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The entanglement of pure states of the 1p0f -shell nucleon pairs has
been studied. The Slater decomposition theorem has been used to verify if
any pure state of a nucleon pair is an entangled state. The von Neumann
entropy of the partial density matrix has been employed to quantify the
entanglement of the 1p0f -shell nucleon pairs. Results of calculations have
evidenced that the spin J and isospin T = 0 states are strongly entangled.
In the spin J and isospin T = 1 states, proton–neutron pairs are more
entangled than proton–proton and neutron–neutron pairs.
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1. Introduction

The concept of quantum entanglement, first considered by Schrödinger
[1, 2], has played a crucial role in the development of quantum physics.
Entanglement, observed nowadays in composite quantum systems, is one
of the most intriguing issues of modern quantum theory. Basic features
of quantum entanglement manifest themselves in non-local correlations be-
tween measurements performed on interacting well-separated particles. In
other words, quantum entanglement means that interacting multiple parti-
cles after their separation are linked together in such a way that the mea-
surement of one particle’s quantum state determines the possible quantum
states of other particles independently of their spatial separation.

Formulated by Bell famous inequalities [3] have opened a possibility
to experimental verification of the non-local features of quantum theory.
Among many experiments performed to check Bell’s inequalities, experi-
ments involving entangled pairs of photons were performed by Aspect and
co-workers [4, 5]. They confirmed an unambiguous violation of Bell’s inequal-
ity and confirmed good agreement with quantum mechanics (see also [6–8]).
All these results show us that entanglement is a fundamental, new resource,
beyond the scope of classical physics.
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The phenomenon of quantum entanglement of particles separated by
macroscopic distances is rather well-known. On the contrary, the character-
ization of quantum entanglement of particles at short, microscopic distances
is still an open problem. In this case, the indistinguishable character of iden-
tical, tightly bounded particles (fermions or bosons) is a challenging subject
to study [9, 10].

In reference [11], we studied quantum entanglement between indistin-
guishable particles at short distances on the example of the 1s0d-shell nu-
cleon pairs. The choice of such particles was dictated by their relatively
simple structure and by the fact that nucleon pairs in the truncated versions
of the shell model are used as building blocks for wave functions of nuclei in
the ground and excited states [12–14]. The main result of this study is that
the isospin T = 0 pairs are more entangled than the isospin T = 1 pairs.

Fingerprints of entangled states of nucleon pairs obtained from nuclear
decays and in reactions with exotic nuclei, e.g. 11Li or 6He, were reported
in Ref. [15]. Simple quantum entanglements were also visible in peripheral
reactions with rare isotopes [16]. Experimental results of Ref. [17] suggest
that in the reaction 16O–208Pb, entangled proton pairs pass through the
Coulomb barrier with high probability in collisions with energies well below
those to breach this barrier. Therefore, fingerprints of entangled states of
two-nucleon systems observed in experiments involving nuclei from different
mass ranges justify the motivation to study the entanglement of nucleon
pairs. The 1p0f -shell nucleon pairs take part in two-nucleon transfer re-
actions involving nuclei from different shells and different mass ranges. In
theoretical models of direct two-nucleon transfer reactions, it is generally
assumed that nucleons are transferred in the shell-model two-nucleon con-
figurations. So, transfer reactions can serve as a good tool to test an influence
of the entanglement of nucleon pairs on the probability transfer.

The aim of this paper is to extend the formalism of Ref. [11] to analyse
the entanglement of proton–proton, proton–neutron and neutron–neutron
pairs in the 1p0f shell.

In spite of the fact that it is hard to perform experiments on the en-
tanglement of nuclear systems, we hope that presented in this and previous
paper [11] findings will stimulate interest in issues of entanglement of two-
nucleon systems. We hope that in the near term, nuclear systems as well
as atomic and optical systems can become an important tool to obtain out-
comes for testing the non-local nature of quantum mechanics.

