nf)A through nonzero bare quark
masses.

Before we continue, it is important to recall some mathematical proper-
ties of the groups U(N) and SU(N), since they appear everywhere in QCD
(both for color and flavor d.o.f.). An element of U(N) is a complex N ×N
matrix fulfilling the following requirement:

U †U = UU † = 1N . (3)

One can rewrite U as

U = eiθat
a
, a = 0, 1, . . . , N2 − 1 , (4)

where the matrices ta form a basis of linearly independent N ×N Hermitian
matrices. Namely, Eq. (3) is in this way automatically realized. It is usual
to set

t0 =
1√
2N

1N . (5)

The other matrices are chosen according to the equation

Tr
[
tatb
]

= 1
2δ
ab with a, b = 0, 1, . . . , N2 − 1 , (6)
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out of which it follows that

Tr [ta] = 0 for a = 1, . . . , N2 − 1 . (7)

A matrix N ×N belongs to the subgroup SU(N) if the following equations
are fulfilled:

U †U = UU † = 1N , detU = 1 . (8)

It is clear that a matrix belonging to SU(N) can be written as U = eiθat
a

with a = 1, . . . , N2 − 1 (the identity matrix, which is not traceless, is left
out). Then,

detU = e
Tr
[
i
∑N2−1
a=1 θata

]
= 1 . (9)

The matrices ta with a = 1, . . . , N2 − 1 are the generators of SU(N) and
fulfill the algebra[

ta, tb
]

= ifabctc with a, b, c = 1, . . . , N2 − 1 , (10)

where fabc are the corresponding antisymmetric structure constants. Namely,
the commutator of two Hermitian matrices is anti-Hermitian and traceless,
therefore, it must be expressed as a sum over ta for a = 1, . . . , N2 − 1.

We remind that for N = 2, one uses ta = τa

2 (a = 1, 2, 3), where τa are
the famous Pauli matrices, and for N = 3, one uses ta = λa

2 (a = 1, . . . , 8),
where λa are the Gell-Mann matrices. These two cases are those which are
commonly used in practice.

Finally, we recall also that there is a subgroup of SU(N), denoted as the
center Z(N), whose N elements are given by

Z = Zn = ei
2πn
N 1N , n = 0, 1, 2, . . . , N − 1 . (11)

Each Zn corresponds to a proper choice of the parameters θa (the case of
Z0 = 1N corresponds to the simple case θa = 0, the other elements to more
complicated choices).

We now turn back to the previously listed symmetries of QCD, which
we re-discuss in more detail.

(i) Local color symmetry SU(Nc = 3)c.
The Yang–Mills fields Aµ(x) is a Nc × Nc matrix, Aµ(x) = Aaµ(x)ta,

while the quark fields are vectors in color space (qti = (qi,1, . . . , qi,Nc), i =
1, . . . , Nf). Under SU(Nc)c local gauge transformations they transform as

Aµ(x)→ A′µ(x) = U(x)Aµ(x)U †(x)− i

g0
U(x)∂µU

†(x) , qi → U(x)qi ,

(12)
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with

U(x) = eiθa(x)ta , a = 1, . . . , N2
c − 1 (= 8 for Nc = 3) . (13)

LQCD is invariant under (12). Such a symmetry is automatically fulfilled
in each purely hadronic model, since all hadrons (mesons and baryons) are
white, i.e. invariant under a local color transformation. However, color is
also important in hadronic models, since it is related to the so-called ‘large-
Nc limit’ in which the group SU(Nc � 3)c instead of Nc = 3, is considered.
Then, although hadronic fields are invariant under color transformations,
the parameters have special scaling behaviors as a function of Nc. One can
then easily recognize which parameters are dominant in the large-Nc limit,
see the more detailed discussion later on.

At nonzero temperature T , the center transformation plays an impor-
tant role. Namely, one considers color transformations U(τ, ~x ) according
to which U(0, ~x ) = 1N and U(τ = β = 1/T, ~x ) = Zn 6=0. The YM action
at temperature T is invariant under this transformation (often called center
transformation, but care is needed, since it is a peculiar non-periodic trans-
formation linking two different elements of the center). The periodicity of
the YM fields is still fulfilled (Aµ → A′µ, and A′µ(0, ~x ) = A′µ(β, ~x )). The
center symmetry is spontaneously broken in the YM vacuum at high tem-
perature: the expectation value of the Polyakov loop is the corresponding
order parameter, which is nonzero at high T but is zero at low T . The
nonzero vacuum’s expectation value (v.e.v.) of the Polyakov loop signalizes
the deconfinement of gluons.

The center transformation is not a symmetry of the whole QCD at
nonzero T (i.e., when quarks are included). Namely, the necessary anti-
symmetric condition qi(0, ~x ) = −qi(β, ~x ) is not fulfilled for the transformed
fields, qi → q′i = U(x)qi, for which qi(0, ~x ) = q′i(0, ~x ) 6= −q′i(β, ~x ) =
−Zn6=0qi(β, ~x ). Thus, center symmetry is explicitly broken by the quark
fields.

(ii) Dilatation symmetry and trace anomaly.
In the so-called chiral limit mi → 0, the QCD Lagrangian contains a

single parameter g0, which is dimensionless. As a consequence, QCD is
invariant under space-time dilatations

xµ → x′µ = λ−1xµ . (14)

Let us first consider the transformation of the gluon fields

Aaµ(x)→ Aa′µ (x′) = λAaµ(x) . (15)

It is easy to check that the Yang–Mills Lagrangian LYM = −1
4G

a
µνG

a,µν

transforms as LYM → λ4LYM, then the classical action is invariant. The
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corresponding conserved (Noether) current is

Jµ = xνT
µν → ∂µJ

µ = Tµµ = 0 , (16)

where the energy-momentum Tµν tensor of the YM Lagrangian is given by

Tµν =
∂LYM

∂(∂µAρ)
∂νAρ − gµνLYM + ‘symmetrization’ . (17)

Quantum fluctuations of gluons break dilatation symmetry [18]. As a con-
sequence, the dimensionless coupling constant g0 becomes an energy-depen-
dent running coupling g(µ), where µ is the energy scale at which the coupling
is probed (for instance, in scattering processes, it is proportional to the en-
ergy in the center of mass)

g0
renormalization−−−−−−−−−→ g(µ) . (18)

Then, the following equation arises

∂µJ
µ = Tµµ =

β(g)

4g
GaµνG

a,µν 6= 0 , β(g) = µ
∂g

∂µ
, (19)

where it is visible that ∂µJµ 6= 0 as soon as ∂g/∂µ 6= 0: dilatation symmetry
is explicitly broken. The quantity β(g) is the so-called β-function of the YM
theory. Indeed, if g were constant (g = g0), then ∂µJµ = 0, but this is not
the case. Namely, already at the one-loop level, one has

β(g) = µ
∂g

∂µ
= −bg3 < 0 , b =

11Nc

48π2
. (20)

The solution of Eq. (20) is

g2(µ) =
g2
∗

1 + 2bg2
∗ log µ

µ∗

. (21)

The fact that β(g) < 0 explains asymptotic freedom: the coupling g(µ) be-
comes smaller for increasing µ (Nobel 2004). On the other hand, for small µ,
the coupling g(µ) increases. A (not yet analytically proven) consequence is
‘confinement’: gluons (and quarks) are confined in white hadronic states.

Equation (21) has a (so-called Landau) pole

µpole = ΛLandau = ΛYM = µ∗e
−1

2bg2∗ , (22)

then
g2(µ) =

1

2b log µ
ΛYM

. (23)
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Notice also that Eq. (21) scales as follows in the large-Nc limit:

g ∝ 1/
√
Nc . (24)

This is the starting point of the study of the large-Nc limit that we will
describe later on.

Obviously, perturbation theory breaks down when the coupling becomes
large. Then, it does not mean that g(µ = ΛYL) becomes infinite, but it
means that at the energy scale µ ∼ ΛYM, the YM theory (and so whole
QCD) becomes strongly coupled. ΛYM cannot be obtained theoretically be-
cause the value g∗ at a certain given µ∗ (as, for instance, the grand unification
energy scale µ∗ = 1016 GeV) is a priori unknown. However, the discussion
shows a central point: a dimension has emerged! This is the so-called ‘di-
mensional transmutation’. Numerically, it turns out that ΛQCD ' 250 MeV:
this number affects all hadronic processes.

A purely nonperturbative consequence of the scale anomaly is the emer-
gence of a gluon condensate. Namely, the vacuum’s expectation value of the
trace anomaly does not vanish (for Nc = 3):

〈
Tµµ
〉

= −
〈

11Nc

48

αs

π
GaµνG

a,µν

〉
∼ −11Nc

48
(350–600 MeV)4 , (25)

where αs = g2/(4π). (The numerical results were obtained via lattice and
sum rules calculations, see Ref. [19] and references therein.) Indeed, the
quantity 1

2G
a
µνG

a,µν can be also expressed as (in the Coulomb gauge)

1
2G

a
µνG

a,µν = 1
2

(
~Ea · ~Ea − ~Ba · ~Ba

)
, (26)

where ~Ea and ~Ba are the electric and magnetic color fields, respectively [20].
Perturbation theory shows that at each order

〈
~Ea · ~Ea

〉
=
〈
~Ba · ~Ba

〉
, thus〈

GaµνG
a,µν
〉
should vanish accordingly. However, the existence of nonpertur-

bative solutions such as instantons shows that this perturbative prediction
does not hold and a nonzero gluon condensate is one of the main features of
Yang–Mills theory.

As a last step, we add quarks and consider whole QCD. By taking into
account that they have dimension 3/2, they transform as

q′
(
x′
)

= λ3/2q(x) . (27)

In the chiral limit, the discussion is similar upon modifying Eq. (20) as

b =
11Nc − 2Nf

48π2
.
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Notice that b > 0 if Nf <
11
2 Nc. This condition is fulfilled in Nature, even in

the extreme limit in which all six flavors are taken into account (Nf = 6 and
Nc = 3). A further explicit breaking of dilatation symmetry emerges from
the nonzero bare quark masses, see point (vi) below.