In order to quantify the amount of entanglement in quantum states of
indistinguishable particles, an appropriate measure of entanglement is re-
quired. Such measure of the entanglement of pure states for two distin-
guishable particles is the von Neumann entropy of the partial density ma-
trix, obtained by tracing over one subsystem [18]. The analog of the von
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Neumann entropy remains a good measure of entanglement also for two
identical fermions [10, 19]. Therefore, we will use the von Neumann entropy
to quantify the entanglement of the 1p0f -shell nucleon pairs.

The paper is organized as follows. In Section 2, the entanglement cri-
teria for two distinguishable and two undistinguished particles are shortly
presented. In Section 3, the von Neumann entropy is briefly described. Re-
sults of calculations of the von Neumann entropy of states of the 1p0f -shell
nucleon pairs are discussed in Section 4. Summary is in Section 5.

2. The entanglement criteria

2.1. System of two distinguishable particles

The impossibility of writing the pure state vector |Ψ(1.2)〉 of the system
made from two distinguishable particles as a tensor product of two single-
particle state vectors |Ψ(1)〉 and |Ψ(2)〉 indicates an appearance of entan-
glement in this systems. This implies that: (i) the state vector |Ψ(1.2)〉
turns out to be non-entangled if and only if the number of non-zero coeffi-
cients in the Schmidt decomposition of this state equals 1, (ii) the state is
non-entangled if and only if the von Neumann entropy of the partial density
matrix associated with both particles is equal to zero. (For more exhaustive
discussion about entanglement of two particles see, for instance, [20].)

These statements have clear physical meaning: (i) the first refers to
the possibility of attributing to each particle a complete set of eigenstates
associated with the considered set of observables, (ii) the second ensures
the complete and exhaustive information allowed by the quantum theory
about situation of each constituent. For clarity, in factorized state |Ψ(1.2)〉,
each particle is described by well-defined state vectors |Ψ(1)〉 and |Ψ(2)〉,
and the reduced density operator for one of the two particles, for example,
the one labelled 1, i.e. ρ̂1 = Tr2(|Ψ(1.2)〉〈Ψ(1.2)|) is a projection operator
onto a one dimension manifold. Correspondingly, its von Neumann entropy
S(ρ̂1) = −Tr(ρ̂1 log2 ρ̂1) equals zero since the von Neumann entropy mea-
sures the lack of information about the single-particle subsystem and there
is no uncertainty concerning the state attributed to it.

2.2. Slater rank for system of two indistinguishable fermions

Considering systems composed of two identical particles, due to the sym-
metrization requirement of the vector state |Ψ(1.2)〉, one should pay partic-
ular attention to interpretation of criteria for determining whether a state is
entangled. These criteria are both the Slater number and the von Neumann
entropy of the reduced density operator [10, 19]. They are considered for
systems of two fermions represented by two nucleons when each nucleon is
described in a finite-dimensional single-particle Hilbert space.
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The total Hilbert space H for system of two identical fermions sharing
an n-dimensional single-particle space Hn is

H = Â(Hn ⊗Hn) , (1)

where Â denotes the antisymmetrization operator. A general state vector
|Ψ(1, 2)〉 ∈ H can be written as

|Ψ(1, 2)〉 =
n∑

i,j=1;i 6=j
cij |i(1)〉 |j(2)〉 , (2)

where |i(k)〉, |j(k)〉 are orthonormal basis states to expand the space Hn

and index k = 1, 2 is used to enumerate the particles. Under a unitary
transformation of the single-particle states

|i(k)〉 7−→
∣∣i′(k)〉 = n∑

j=1

Uji′ |j(k)〉 , (3)

a matrix C = [cij ]n×n, defined by expansion coefficients cij of state (2),
transforms in such a way that C ′ = UCUT (where UT is transpose of U)
takes a block diagonal form [9, 10] containing blocks of the type