In conclusion, the breaking of scale invariance is a very important and
deep phenomenon of QCD. An effective description of QCD should con-
tain this feature. Moreover, the related concept of a condensate of gluons
naturally emerges.

(iii) Chiral symmetry U(Nf)R ×U(Nf)L.
In the chiral limit mi → 0, the Lagrangian LQCD is invariant under

transformations of the group U(Nf)R × U(Nf)L. First, we recall that this
transformations amount to transforming the right-handed and left-handed
parts of the quark fields separately

qi = qi,R + qi,L → UR,ijqj,R + UL,ijqj,L , (28)

with UR ∈ U(Nf)R , UL ∈ U(Nf)L. We also remind that the right-handed
spinor qi,R and left-handed spinor qi,L are defined as [17]

qi,R = PRqi , q†i,R = q†iPR , q̄i,R = q̄iPL , (29)

qi,L = PLqi , q†i,L = q†iPL , q̄i,L = q̄iPR , (30)

with PR = 1
2 (1 + γ5) , PL = 1

2 (1− γ5). This is the famous chiral symmetry
of QCD.

(iv) Axial transformation U(1)A and its anomaly.
The axial transformation U(1)A is a subgroup of U(Nf)L ×U(Nf)R cor-

responding to the choice

U
(1)
A = UR = U †L = eiνt

0
, (31)

that is

qi,R → e
iν√
2Nf qi,R , qi,L → e

−iν√
2Nf qi,L ⇒ q → eiνt

0γ5q . (32)

This symmetry is also broken by quantum fluctuations (axial anomaly). The
divergence of the corresponding Noether current

A0
µ = q̄γµγ5q =

Nf∑
i=1

q̄iγ
µγ5qi (33)
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is nonzero

∂µA0
µ = −g

2Nf

32π2
GaµνG̃

a,µν 6= 0 , G̃a,µν = 1
2ε
µνρσGaρσ . (34)

Effective models should also display this feature, since it is important for
the description of the pseudoscalar mesons η and η′.

(v) Spontaneous symmetry breaking of chiral symmetry:
SU(Nf)R × SU(Nf)L → SU(Nf)V.

Spontaneous breaking of chiral symmetry is on of the central properties
of the hadronic world. It explains why pions are so light and why their inter-
action is so small when they are slow. It also explains the mass differences
between multiplets and affects their decays.

First, we rewrite the group U(Nf)R ×U(Nf)L as follows:

U(Nf)R ×U(Nf)L ≡ U(1)V × SU(Nf)V ×U(1)A × SU(Nf)A . (35)

UV(1) corresponds to

U1 = UL = UR = eiθt
0
, (36)

SU(Nf)V to

UV = UL = UR = eiθ
V
a t
a (

a = 1, . . . , N2
f − 1

)
, (37)

and SU(Nf)A to

UA = UL = U †R = eiθ
A
a λ

a (
a = 1, . . . , N2

f − 1
)
. (38)

Note, SU(Nf)A is not a group since the product of two elements of the set
is not an element of the set. SU(Nf)A is the transformation set which is
spontaneously broken.

In the chiral limit, the conserved Noether currents corresponding to
U(Nf)V ≡ U(1)V × SU(Nf)V are given by (a = 0, . . . , N2

f )

V a
µ = q̄γµtaq → ∂µV a

µ = 0 , (39)

while those corresponding to SU(Nf)A by (a = 1, . . . , N2
f )

Aaµ = q̄γµγ5taq → ∂µAaµ = 0 . (40)

It turns out that the QCD vacuum |0QCD〉 is not invariant under the
SU(Nf)A transformation. In particular, it means that the axial charges

Qa =

∫
d3xAaµ=0 (41)
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do not annihilate the vacuum: Qa |0QCD〉 6= 0. Then, according to the
Goldstone theorem, the pions emerge as (quasi-)massless Goldstone bosons.
Namely, by considering that [HQCD, Q

a] = 0 and by applying this commu-
tator on the vacuum, we get

0 = [HQCD, Q
a] |0QCD〉 = HQCD (Qa |0QCD〉) = 0 (Qa |0QCD〉) . (42)

Then, Qa |0QCD〉 is proportional to a massless state. These are the Goldstone
bosons: pions, kaons, and the η meson for Nf = 3.

(vi) Explicit symmetry breaking due to nonzero quark masses.
The QCD mass term

Lmass =

Nf∑
i=1

miq̄iqi (43)

breaks explicitly many of the aforementioned symmetries.
Quark masses being dimensional, the divergence of the dilatation current

acquires an additional term

Tµµ =
β(g)

4g
GaµνG

a,µν +

Nf∑
i=1

miq̄iqi . (44)

The symmetry under U(Nf)V ≡ U(1)V × SU(Nf)V is still valid only if
m1 = m2 = . . . = mNf

, but, as soon as mass differences are present, the
divergences of the vector currents V a

µ = q̄γµtaq are, in general, nonvanishing

∂µV a
µ = iq̄ [m̂, ta] q 6= 0 , (45)

with m̂ = diag{m1,m2, . . . ,mNf
}. The symmetry UV(1) corresponds to

a = 0, therefore it is always valid independently on the masses (as it must,
being the conservation of the baryon number). In low-energy QCD, it is com-
mon to set m1 = mu = md = m2, therefore isospin symmetry U(Nf = 2)V

still holds.
The symmetry under UA(Nf) ≡ UA(1) × SUA(Nf) is broken as soon as

mi 6= 0. In fact, the currents Aaµ = q̄γµγ5taq acquire the divergences

∂µAaµ = iq̄γ5{m̂, ta}q 6= 0 for a 6= 0 . (46)

The small but nonzero quark masses are responsible for the fact that the
pions are not exactly Goldstone bosons and, therefore, are not exactly mass-
less.

For the case of a = 0, there are two terms, one from the axial anomaly
and one arising from the nonzero values of masses

∂µA0
µ = 2q̄im̂γ5q − g2Nf

32π2
GaµνG̃

a,µν . (47)
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For Nf = 2, the explicit breaking through quark masses is small, mu,d �
ΛYM. For Nf = 3, the mass of s is about 100 MeV and is thus of the same
order of ΛYM. In turn, the explicit breaking induced by the s quark is,
in general, non-negligible. The other quark flavors (c, b, t) are heavy: the
breaking of symmetry due to their masses is dominant. This is why one
considers the light-quark sector and the heavy-quark sector separately.

As a last point, we mention a result which is usually obtained in the
framework of the Nambu–Jona-Lasinio (NJL) model [21], which connects
(v) and (vi). The spontaneous breaking of SU(Nf)A is also responsible for
the generation of an effective (or constituent) quark mass. For Nf = 2,

m ' 5 MeV→ m∗ ' 300 MeV� m. (48)

It is now evident that SU(Nf)A is not a symmetry any longer, since ∂µAaµ ∝
{m∗, ta} 6= 0. Effective quarks are quasi-particles which emerge when bare
quarks are dressed by gluon clouds. Notice that analogous results hold also
when more advanced approaches are used to study the quark propagator,
see, for instance, the Dyson–Schwinger study of Ref. [22].

A similar phenomenon takes place also for gluons, although the discus-
sion is much more subtle because of gauge invariance. Nevertheless, gluons
dressed by gluonic fluctuations also develop an effective mass of about 500–
1000 MeV [23, 24].

2.2. Mesons

Quarks and gluons are not the physical states that we measure. They are
confined into hadrons, i.e. mesons (integer spin) and baryons (semi-integer
spin).

A conventional meson is a meson constructed out of a quark and an
antiquark. Although it represents only one of (actually infinitely many) pos-
sibilities to build a meson, the vast majority of mesons of the PDG can be
correctly interpreted as belonging to a quark–antiquark multiple [1] (see also
the results of the quark model [2]).

Mesons can be classified by their spatial angular momentum L, their
spin S, their total angular momentum J (with ~J = ~L+ ~S ), by parity P, and
by charge conjugation C (summarized by JPC). We remind that P and C
are calculated as

P = (−1)L+1 , C = (−1)L+S . (49)

The lightest mesons are pseudoscalar states with L=S=0→JPC =0−+.
As explained above, the pions and the kaons are pseudoscalar (quasi-)Gold-
stone bosons emerging upon the spontaneous symmetry breaking of chiral
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symmetry. As an example, we write down the wave function for the pionic
state π+ and for the kaonic state K+ (radial, spin, flavor, color)∣∣π+

〉
= |n = 1〉 |L = 0〉 |S = 0(↑↓ − ↓↑)〉

∣∣ud̄ 〉 ∣∣R̄R+ ḠG+ B̄B
〉
, (50)∣∣K+

〉
= |n = 1〉 |L = 0〉 |S = 0(↑↓ − ↓↑)〉 |us̄ 〉

∣∣R̄R+ ḠG+ B̄B
〉
. (51)

For L = 0, S = 1 one constructs the vector mesons, such as the ρ-meson∣∣ρ+
〉

= |n = 1〉 |L = 0〉 |S = 1(↑↓ + ↓↑)〉
∣∣ud̄ 〉 ∣∣R̄R+ ḠG+ B̄B

〉
. (52)

For L= S = 1, one has three multiplets: tensor mesons with JPC = 2++,
axial-vector mesons with JPC = 1++, and scalar mesons with JPC = 0++.
By further increasing L and/or the radial quantum number n, and by in-
cluding other quark flavors (such as the charm quark), one can obtain many
more multiplets of conventional quark–antiquark states, see Ref. [1]. For
instance, the renowned j/ψ meson reads

|j/ψ〉 = |n = 1〉 |L = 0〉 |S = 1(↑↓ + ↓↑)〉 |cc̄〉
∣∣R̄R+ ḠG+ B̄B

〉
, (53)

and so on and so forth.
Beyond conventional mesons, many other mesonic states are expected to

exist, most notably glueballs, which emerge as bound states of gluons.
It is interesting to notice that quantum numbers such as JPC = 0+−,

JPC = 1−+, JPC = 2+−, . . . cannot be obtained in a quark–antiquark sys-
tem, but it is possible for unconventional mesonic states. The experimental
discovery of mesons with these exotic quantum numbers naturally points to
a non-quarkonium inner structure. Indeed, glueballs (but also other non-
conventional configurations) can produce exotic quantum numbers.