Zi =

[
0 zi
−zi 0

]
, (4)

i.e.
C

′
= diag[Z1, . . . , Zr, Z0] , (5)

where zi > 0 for i ∈ {1, . . . , r}, and Z0 is the (n−2r)× (n−2r) null matrix.
Each 2×2 block Zi corresponds to an elementary Slater determinant. Thus,
when expressed in such a basis, the state |Ψ(1, 2)〉 of Eq. (2) is a sum of
elementary Slater determinants where each single-particle basis state occurs
at most in one term. These elementary Slater determinants are the analogues
of product states of the Schmidt decomposition of systems consisting of
two distinguishable parties. A minimum number r of elementary Slater
determinants Zi in Eq. (5) replaces the Schmidt rank for the distinguishable
parties. It is called the fermionic Slater rank of |Ψ1, 2)〉 and expansion (5)
is called a Slater decomposition of |Ψ(1, 2)〉 [9]. Analogously to the Schmidt
criterion, a pure state of two identical fermions at short distance is entangled
if and only if Slater rank r > 1.
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3. The von Neumann entropy

If a quantum system is described by the density operator

ρ̂ = |Ψ(1.2)〉 〈Ψ(1.2)| , (6)

its von Neumann entropy S(ρ̂ ) is defined as

S (ρ̂ ) = −Tr (ρ̂ log2 ρ̂ ) . (7)

(In what follows, the logarithm base will be omitted.) By employing the
spectral decomposition of S(ρ̂ ), we obtain that

S (ρ̂ ) = −
k∑
i=1

λi log λi , (8)

where numbers λi, i = 1, . . . , k are the eigenvalues of the density operator ρ̂.
Given a density operator ρ̂ of a pure state of two distinguishable particles,

we define the reduced density operators ρ̂ 1 = Tr2(ρ̂ ) and ρ̂ 2 = Tr1(ρ̂ ),
where the partial trace has been taken over one subsystem, either 1 or 2.
Eqations (6)–(8) indicate that the von Neumann entropy ensures complete
information allowed by the quantum theory about constituents of bipartite
pure states.

Considering a system of two indistinguishable fermions, it is no matter
over which subsystem, 1 or 2, we perform tracing since the state |Ψ(1, 2)〉
is antisymmetric under the exchange of the two particles. Its density oper-
ator (6) is a symmetric operator and the reduced density operators of the
two particles are equal, i.e. ρ̂ 1 = Tr2(ρ̂ ) = ρ̂ 2 = Tr1(ρ̂ ). Then, the von
Neumann entropy of the reduced density operator for two indistinguishable
particles is

S(ρ̂1 or 2) = −Tr(ρ̂1 log ρ̂1) = −Tr(ρ̂2 log ρ̂2) . (9)

As we already stated, the von Neumann entropy for disentangled, pure
states of two distinguishable particles takes its minimum value Smin(ρ̂ ) = 0
(Schmidt rank r = 1). On the contrary, for disentangled, pure states of
two fermions Smin(ρ̂ ) = 1 (Slater rank r = 1). Moreover, in the case of
two identical bosons, the minimum of the analogous quantity is null. These
problematic issues suggest at first glance that the von Neumann entropy is
inappropriate measure of entanglement because it gives different values for
non-entangled distinguished particle states, non-entangled fermion states
and non-entangled boson states, respectively [10, 19, 21]. However, taking
into account the real meaning of the von Neumann entropy as a measure of
the uncertainty about the state of a quantum system allows us to explain this
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puzzling situation. To illustrate it, let us consider similarly as in Ref. [20]
a state |Ψ(1, 2)〉 with Slater rank equal to 1, i.e. a non-entangled state

|Ψ(1, 2)〉 = 1√
2

(
|1〉1 ⊗ |2〉2 − |2〉1 ⊗ |1〉2

)
. (10)

In this situation, we can attribute definite states |1〉 or |2〉 to the parti-
cles. But, since they are indistinguishable, we cannot know which particle
is associated to the state |1〉 or to the state |2〉. As a consequence, the von
Neumann entropy S(ρ̂ 1 or 2) = 1 measures the uncertainty concerning the
quantum state to attribute to each of the two identical subsystems. So,
quantum correlations related only to the antisymmetrization of the state of
identical fermions cannot be considered as a manifestation of entanglement.