2.3. Large Nc

The bare coupling constant g0 of the QCD Lagrangian of Eq. (1) be-
comes, upon renormalization, a running coupling constant, which we rewrite
as

g2(µ) ∝ 1

Nc log µ
ΛYM

. (54)

Theoretically, it is very advantageous to study the limit in which Nc is large,
since many simplifications take place. A consistent way to take the large-Nc

limit is to postulate that ΛYM ∝ N0
c , out of which it follows that g ∝ 1/

√
Nc.

The following properties of hadrons hold (see e.g. Refs [25, 26]):

— The masses of quark–antiquark states and glueballs are constant for
Nc →∞

M|q̄q〉 ∝ N0
c , M|gg〉 ∝ N0

c . (55)
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— The interaction between n quark–antiquark states |q̄q〉 scales as

An−|q̄q〉 ∝ N
−n−2

2
c (n ≥ 2) . (56)

This implies that the amplitude for a n-meson scattering process be-
comes smaller and smaller for increasing Nc. In particular, the decay
amplitude is realized for n = 3, ergo Adecay ∝ N

−1/2
c , implying that

the width scales as Γ ∝ 1/Nc. Conventional quarkonia become very
narrow for large Nc.

— The interaction amplitude between n glueballs |gg〉 is

An−|gg〉 ∝ N−(n−2)
c , (57)

which is even smaller than within quarkonia.

— The interaction amplitude between n quarkonia and m glueballs be-
haves as

A(n−|q̄q〉)(m−|gg〉) ∝ N
−(n

2
+m−1)

c for n ≥ 1 and m ≥ 1 , (58)

thus the mixing (n = m = 1) scales as Amixing ∝ N
−1/2
c . Then, also

the glueball–quarkonium mixing is suppressed for Nc � 1.

— Four-quark states (both as molecular objects and diquark–antidiquark
objects). A part from a peculiar tetraquark [27], these objects typically
do not survive in the large-Nc limit.

— Even if not relevant in this work, we recall that baryons are made of
Nc quarks for an arbitrary Nc. As a consequence,

MB ∝ Nc . (59)

Indeed, the large-Nc limit is a firm theoretical method which explains
why the quark model works. In fact, a decay channel for a certain meson
causes quantum fluctuations: the propagator of the meson is dressed by
loops of other mesons. For instance, the state ρ+ decays into π+π0, thus
the ρ meson is dressed by loops of pions. In the end, one has schematically
that the wave function of the ρ meson is given by∣∣ρ+

〉
= a

∣∣ud̄ 〉+ b
∣∣π+π0

〉
+ . . . , (60)

where the full expression of
∣∣ud̄ 〉 is given in Eq. (52). Being a ∝ N0

c and b ∝
N
−1/2
c , we understand why the quark–antiquark configuration dominates.

Dots refer to further contributions which are even more suppressed.
Yet, for Nc = 3, there are some mesons for which the meson–meson

component dominates. These are, for instance, the light scalar mesons that
we will study in Sec. 5.1.
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3. The construction of an effective model of low-energy QCD

3.1. General considerations

QCD cannot be solved analytically. Therefore, the use of effective ap-
proaches both in the vacuum and at finite temperature and densities repre-
sents a very useful tool toward the understanding of QCD.

The question is the following: starting from the QCD Lagrangian LQCD

in terms of quarks and gluons, how should one construct the effective La-
grangian Lhad in terms of hadronic d.o.f.? Symbolically,

LQCD
?→ Lhad . (61)

There is no general accepted procedure: the hadronic Lagrangian Lhad(Emax,
Nc = 3) valid up to an energy of about Emax ' 2 GeV cannot be analytically
obtained out of LQCD. However, the use of symmetries turns out to be very
useful, since it strongly constrains the form that Lhad(Emax, Nc = 3) can
have. Yet, some coupling constants entering the Lagrangian are free param-
eters. (Notice that, upon setting Emax ' 0.6 GeV and using the nonlinear
realization of chiral symmetry, the effective hadronic Lagrangian reduces to
chiral perturbation theory, in which only pions enter [28].)

In the large-Nc limit, the hadronic theory must take a simple form, since
it consists of free quark–antiquark fields φk and glueball fields Gh (with a
mass lower than Emax)

Lhad(Emax, Nc � 1, ) =

Nq̄q∑
k=1

[
1
2 (∂µφk)

2 − 1
2M

2
q̄q ,kφ

2
k

]

+

Ngg∑
h=1

[
1
2 (∂µGh)2 − 1

2M
2
G,hG

2
h

]
. (62)

(Note, baryons do not appear since for Nc � 1 their mass is very large.)
From the PDG [1] we know that below the energy Emax ' 2 GeV, there are
various mesons with quantum numbers JPC = 0−+, 0++, 1−−, 1++ (pseu-
doscalar, scalar, vector, axial-vector, respectively). But, for Nc = 3, the
interactions are definitely not negligible. Then, the effective Lagrangian
must include interaction terms

Lhad(Emax, Nc = 3)

=

Nq̄q∑
k=1

[
1
2 (∂µφk)

2 − 1
2M

2
q̄q ,kφ

2
k

]
+

Ngg∑
h=1

[
1
2 (∂µGh)2 − 1

2M
2
G,hG

2
h

]
+Lq̄q-ggint (Emax, Nc = 3) + Lnew-mes(Emax, Nc = 3) + Lbar(Emax, Nc = 3) ,

(63)
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where

(i) Lq̄q-ggint (Emax, Nc = 3) describes the interactions of quark–antiquark
with each other and with glueballs. In the large-Nc limit,

Lq̄q-ggint (Emax, Nc) ∝ O(1/Nc) .

(ii) Lnew-mes(Emax, Nc = 3, ) contains (eventual!) additional mesons, such
as tetraquarks. This term disappears faster than O(1/Nc) for large Nc.

(iii) Lbar(Emax, Nc = 3) describes the baryons and their interaction with
each other and mesons.

In addition to the fields in the Lagrangian, it is also possible that molec-
ular states arise upon meson–meson interaction (see the detailed discussion
in Ref. [29]). These states need not to be taken into the Lagrangian in order
to avoid overcounting.

3.2. Toward the eLSM

An effective low-energy model of QCD should fulfill (as many as possi-
ble of) its symmetries. Then, the properties (i)–(vi) listed in the previous
section should be present in an effective Lagrangian. Here, we aim to con-
struct an effective model of QCD which contains from the very beginning
quark–antiquark fields with JPC = 0−+, 0++, 1−−, 1++ as well as a scalar
glueball, which is of crucial importance for the construction of the model.
We thus show step by step the previous symmetries from the perspective of
an hadronic model. In this work, we concentrate on mesons; for baryons,
see Refs. [10] and references therein.

The very first observation has to do with color. Because of confinement,
we work from the very beginning with white objects, denoted as Φ,Rµ, . . . ,
see below. Thus, they are obviously invariant under SU(3)c : Φ → Φ,
Rµ → Rµ, . . . invariance under SU(Nc = 3)c is automatically fulfilled. Yet,
the parameters of the model will depend on the number of colors Nc.

3.2.1. Yang–Mills sector

We need to describe the trace anomaly correctly. For this reason, we
first concentrate on the pure YM sector. We introduce an effective field G
which ‘intuitively’ corresponds to

G4 ∼ GaµνGa,µν . (64)

Then, G is a collective field describing gluons. As shown in Refs. [18, 30, 31],
the following Lagrangian

Ldil = 1
2(∂µG)2 − Vdil(G) , (65)
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with

Vdil(G) =
1

4

m2
G

Λ2
G

[
G4 ln

(
G

ΛG

)
− G4

4

]
(66)

is what we need. Because of the logarithm and the dimensional parame-
ter ΛG, dilatation symmetry

xµ → λ−1xµ and G(x)→ G′
(
x′
)

= λG(x)

is explicitly broken. In fact, the divergence of the associated Noether cur-
rent is

∂µJ
µ = Tµµ = G∂GVdil(G)− 4G = −1

4

m2
G

Λ2
G

G4 . (67)

There is a clear correspondence to Eq. (19). Upon taking the v.e.v., we have

〈
Tµµ
〉

=

〈
−1

4

m2
G

Λ2
G

G4

〉
= −1

4

m2
G

Λ2
G

G4
0 ≡ −

〈
11Nc

48

αs

π
GaµνG

a,µν

〉
. (68)

It is easy to prove that G0 = ΛG corresponds to the minimum of Vdil(G).
Thus, the emergence of a gluon condensate can be easily understood in this
effective framework.

By studying the fluctuations about the minimum, G → G0 + G, one
can see that a field with mass mG emerges. This particle is the famous
scalar glueball. This is, according to lattice simulations [32, 33], the lightest
glueball with mG ∼ 1.6–1.7 GeV. As we shall see, f0(1710) is a very good
candidate.

The lightest scalar glueball is very important since it is related to di-
latation symmetry, but further gluonic fields can be easily introduced. For
illustrative purposes, by restricting to scalar and pseudoscalar glueballs, we
have

L = Ldil + 1
2

∑
k

αkG
2
kG

2 +
∑
k,l

βk,lG
2
kG

2
l , (69)

where αk is the interaction with the lightest glueball G and βk,l further
interactions. The mas of the k-glueball emerges upon condensation of G:
M2
Gk

= αkG
2
0.

As a last step, we describe the large-Nc dependence of the parameters.
The mass mG is independent on Nc, while ΛG scales as Nc, in such a way
that G4-interaction scales as 1/N2

c

mG ∝ N0
c , ΛG ∝ Nc . (70)

The parameters αk and βk,l in Eq. (69) scale as 1/N2
c .

Next, we leave the gluonic sector and turn our attention to quark–
antiquark fields.



24 F. Giacosa

3.2.2. Scalar and pseudoscalar mesons

Scalar and pseudoscalar quark–antiquark mesons are contained in the
Nf ×Nf matrix Φ, which corresponds to the following quark–antiquark sub-
structure

Φij ≡
√

2q̄j,Rqi,L . (71)

The equivalence ≡ means that Φ and
√

2q̄j,Rqi,L transform in the same way
under chiral transformation, but it does not mean that Φ is a perturbative
quark–antiquark object. Intuitively, the quark–antiquark current is dressed
by gluonic clouds. Then, Φ is an effective object in which constituent quarks
enter (a more detailed correspondence can be realized by using nonlocal
currents, see e.g. Refs. [34–36]). Yet, the identification Φij ≡

√
2q̄j,Rqi,L is

sufficient to study transformation properties.
We recall that upon chiral transformation qi,L → ULqi,L, qi,R → URqi,R,

the field Φ transforms as
Φ→ ULΦU

†
R . (72)

(Under UV(1) on has UL = UR = eiθt
0 , then: Φ → Φ.) Φ can also be

expressed as

Φij ≡
√

2q̄j,Rqi,L =
√

2q̄jPLPLqi =
√

2q̄jPLqi

=
1√
2

(
q̄jqi − q̄jγ5qi

)
=

1√
2

(
q̄jqi + iq̄jiγ

5qi
)
, (73)

where PL = 1
2(1 − γ5) and PR = 1

2(1 + γ5) are the chiral projectors. One
recognizes scalar and pseudoscalar objects

Sij ≡ q̄jqi , Pij ≡ q̄jiγ5qi , (74)

and finally
Φ = S + iP . (75)

The matrices S and P are Hermitian, so they can be written as

S = Sata , P = P ata , (76)
Sa ≡

√
2q̄taq , P a ≡

√
2q̄iγ5taq . (77)

The transformation properties of Φ, S, and P are summarized in Table I.
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TABLE I

Transformation of P, S and Φ (from [16]).

P S Φ

Elements Pij ≡ q̄jiγ5qi Sij ≡ q̄jqi Φij ≡
√

2q̄j,Rqi,L

Currents P i ≡ q̄iγ5 λi√
2
q Si ≡ q̄ λi√

2
q Φi ≡

√
2q̄R

λi√
2
qL

P −P(x0,−x) S(x0,−x) Φ†(x0,−x)

C Pt St Φt

U(Nf)V UVPU†V UVSU†V UVΦU
†
V

U(Nf)A
1
2i

(
UAΦUA − U†AΦ

†U†A

)
1
2

(
UAΦUA + U†AΦ

†U†A

)
UAΦUA

U(Nf)R× U(Nf)L
1
2i

(
ULΦU

†
R − URΦ

†U†L

)
1
2

(
ULΦU

†
R + URΦ

†U†L

)
ULΦU

†
R

In the chiral limit mi → 0, chiral symmetry is exact. The effective La-
grangian LΦ including only the field Φ reads (the UA(1) anomaly is neglected,
see later)

LΦ = Tr

[
(∂µΦ)†(∂µΦ)−m2

0Φ
†Φ− λ2

(
Φ†Φ

)2
]
− λ1

(
Tr
[
Φ†Φ

])2
. (78)

This is the famous σ-model of QCD with (pseudo)scalar quarkonia. Histor-
ically, it has been a very important tool to study chiral symmetry and its
breaking. In the present form, it is not realistic enough, since the results for
the decay turn out not to be consistent. A realistic version of the σ-model
is obtained by including (axial-)vector d.o.f., as we discuss in Sec. 3.3.

3.2.3. The simple case Nf = 1

For pedagogical purposes, it is very instructive to study the case Nf = 1,
in which only one σ and only one pion π are present: Φ = σ + iπ (see
Ref. [37]). In this case, chiral symmetry is a simple rotation in the (π, σ)-
plane corresponding to U(Nf = 1)A. (In reality, this symmetry is broken
because of the axial anomaly. However, here we do not consider the anomaly
but we simply regard U(1)A as a simplified limiting case of chiral symmetry)(

π
σ

)
→
(

cos θ sin θ
− sin θ cos θ

)(
π
σ

)
. (79)

The potential in Eq. (78) takes the simple form

V (σ, π) =
m2

0

2

(
π2 + σ2

)
+
λ

4

(
π2 + σ2

)2
, (80)

which is manifestly chirally invariant (since it depends on π2 +σ2 only). For
m2

0 > 0, the potential has a single minimum for Pmin = (σ = 0, π = 0), see
Fig. 1.
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Fig. 1. Form of the potential for m2
0 > 0. A single minimum located in the origin

is present.

In fact, along the σ-direction

∂σV (σ, 0) = m2
0σ + λσ3 = 0 , (81)

out of which

σ = 0 and σ = ±
√
−m2

0

λ
. (82)

For m2
0 > 0, the value σ = 0 is the only solution. The masses of the particles

correspond to the second derivatives evaluated at the minimum

m2
π =

∂2V

∂π2

∣∣∣∣
P=Pmin

= m2
0 , (83)

m2
σ =

∂2V

∂σ2

∣∣∣∣
P=Pmin

= m2
0 . (84)

As expected, both particles have the same mass m0. This is a direct conse-
quence of chiral symmetry.

We know, however, that Nature is not like that. The pion is nearly mass-
less (' 135 MeV) but the sigma field, which shall be identified with f0(1370),
is much heavier: 1350 ± 150 MeV. The reason for that is the spontaneous
symmetry breaking. We can describe it in our model by considering

m2
0 < 0 . (85)

(Then, m0 is purely imaginary.) The corresponding potential can be rewrit-
ten as

V (σ, π) =
λ

4

(
π2 + σ2 − F 2

)2
+ const . (86)
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It has the typical shape of a Mexican hat, in which the origin is not a
minimum but a maximum, see Fig. 2.
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Fig. 2. Form of the potential for m2
0 < 0. A circle of minima is present.

The origin is not stable. In fact, upon calculating the masses around the
origin, they would turn out to be imaginary. There is, however, a circle of
equivalent minima for

π2 + σ2 = −m
2
0

λ
> 0 . (87)

According to spontaneous symmetry breaking, only one of them is real-
ized. Clearly, we cannot predict which one. We choose (they are all equiva-
lent)

Pmin =

(
F =

√
−m

2
0

λ
, 0

)
. (88)

After having made this choice, the system has undergone spontaneous chiral
symmetry breaking. The value of the σ-field at the minimum is given by

σmin = φN =

√
−m

2
0

λ
= F . (89)

φN is also denoted as the chiral condensate and is indeed proportional to
〈0QCD |q̄q| 0QCD〉 6= 0.

We now calculate the masses

m2
π =

∂2V

∂π2

∣∣∣∣
P=Pmin

= 0 , (90)

m2
σ =

∂2V

∂σ2

∣∣∣∣
P=Pmin

= m2
0 + 3λφ2

N = −2m2
0 = 2λφ2

N > 0 , (91)
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which are now very different from each other: the pion is massless as a
consequence of the Goldstone theorem. On the contrary, the mass of the
σ is nonzero. One then realizes how spontaneous chiral symmetry breaking
generates different masses for chiral partners. Note, mσ is proportional to
the chiral condensate φN .

In Nature, the pion is not exactly massless. In order to describe this
fact, we modify the potential as

V (σ, π) =
m2

0

2

(
π2 + σ2

)
+
λ

4

(
π2 + σ2

)2 − hσ , (92)

where −hσ breaks chiral symmetry explicitly. This term follows directly
from the mass term −mq̄q in the QCD Lagrangian. We thus expect that
h ∝ m, where m is the bare quark mass (for instance, the u quark or the
average (mu +md)/2). The form of the potential is depicted in Fig. 3.

-1

0

1

Σ -1

0

1

Π

0

1

2

V

Fig. 3. Form of the potential in presence of explicit symmetry breaking.

Now, it has a unique minimum along the σ direction. The corresponding
equation for φN reads

∂V (σ, 0)

∂σ

∣∣∣∣
σ=σmin=φN

= m2
0φN + λφ3

N − h

= φN
(
m2

0 + λφ2
N

)
− h = 0 , (93)

which is of third order. Only one of the three equations is physical, see
Ref. [38]. The minimum is denoted as Pmin = (φN , 0). The pion mass is now
nonzero

m2
π =

∂2V

∂π2

∣∣∣∣
P=Pmin

= m2
0 + λφ2

N =
h

φN
> 0 . (94)
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We realize that the pion mass scale as mπ ∝
√
h ∝

√
m. This nontrivial

dependence is a signature of an explicit symmetry breaking on top of a
spontaneous symmetry breaking. For h → 0, the pion mass vanishes, as
expected.

The mass of the σ-particle is

m2
σ =

∂2V

∂σ2

∣∣∣∣
P=Pmin

= m2
0 + 3λφ2

N = m2
π + 2λφ2

N . (95)

Again, the mass of the σ-particle is always larger than the pion mass. The
difference m2

σ −m2
π = 2λφ2

N > 0 is not explicitly dependent on h.
The chiral condensate φN affects the masses and also decays, such as

σ → ππ. The latter is determined in the following way: one first performs
the shift σ → σ+φN and then expands the potential. The term causing the
decay is given by λφNσπ2. Hence,

Γσ→π2 = s

∣∣∣~k∣∣∣
8πm2

σ

[λφN ]2 , (96)

where
∣∣∣~k∣∣∣ =

√
m2
σ

4 −m2
π is the modulus of the three-momentum of one of

the outgoing particles, and s is a symmetry and isospin factor (s = 2 in the
present version of the model with only one type of pion, but s = 6 when
three pions are taken into account).

One can also show that φN enters into the expressions of the weak decay
of pions. In the present version of the model, the condensate corresponds to
the pion-decay constant: φN = fπ = 92.4 MeV [39].

In the full Nf = 3 version of the model, the masses and decays are
calculated by following the very same steps. Obviously, there are much
more fields and decay channels, but the principle and the basic ideas are
exactly the same as those discussed here.

3.2.4. A criterion for the construction of a hadronic model

We now come back to the Lagrangian of Eq. (78). One may wonder why
terms of the type (Tr[Φ+Φ])6, which are also chirally symmetric, were not
included. The fact that such a term would break renormalization is not a
good argument: an effective hadronic theory is valid only in the low-energy
sector and does not need to be renormalizable.

In order to understand this point, we need to introduce the dilaton
field G. The corresponding Lagrangian has the general form

LGΦ = 1
2(∂µG)2 − Vdil(G) + Tr

[
(∂µΦ)†(∂µΦ)

]
− VGΦ(G,Φ) , (97)
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where Vdil(G) = 1
4
m2
G

Λ2
G

[
G4 ln

(
G
ΛG

)
− G4

4

]
was introduced in Eq. (66). Now,

we require the two following properties:

(1) In the chiral limit (mi = 0), there is in LGΦ a single dimensional
parameter: the scale ΛG entering in the potential Vdil(G). In this way,
the trace-anomaly is generated in the YM sector, in accordance with
QCD.

(2) The potential VGΦ(G,Φ) is finite when the fields are finite (smoothness
of the potential).

These two criteria severely constrain the form of LGΦ. In fact, a term of the
type of

α
(

Tr
[
Φ†Φ

])6
(98)

is not allowed because of (1) (the parameter α has dimension of energy−2).
One could still modify the term as

β

G2

(
Tr
[
Φ†Φ

])6
(99)

in which the constant β is dimensionless and thus in agreement with (1).
But point (2) is broken, since this term is singular for G = 0. The validity
of point (2) assures also that there is a smooth limit at high temperatures
in which the gluon condensate G0 is expected to become small.

As a consequence of (1) and (2), one has to consider only interaction
terms with dimension exactly equal to four

LGΦ = 1
2(∂µG)2 − Vdil(G)

+Tr

[
(∂µΦ)†(∂µΦ)− aG2Φ†Φ− λ2

(
Φ†Φ

)2
]
− λ1

(
Tr
[
Φ†Φ

])2
. (100)

The term aG2Φ+Φ describes the interaction of the glueball and (pseudo)scalar
mesons. The connection to LΦ of Eq. (78) is clear

m2
0 = aG2

0 , (101)

where a is dimensionless. (In presence of quarkonia, G0 ' ΛG but is not
exactly equal because mixing arises.) In conclusion, it is not renormalization
but scale invariance (broken solely by ΛG) which obliges us to take into
account terms with dimension exactly equal to 4.

The large-Nc dependence of the parameters reads:

a ∝ N−2
c → m2

0 ∝ N0
c , (102)

λ2 ∝ N−1
c , (103)

λ1 ∝ N−2
c . (104)
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The λ2-term scales as N−1
c in agreement with Sec. 2.3. However, λ1 scales

as N−2
c because it arises as the product of two traces. One can have tran-

sitions in which all quark lines are annihilated, what implies an additional
suppression of Nc.

3.2.5. Spontaneous symmetry breaking revisited

We already described spontaneous symmetry breaking in Sec. 3.2.3. In
the present section, we reconsider it in the presence of G. Upon setting
Φ = σt0, the potential reads

V (G, σ) = Vdil(G) + aG2σ2 + (λ2 + λ1)σ4 . (105)

Then,

— a > 0→ m2
0 = aG2

0 > 0. Minimum for G0 6= 0, σ0 = 0.

— a < 0→ m2
0 = aG2

0 < 0. Minimum for G0 6= 0, σ0 6= 0.

Then, for a < 0, spontaneous breaking of chiral symmetry is realized for

σ0 ∼

√
− m2

0

λ1 + λ2
∼
√
− a

λ1 + λ2
G0 . (106)

Being G0 ∼ ΛG, it follows that σ0 ∝ ΛG. Thus, the chiral condensate
is also a consequence of the breaking of dilatation symmetry. Indeed, the
trace anomaly is a very fundamental property of QCD which is at the basis
of all low-energy hadronic phenomena.

3.2.6. U(1)A anomaly

The U(1)A anomaly is taken into account by the following additional
term

LU(1)A
= c1

(
detΦ† − detΦ

)2
. (107)

This term is invariant under SU(Nf)R×SU(Nf)L. In fact, using det[ABC] =

det[A] det[B] det[C], one can see that Φ→ ULΦU
†
R does not change LU(1)A

.

This term is, however, not invariant under U(1)A, for which Φ → e2iνt0Φ.
In fact,

LU(1)A
= c1

(
detΦ† − detΦ

)2

→ c1

(
e−iν

√
2Nf detΦ† − eiν

√
2Nf detΦ

)2
6= LU(1)A

. (108)

This term influences the masses of the (pseudo)scalar mesons and is respon-
sible for the large mass of η′ (∼ 1 GeV).
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3.2.7. Vector and axial-vector mesons

Vector and axial-vector mesons are light (. 1.4 GeV) and must be in-
cluded in a realistic mesonic model of QCD. A general description of the
issue was already presented in Ref. [40]. In Refs. [9, 41, 42], chiral mod-
els for Nf = 2 were explicitly constructed. Yet, the full Nf = 3 case was
constructed only very recently in Ref. [11].

We now repeat the previous steps for (axial-)vector states. Mathemati-
cally, one introduces Nf ×Nf matrices Rµ and Lµ

Rµij ≡
√

2q̄j,Rγ
µq̄i,R =

1√
2

(
q̄jγ

µq̄i − q̄jγ5γµq̄i
)
, (109)

Lµij ≡
√

2q̄j,Rγ
µq̄i,R =

1√
2

(
q̄jγ

µq̄i + q̄jγ
5γµq̄i

)
. (110)

Under chiral transformations, they transform as

Rµ → URR
µU †R , Lµ → ULL

µU †L . (111)

The matrices Rµ and Lµ are linear combinations of the vector and axial-
vector fields Vµ and Aµ

Rµ = V µ −Aµ , (112)
Lµ = V µ +Aµ , (113)

with

V µ
ij ≡

1√
2
q̄jγ

µq̄i = V µ,ata ; V µ,a ≡
√

2q̄γµtaq , (114)

Aµij ≡
1√
2
q̄jγ

5γµq̄i = Aµ,ata ; Aµ,a ≡
√

2q̄γ5γµtaq . (115)

Tables II and III show the transformations of Rµ, Lµ and Vµ, Aµ.
Notice that under parity, a vector field, such as the ρ meson, transforms

as ρi(t,x) → −ρi(t,−x), ρ0(t,x) → ρ0(t,−x). This is why at nonzero
density, the field ω0 and ρ0 (may) condense.

The corresponding Lagrangian LAV is constructed by following the very
same principles of Sec. 3.2.1 and 3.2.4. It consists of the sum

LAV = L2,AV + L3,AV + L4,AV + LPS,AV , (116)

where 2, 3, 4 is the number of (axial-)vector fields at each vertex and where
LΦ,AV describes the interaction with (pseudo)scalar quarkonium states.
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TABLE II

Transformations of Rµ and Lµ [16].

Rµ Lµ

Elements Rµij ≡
√

2q̄j,Rγ
µqi,R Lµij ≡

√
2q̄j,Rγ

µqi,R

Currents Riµ ≡ q̄Rγ
µ λi√

2
qR Liµ ≡ q̄Lγ

µ λi√
2
qL

P gµνLµ(x0,−x) gµνRµ(x0,−x)

C −Ltµ Rtµ

U(Nf)V UVRµU
†
V UVLµU

†
V

U(Nf)A UARµU
†
A U†ALµUA

U(Nf)R× U(Nf)L URRµU
†
R ULRµU

†
L

TABLE III

Transformations of Vµ and Aµ [16].

Vµ Aµ

Elements V µij ≡
√

2q̄jγ
µqi Aµij ≡

√
2q̄jγ

5γµqi

Currents V i ≡ q̄γµ λi√
2
q Ai ≡ q̄γ5γµ λi√

2
q

P gµνVµ(x0,−x) −gµνAµ(x0,−x)

C −V tµ Atµ

The term L2,AV reads

L2,AV = −1

4
Tr
[
(Lµν)2 + (Rµν)2

]
+
b

2
G2Tr

[
(Lµ)2 + (Rµ)2

]
, (117)

Lµν = ∂µLν − ∂νLµ , Rµν = ∂µRν − ∂νRµ . (118)

When the dilaton condenses, a mass-term for the (axial-)vector d.o.f. arises

m2
1 = bG2

0 . (119)

L3,AV and L4,AV are:

L3,AV = −2ig2 (Tr [Lµν [Lµ, Lν ]] + Tr [Rµν [Rµ, Rν ]]) , (120)
L4,AV = g3 {Tr [LµLνLµLν ] + Tr [RµRνRµRν ]}

+g4 {Tr [LµLµL
νLν ] + Tr [RµRµR

νRν ]}
×g5Tr [RµRµ] Tr [LµLµ]

+g6 {Tr[LµL
µ]Tr[LµL

µ] + Tr[RµR
µ]Tr[RµR

µ]} . (121)
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L4,AV does not influence decays and is not relevant here. Finally,

LΦ,AV = Tr
[
(ig1(ΦRµ − LµΦ))†(∂µΦ)

]
+ Tr

[
(∂µΦ)†(ig1(ΦRµ − LµΦ))

]
+Tr

[
(ig1(ΦRµ − LµΦ))†(ig1(ΦRµ − LµΦ))

]
+
h1

2
Tr
[
ΦΦ†

]
Tr [LµL

µ +RµR
µ]

+h2Tr
[
Φ†LµL

µΦ+ ΦRµR
µΦ
]

+ 2h3Tr
[
ΦRµΦ

†Lµ
]
. (122)

The large-Nc dependence of the parameters is:

g1, g2, g ∝ N−1/2
c ,

h2, h3, g3, g4 ∝ N−1
c ,

h1, g5, g6 ∝ N−2
c ,

b ∝ N−2
c → m2

1 ∝ N0
c . (123)

3.2.8. Explicit breaking of chiral symmetry through bare quark masses

The nonzero quark masses are taken into account by the term

Tr
[
H
(
Φ† + Φ

)]
, (124)

H = diag
{
h1

0, h
2
0, . . . , h

Nf
0

}
(125)

with hk0 ∝ mk and hk0 ∝ N
1/2
c . The effect of this object was already studied

in Sec. 3.2.3. A unique minimum of the potential exists.
Further chiral breaking terms are given by

Tr
[
εΦ†Φ

]
, (126)

1
2Tr

[
δ(Lµ)2 + (Rµ)2

]
, (127)

where ε and δ are diagonal matrices whose k-element is proportional to m2
k.

These terms generate a standard contribution to the meson masses. Indeed,
when ε and δ are proportional to the identity, these terms can be absorbed
away and have no difference on the results. It is then the difference of masses
which is important here.

Finally, the explicit symmetry breaking Lagrangian is given by

LeSB = Tr
[
H
(
Φ† + Φ

)]
+ Tr

[
εΦ†Φ

]
+ 1

2Tr
[
δ(Lµ)2 + (Rµ)2

]
. (128)
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3.2.9. The whole Lagrangian of the eLSM

We now put all the elements together and finally obtain the Lagrangian
of the extended Linear Sigma Model in the mesonic sector

LeLSM = LGΦ + LAV + LUA(1) + LeSB . (129)

Explicitly,

LeLSM =
1

2
(∂µG)2 − 1

4

m2
G

Λ2
G

[
G4 ln

(
G

ΛG

)
− G4

4

]
+Tr

[
(DµΦ)†(DµΦ)− aG2Φ†Φ− λ2

(
Φ†Φ

)2
]
− λ1

(
Tr
[
Φ†Φ

])2

+c1

(
detΦ† − detΦ

)2
+ Tr

[
H
(
Φ† + Φ

)]
+ Tr

[
εΦ†Φ

]
−1

4
Tr
[
(Lµν)2 + (Rµν)2

]
+
b

2
G2Tr

[
(Lµ)2 + (Rµ)2

]
+

1

2
Tr
[
δ(Lµ)2 + (Rµ)2

]
−2ig2 (Tr [Lµν [Lµ, Lν ]] + Tr[Rµν [Rµ, Rν ]])

+
h1

2
Tr
[
ΦΦ†

]
Tr [LµL

µ +RµR
µ] +

+h2Tr
[
Φ†LµL

µΦ+ ΦRµR
µΦ
]

+ 2h3Tr
[
ΦRµΦ

†Lµ
]

+ . . . , (130)

with
DµΦ = ∂µΦ− ig1(LµΦ− ΦRµ) . (131)

This is a realistic model of low-energy QCD which includes from the very be-
ginning (pseudo)scalar and (axial-)vector quarkonia and one scalar glueball.
Next, we show the comparison with data.

3.3. Results for the case Nf = 3

In Ref. [11], the case Nf = 3 has been studied in detail. In the first
step, the glueball G is frozen: we simply set G = G0 and do not consider its
fluctuations (this is done later on). In Table IV, we show the assignments
of the fields entering in model and their PDG counterparts.

The masses of the particles were calculated in Refs. [11, 38]. The proce-
dure is the same as in Sec. 3.2.3, just a bit longer because many fields are
present.
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TABLE IV

Fields and correspondence to PDG.

Field PDG Quark content I JPC Mass [MeV]

π+, π−, π0 π ud̄, dū, uū−dd̄√
2

1 0−+ 139.57

K+,K−,K0, K̄0 K us̄, sū, ds̄, sd̄ 1/2 0−+ 493.677

ηNa+ ηSb η uū+dd̄√
2
a+ ss̄b 0 0−+ 547.86

−ηNa+ ηSb η′(958) uū+dd̄√
2
a+ ss̄b 0 0−+ 957.78

a+
0 , a

−
0 , a

0
0 a0(1450) ud̄, dū, uū−dd̄√

2
1 0++ 1474

K+
S ,K

−
S ,K

0
S , K̄

0
S K∗0 (1430) us̄, sū, ds̄, sd̄ 1/2 0++ 1425

σN f0(1370) uū+dd̄√
2

0 0++ 1350

σS f0(1500) ss̄ 0 0++ 1504

ρ+, ρ−, ρ0 ρ(770) ud̄, dū, uū−dd̄√
2

1 1−− 775.26

K∗+,K∗−,K∗0, K̄∗0 K∗(892) us̄, sū, ds̄, sd̄ 1/2 1−− 891.86

ωN ω(782) uū+dd̄√
2

0 1−− 782.65

ωS φ(1020) ss̄ 0 1−− 1019.461

a+
1 , a

−
1 , a

0
1 a1(1230) ud̄, dū, uū−dd̄√

2
1 1++ 1230

K+
1 ,K

−
1 ,K

0
1 , K̄

0
1 K1(1270) us̄, sū, ds̄, sd̄ 1/2 1++ 1272

f1,N f1(1285) uū+dd̄√
2

0 1++ 1281.9

f1,S f1(1420) ss̄ 0 1++ 1426.4

The pseudoscalar masses are:

m2
π = Z2

π

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N + λ1φ

2
S

]
≡ Z2

πh0N

φN
, (132)

m2
K = Z2

K

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N −

λ2√
2
φNφS + (λ1 + λ2)φ2

S

]
, (133)

m2
ηN

= Z2
π

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N + λ1φ

2
S + c1 φ

2
Nφ

2
S

]
≡ Z2

π

(
h0N

φN
+ c1 φ

2
Nφ

2
S

)
, (134)

m2
ηS

= Z2
ηS

[
m2

0 + λ1φ
2
N + (λ1 + λ2)φ2

S +
c1

4
φ4
N

]
≡ Z2

ηS

(
h0S

φS
+
c1

4
φ4
N

)
, (135)

m2
ηNS

= ZπZπS
c1

2
φ3
NφS , (136)
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where m2
ηNS

is a mixing term, leading to

m2
η′/η = 1

2

[
m2
ηN

+m2
ηS
±
√(

m2
ηN
−m2

ηS

)2
+ 4m4

ηNS

]
. (137)

The constants Zk arise when unphysical axial vector–pseudoscalar mixing
terms are eliminated by proper shifts and renormalization constants, see
details in Ref. [11]. They read

Zπ = ZηN =
ma1√

m2
a1
− g2

1φ
2
N

, ZK =
2mK1√

4m2
K1
− g2

1(φN +
√

2φS)2
,

(138)

ZηS =
mf1S√

m2
f1S
− 2g2

1φ
2
S

, ZK?
0

=
2mK?√

4m2
K? − g2

1(φN −
√

2φS)2
.

(139)

The masses of the scalar mesons are:

m2
a0

= m2
0 +

(
λ1 +

3

2
λ2

)
φ2
N + λ1φ

2
S , (140)

m2
K?

0
= Z2

K?
0

[
m2

0 +

(
λ1 +

λ2

2

)
φ2
N +

λ2√
2
φNφS + (λ1 + λ2)φ2

S

]
, (141)

m2
σN

= m2
0 + 3

(
λ1 +

λ2

2

)
φ2
N + λ1φ

2
S , (142)

m2
σS

= m2
0 + λ1φ

2
N + 3 (λ1 + λ2)φ2

S . (143)

The masses of the vector mesons are:

m2
ρ = m2

1 +
1

2
(h1 + h2 + h3)φ2

N +
h1

2
φ2
S + 2δN , (144)

m2
K? = m2

1 +
1

4

(
g2

1 + 2h1 + h2

)
φ2
N

+
1√
2
φNφS

(
h3 − g2

1

)
+

1

2

(
g2

1 + h1 + h2

)
φ2
S + δN + δS , (145)

m2
ωN

= m2
ρ , (146)

m2
ωS

= m2
1 +

h1

2
φ2
N +

(
h1

2
+ h2 + h3

)
φ2
S + 2δS . (147)
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The masses of axial-vector mesons are:

m2
a1

= m2
1 +

1

2

(
2g2

1 + h1 + h2 − h3

)
φ2
N +

h1

2
φ2
S + 2δN , (148)

m2
K1

= m2
1 +

1

4

(
g2

1 + 2h1 + h2

)
φ2
N

− 1√
2
φNφS

(
h3 − g2

1

)
+

1

2

(
g2

1 + h1 + h2

)
φ2
S + δN + δS , (149)

m2
f1N

= m2
a1
, (150)

m2
f1S

= m2
1 +

h1

2
φ2
N +

(
2g2

1 +
h1

2
+ h2 − h3

)
φ2
S + 2δS . (151)

The potential depends on two condensates φN ≡〈ūu+ d̄d〉/
√

2, φS≡〈ss〉,
the light-quark condensate and the strange-quark condensate, respectively
(the discussion is still very similar to Sec. 3.2.3)

V(φN , φS) =
1

2
m2

0

(
φ2
N + φ2

S

)
+
λ1

4

(
φ4
N + 2φ2

Nφ
2
S + φ4

S

)
+
λ2

4

(
φ4
N

2
+ φ4

S

)
− h0NφN − h0SφS . (152)

One obtains φN and φS upon minimization

∂V(φN , φS)

∂φN

!
= 0⇔ h0N =

[
m2

0 + λ1

(
φ2
N + φ2

S

)]
φN +

λ2

2
φ3
N , (153)

∂V(φN , φS)

∂φS

!
= 0⇔ h0S =

[
m2

0 + λ1

(
φ2
N + φ2

S

)]
φS + λ2φ

3
S . (154)

In summary, the masses depend on the two chiral condensates. It is easy
to see that particles come in chiral partners, which become degenerate when
the condensates vanish. The situation is indeed, in principle, very similar to
Sec. 3.2.3, although much more complicated from a technical point of view.
The calculation of decays can be carried out in a straightforward way, which
however requires some hard work [11, 38].

Eleven parameters, listed in Table V, were fitted to 21 experimental
quantities listed in Table VI. (Note: when the experimental error was smaller
than 5% of the measured value, the error considered in the fit was set to 5%.
This is because our model, which neglects in the present form isospin break-
ing, cannot achieve a higher precision.)
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TABLE V

Values of the parameters (from [11]).

Parameter Value

m2
0

[
GeV2

]
−0.9183±0.0006

m2
1

[
GeV2

]
0.4135±0.0147

c1
[
GeV−2

]
450.5420±7.033

δS
[
GeV2

]
0.1511±0.0038

g1 5.843±0.018
g2 3.0250±0.2329
φN [GeV] 0.1646±0.0001
φS [GeV] 0.1262±0.0001
h2 9.8796±0.6627
h3 4.8667±0.0864
λ2 68.2972±0.0435

TABLE VI

Results of the fit (from [11]).

Observable Fit [MeV] Experiment [MeV]

fπ 96.3±0.7 92.2±4.6
fK 106.9±0.6 110.4±5.5
mπ 141.0±5.8 137.3±6.9
mK 485.6±3.0 495.6±24.8
mη 509.4±3.0 547.9±27.4
mη′ 962.5±5.6 957.8±47.9
mρ 783.1±7.0 775.5±38.8
mK? 885.1±6.3 893.8±44.7
mφ 975.1±6.4 1019.5±51.0
ma1 1186±6.0 1230±62

mf1(1420) 1372.4±5.3 1426±71
ma0 1363±1 1474±74
mK?

0
1450±1 1425±71

Γρ→ππ 160.9±4.4 149.1±7.4
ΓK?→Kπ 44.6±1.9 46.2±2.3
Γφ→K̄K 3.34±0.14 3.54±0.18
Γa1→ρπ 549±43 425±175
Γa1→πγ 0.66±0.01 0.64±0.25

Γf1(1420)→K?K 44.6±39.9 43.9±2.2
Γa0 266±12 265±13

ΓK?
0→Kπ 285±12 270±80
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Following considerations hold:

(i) The scalar quark–antiquark mesons lie above 1 GeV (see Table VI).
(ii) As a consequence of (i), the light scalar mesons with a mass below

1 GeV are something else (four-quark states, see the next section).
(iii) In Ref. [11], various consequences of the fit were investigated. For

instance, the branching ratios of a0 are in good agreement with the
experimental data.

(iv) The spectral function of the ρ and the a1 meson can be successfully
calculated [43].

(v) The eLSM has also been applied to baryons in the so-called mirror
assignment [10].

(vi) Studies of the model at nonzero density have been performed in Refs.
[44, 45].

(vii) Some preliminary attempts to study the eLSM at nonzero temperature
have been undertaken in Refs. [46, 47].

(viii) The model has been successfully extended to the case Nf = 4 [48], in
which charmed mesons are included.

4. Glueballs in the eLSM

According to lattice QCD, many glueballs with various quantum numbers
should exist, see Ref. [32, 33, 49] and Table VII (for the uncertainties, see
Ref. [32]). However, up to now, no glueball state has been unambiguously

TABLE VII

Central values of glueball masses from lattice (from [32]).

JPC Value [GeV]

0++ 1.70
2++ 2.39
0−+ 2.55
1−+ 2.96
2−+ 3.04
3+− 3.60
3++ 3.66
1−− 3.81
2−− 4.0
3−− 4.19
2+− 4.22
0+− 4.77
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identified (although for some of them, some candidates exist). The eSLM
introduced in the previous section can help to elucidate some features of
glueballs. In fact, the scalar glueball is a very important building block of
the model and other glueballs, such as the pseudoscalar one, can be easily
coupled to the eLSM.

4.1. Scalar glueball

The scalar glueball is the lightest gluonic state predicted by lattice QCD
and is a natural element of the eLSM as the excitation of the dilaton field
[11, 12]. The eLSM makes predictions for the lightest glueball state in a
chiral framework, completing previous phenomenological works on the sub-
ject [50–53]. The result of the recent study of Ref. [12] shows that the scalar
glueball is predominately contained in the resonance f0(1710). This assign-
ment is in agreement with the old lattice result of Ref. [54], with the recent
lattice result of Ref. [55], with other hadronic approaches [51, 52] and lately
also within an holographic approach [56].

The admixtures as calculated in Ref. [12] read: f0(1370)
f0(1500)
f0(1710)

 =

 −0.91 0.24 −0.33
0.30 0.94 −0.17
−0.27 0.26 0.93

 σN
σS
G

 . (155)

The following admixtures of the bare fields to the resonances follow:

f0(1370) : 83%σN , 6%σS , 11%G ,

f0(1500) : 9%σN , 88%σS , 3%G ,

f0(1710) : 8%σN , 6%σS , 86%G . (156)

The additional 5 parameters listed in Table VIII are needed in the scalar–
isoscalar sector. They were fitted to the experimental quantities of Table IX.
Further predictions of the approach are reported in Table X.

TABLE VIII

Additional parameters for the JPC = 0++ sector (from [12]).

Parameter Value

Λ 3297 [MeV]
mG 1525 [MeV]
λ1 6.35
h1 −3.22
εS 0.4212× 106

[
MeV2

]
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TABLE IX

Fitted quantities in the JPC = 0++ sector (from [12]).

Quantity Fit [MeV] Exp. [MeV]

Mf0(1370) 1444 1200–1500

Mf0(1500) 1534 1505±6
Mf0(1710) 1750 1720±6
f0(1370)→ ππ 423.6 —
f0(1500)→ ππ 39.2 38.04±4.95
f0(1500)→ KK̄ 9.1 9.37±1.69
f0(1710)→ ππ 28.3 29.3±6.5
f0(1710)→ KK̄ 73.4 71.4±29.1

TABLE X

Further properties in the JPC = 0++ sector (from [12]).

Decay channel Our value [MeV] Exp. [MeV]

f0(1370)→ KK̄ 117.5 —
f0(1370)→ ηη 43.3 —
f0(1370)→ ρρ→ 4π 13.8 —
f0(1500)→ ηη 4.7 5.56±1.34
f0(1500)→ ρρ→ 4π 0.2 > 54.0±7.1
f0(1710)→ ηη 57.9 34.3±17.6
f0(1710)→ ρρ→ 4π 0.5 —

In our solution, f0(1370) decays predominantly into two pions with a
decay width of about 400 MeV, in agreement with its interpretation as pre-
dominantly nonstrange q̄q state [11, 12]. This is in qualitative agreement
with the experimental analysis of Ref. [57], where Γf0(1370)→ππ = 325 MeV,
Γf0(1370)→4π ≈ 50 MeV, and Γf0(1370)→ηη/Γf0(1370)→ππ = 0.19± 0.07. More-
over, the decay channel f0(1500)→ ηη is in good agreement with PDG, while
the decay channel f0(1710)→ ηη is slightly larger than the experiment.

In conclusion, present results show that f0(1710) is a very good scalar
glueball candidate.

4.2. The pseudoscalar glueball

The pseudoscalar glueball is related to the chiral anomaly and couples
in a chirally invariant way to light mesons [13] and also to baryons [14]. The
chiral Lagrangian which couples the pseudoscalar glueball G̃ ≡ |gg〉 with
quantum numbers JPC = 0−+ to scalar and pseudoscalar mesons reads
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explicitly
Lint
G̃

= icG̃ΦG̃
(
detΦ− detΦ†

)
. (157)

The branching ratios of G̃ are reported in Table XI for two choices of the
pseudoscalar masses: MG̃ = 2.6 GeV predicted by lattice QCD [32] and
MG̃ = 2.37 GeV, in agreement with the pseudoscalar particle X(2370) mea-
sured by BES [58] (this resonance could be the pseudoscalar glueball). The
branching ratios are presented relative to the total decay width of the pseu-
doscalar glueball Γ tot

G̃
.

TABLE XI

Branching ratios for the pseudoscalar glueball (from [13]).

Quantity Case (i): Case (ii):
MG̃ = 2.6 GeV MG̃ = 2.37 GeV

ΓG̃→KKη/Γ
tot
G̃

0.049 0.043
ΓG̃→KKη′/Γ

tot
G̃

0.019 0.011
ΓG̃→ηηη/Γ

tot
G̃

0.016 0.013
ΓG̃→ηηη′/Γ

tot
G̃

0.0017 0.00082
ΓG̃→ηη′η′/Γ

tot
G̃

0.00013 0
ΓG̃→KKπ/Γ

tot
G̃

0.47 0.47
ΓG̃→ηππ/Γ

tot
G̃

0.16 0.17
ΓG̃→η′ππ/Γ

tot
G̃

0.095 0.090

In conclusion, we predict that KKπ is the dominant decay channel
(50%), followed by sizable ηππ and η′ππ decay channels (16% and 10%
respectively). Moreover, we also predict the decay into three pions should
vanish

ΓG̃→πππ = 0 . (158)

These are simple and testable theoretical predictions which can be helpful in
the experimental search at the PANDA experiment [59], where the glueball
can be directly formed in proton–antiproton fusion process.

4.3. Other glueballs

A similar program can be carried out for all other glueballs in Table VII.
For instance, a tensor glueball with a mass of about 2.2 GeV is expected
to exist from lattice calculations [32]. A preliminary study of the tensor
glueball was presented long ago [60]. It would be interesting to study this
hypothetical state by using the eLSM presented above. Another interesting
channel is the vector one. Namely, a vector glueball can be directly formed
at BES.
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In the future PANDA experiment [59], glueballs can be directly formed
in all non-exotic channels. A clear theoretical understanding of the de-
cay properties of glueballs will be also helpful for their future experimental
search.

5. Four-quark objects

5.1. Four-quark states in the low-energy domain

The light scalar resonances f0(500), f0(980), a0(980), and k = K∗0 (800)
are not part of the eLSM. In fact, the attempt to include them as ordinary
quark–antiquark states shows that this scenario does not work [9, 11]. Then,
as various other works confirm, these mesons are not quark–antiquark states.

An elegant possible explanation of the nature of these mesons was put
forward long ago in Refs. [61, 62] and further investigated in Refs. [63, 64],
in which they are described as bound states of a good diquark and a good
antidiquark. These diquarks are particularly stable since the corresponding
channel is attractive. An example of a wave-function of a good diquark is
given by

|space: L = 0〉 |spin: S = 0〉 |color: RG−GR〉 |flavor: ud− ds〉 (159)

with JP = 0+. For Nf = 3, there are indeed 3 good diquarks√
1
2 [d, s] ,

√
1
2 [u, s] ,

√
1
2 [u, d ] (160)

(for an arbitrary Nf , there are Nf(Nf − 1)/2 of such objects).
In this scenario, one has:

f0(500) ≡ 1

2
[u, d ]

[
ū, d̄

]
, (161)

f0(980) ≡ 1

2
√

2

(
[u, s] [ ū, s̄ ] + [d, s]

[
d̄, s̄

])
, (162)

a0
0(980) ≡ 1

2
√

2

(
[u, s] [ ū, s̄ ]− [d, s]

[
d̄, s̄

])
, (163)

k+ ≡ 1

2
[u, d ]

[
s̄, d̄

]
. (164)

By taking into account the effective quark masses m∗u ' m∗d ' 300 MeV
< m∗s ' 500 MeV, one can understand the mass ordering

Mf0(500) < Mk < Mf0(980) = Ma0(980) . (165)

This is not possible for a nonet of conventional quark–antiquark states.
Moreover, also the decays can be correctly described [64].
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However, while such a tetraquark model is appealing, one should go be-
yond a simple tree-level study and take into account quantum fluctuations.
In fact, all light scalar mesons are strongly affected by meson–meson loops.
The resonances f0(500) and k are extremely broad (& 400 MeV), thus the
effect of quantum fluctuations is large [65, 66]. At the same time, the res-
onances f0(980) and a0(980), although not broad, are strongly affected by
the K̄K threshold, i.e. by kaon–kaon loops.

Indeed, various calculations could explain the light scalar mesons as dy-
namically generated states [69]. A very interesting possibility is that the light
scalar mesons emerge as companion poles of the heavier quark–antiquark
fields that we encountered in the previous section [67, 68]. For instance, in
the recent work of Ref. [15], it was possible to describe the quark–antiquark
resonance a0(1450) together with the dynamically generated state a0(980)
in a unified framework and with only one seed state. In this framework,
a0(980) does not survive in the large-Nc limit: it simply fades out.

Summarizing, there is now a consensus that the light scalar mesons are
predominantly some sort of four-quark states, either as tetraquark
[61–64] or in the form of molecular states [69] (for what concerns the state
f0(500), we refer to very recent review [72] and references therein; for what
concerns (the indeed small) mixing with the ordinary mesons, see [70, 71]).
Moreover, there is also an agreement among different studies on the fact
that mesonic interactions are crucial to understand these states. At the
light of the present evidence, the light scalar mesons should be considered
as non-conventional mesons.

As a last point, we would like to discuss how to incorporate the res-
onance f0(500) in a chiral framework. In the case of Nf = 2, only one
tetraquark/molecular state is present, which we denote with the field χ. This
object is chirally invariant. The coupling of χ to σ, ~π and G is described by
the potential [70]

V = Vdil(G) + aG2
(
σ2 + ~π2

)2
+
λ

4

(
σ2 + ~π2

)2
−σh0 +

1

2
m2
χ

G2

G2
0

χ2 − g G
G0

χ
(
σ2 + ~π2

)
. (166)

As soon as G0 6= 0, one has also that (for a < 0) the field σ condenses to σ0,
σ0 ∝ G0 6= 0, see Sec. 3. Then, out of the two terms 1

2m
2
χχ

2 + g G
G0
χσ2

0 , we
obtain also a v.e.v. for χ

χ0 ∝ g
σ2

0

m2
χ

∝ g G
2
0

m2
χ

.

In this simple model, a four-quark condensate emerges. Indeed, even this
simple system contains various mixing terms (G–σ, χ–σ, and χ–G), which
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require numerical solutions. The field χ plays an important role at nonzero
temperature [46] and at nonzero density, and is also responsible of an attrac-
tion among nucleons [44, 45]. Quite remarkably, even if f0(500) seems to
play an important role for explaining some feature at nonzero temperature
and density, it is not important in thermal models of heavy-ion collision. In
fact, the contribution of the scalar–isoscalar state f0(500) is nearly perfectly
canceled by isotensor–scalar repulsion, see details in Ref. [73].

5.2. X,Y,Z states and other non-quarkonium candidates

The discovery in the last years of many enigmatic resonances — so-
called X,Y, Z states — made clear that there are now many candidates
of resonances beyond the standard quark–antiquark scenario. We refer to
Refs. [5, 74] for a list of the presently discovered states — (X(3872) was the
first one experimentally found by Belle in 2003). The interpretation of these
states is subject to ongoing debates: tetraquarks and molecular interpreta-
tions are the most prominent ones, but it is difficult to distinguish among
them [5, 75]. At the same time, distortions due to quantum fluctuations of
nearby threshold(s) surely take place, thus making a clear understanding of
these objects more difficult [76]. In this respect, it would be interesting to
perform a detailed study of the poles on the complex plane of the new dis-
covered resonances, in order to understand if some of the newly discovered
states are dynamically generated in the meaning of Refs. [15, 68].

There is, however, one aspect that should be stressed, since it shows
that objects beyond the quark–antiquark states have already been experi-
mentally found: these are the charged Z states as, for instance, the state
Zc(3900)± [6]. The mass of the state implies that this meson contains a
charm and an anticharm. Yet, how to make it charged? The only possi-
bility is to have four-quark states such as cc̄ud̄ ≡ cc̄π+ for Zc(3900)+ and
cc̄dū ≡ cc̄π− for Zc(3900)− (e.g. Ref. [77]).

Although the exact configuration is not known, the evidence for a non-
conventional mesonic substructure is compelling. In addition, very recently,
the neutral member of the multiplet Zc(3900)0 was found by BES [7], which
corresponds naturally to cc̄(uū− dd̄) ≡ cc̄π0.

In conclusion, we mention that there are other mesonic states which
are not yet understood. An example is the strange-charmed scalar state
DS0(2317), which is too light to be a cs̄ quarkonium. It can be a four-quark
or — even more probable — a dynamically generated state.

6. Conclusions

In this paper, we have discussed one of the main topics of modern QCD:
the existence and the properties of non-conventional mesons, i.e. mesons
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which are not quark–antiquark objects. Glueballs, i.e. bound state of glu-
ons, are a firm prediction of models and lattice QCD but are still missing
detection, even if some candidates exist. On the contrary, evidence toward
the existence of four-quark objects both at low-energy and in the charmo-
nium region is mounting (thanks to both experiment and theory).

For pedagogical purposes, we have first reviewed the symmetries of QCD.
Dilatation symmetry and its breaking is a central phenomenon of QCD since
it delivers a fundamental energy scale on which all quantities will depend.
Another very relevant symmetry is chiral symmetry and its spontaneous
breaking, which is responsible for the fact that chiral symmetry is hidden
(there are not degenerated chiral partners). Mass differences arise and Gold-
stone bosons (most notably the pions) emerge. Another central theoretical
tool of QCD is the large-Nc limit, in which the number of color is artifi-
cially increased to large values. In this limit, conventional quark–antiquark
mesons as well as glueballs become stable.

Later on, we constructed a model of QCD, called the extended Linear
Sigma Model (eLSM), which embodies the mentioned properties: the pres-
ence of a dilaton/glueball field is a primary ingredient; chiral symmetry and
its breaking are realized by a Mexican-hat potential; scalar, pseudoscalar,
vector, and axial-vector mesons are the building blocks of its Lagrangian.
The agreement of the theoretical results with data is very good (see Table VI
and Ref. [11]).

The eLSM can be used to study glueballs. The scalar glueball is al-
ready there: a detailed study of it has shown that the resonance f0(1710)
is predominantly gluonic. The pseudoscalar glueball has been also coupled
to light mesons and its branching ratios are predictions that can be used
in future searches of this particle. The very same idea can be extended to
all other glueballs predicted by lattice QCD. The eLSM offers a solid basis
for the calculation of the decays of gluonic states in accordance with chiral
and dilatation symmetries. In this context, the future PANDA experiment
will be very useful because almost all glueballs can be produced in proton–
antiproton fusion processes.

Then, we have concentrated on four-quark objects. They can emerge as
diquark–antidiquark states and/or as meson–meson bound states. In any
case, we expect the quantum mesonic loops to play an important role in the
understanding of various tetraquark candidates. In the low-energy sector,
the light scalar mesons are very broad and the use of quantum field theoreti-
cal models going beyond tree-level is compelling. In the charmonium sector,
many of the newly discovered X,Y, Z states are close to energy thresholds,
thus also in this case, loops are expected to be relevant. In any case, it must
be stressed that the experimental discovery of charged Z states implies that
non-quarkonium objects exist.
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In conclusion, there is room for new discoveries in the field of non-
conventional hadrons. The interchange of experimental activity and the-
oretical models and numerical simulations will be important to proceed in
this fascinating field of high energy physics.

I thank D. Parganlija, S. Janowski, T. Wolkanowski, A. Heinz, S. Gallas,
W. Eshraim, A. Habersetzer, Gy. Wolf, P. Kovacs, and D.H. Rischke for
collaborations on the topics discussed in this work.
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