If we consider an entangled state, i.e. a state with Slater rank r > 1,
the von Neumann entropy of the associated reduced density operator turns
out to be greater than 1. In this case, we cannot say that one particle
is in state |1〉 and one in state |2〉 (contrary to the situation described by
Eq. (10)). Besides, the greater value of the von Neumann entropy, the greater
lack of information about considered system and, consequently, the greater
entanglement of a given quantum state. Therefore, in this sense, the von
Neumann entropy is considered as the measure of entanglement of composite
quantum systems. If the density operator ρ̂ acts in an n-dimensional Hilbert
space, then 1 ≤ S(ρ̂ ) ≤ S(ρ̂ )max, where S(ρ̂ )max = log n. To get a better
insight how much the considered state is entangled, we proposed in Ref. [11]
the factor

η(ρ̂1) =
S(ρ̂1)− log 2

log n− log 2
. (11)

This factor, 0 < η(ρ̂1) ≤ 1, determines a fraction of the maximum value of
entanglement (Smax = log n, n > 2) deposited in a given state.

In the next section, we will employ the von Neumann entropy of Eq. (9)
to quantify the entanglement of the 1p0f -shell nucleon pairs.

4. The entanglement of nucleon pairs — results of calculations

A nucleon pair can be compounded of two nucleons occupying the same
single-particle orbit nlj (a single-particle orbit is specified by the n-main,
l-orbital and j-spin quantum numbers) or occupying different orbits n1l1j1
and n2l2j2. In the 1p0f shell, there are four single-nucleon orbits: 1p12 ,

1p32 , 0f
5
2 and 0f 7

2 which can also be indicated clearly by the spin j only.
In these orbits, we can construct 30 pairs for each total isospin T = 0, 1.
The total angular momentum J of these pairs is ranging from 0 up to 7 (see
Tables V and VI).
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To study the entanglement of nucleon pairs in the 1p0f shell, we will
employ the same formalism as in our previous paper [11] concerning the
entanglement of nucleon pairs in the 1s0d shell. For the reader’s convenience,
this formalism is included in Appendixes A–D.

In the first step, we will consider the entanglement of nucleon pairs in
states |ΨJmTτ (1, 2)〉 specified by spin–isospin angular momenta JT and their
projections mτ .

A set of (2J + 1)(2T + 1) such states defines a basis to expand two-
nucleon rotationally invariant states specified only by the spin–isospin JT
quantum numbers. In the second step, we will discuss the entanglement of
two-nucleon spin–isospin JT rotationally invariant states.

Rotationally invariant states with isospin T = 0 describe proton–neutron
pairs. Rotationally invariant states with total isospin T = 1 describe a super-
position of proton–proton (p–p), proton–neutron (p–n) and neutron–neutron
(n–n) states. To consider the entanglement of the p–n, p–n and n–n pairs
separately in the T = 1 states, we will in the third step exploit states which
are rotationally invariant only in the spin J space, i.e. |ΨJT=1τ (1, 2)〉 states
(where τ = +1, 0,−1 in the case of p–p, p–n, and n–n pairs, respectively).

We will calculate the von Neumann entropy for all considered states of
nucleon pairs according to the method stressed in Section 3. The matrices C
for these states are made from elements cpq calculated according to formu-
las given in Appendix A for states |ΨJmTτ (n1l1j1, n2l2j2)〉, in Appendix B,
for spin–isospin JT rotationally invariant states |ΨJT (n1l1j1, n2l2j2)〉 and in
Appendix C, for spin J rotationally invariant states |ΨJTτ (n1l1j1, n2l2j2)〉,
respectively. We will use these matrices to calculate the reduced density
matrices ρ1 (see Appendix D). The order of density matrix ρ1 = CC† is
equal to the number of its eigenvalues λi > 0 (note that eigenvalues appear
pairwise). We assume that the order of a given density matrix ρ1 determines
only the number of eigenvalues λi ≥ 0.00001. Values of λi < 0.00001 are
random ones which arise due to the accuracy of numerical operations and,
practically, do not affect the values of the von Neumann entropy (9). To
verify a correctness of our calculations, we have also performed the Slater
decomposition of the matrices C into block matrices C ′ (Eq. (5)).

Results of calculations for selected spin–isospin mτ -dependent states,
for spin–isospin JT rotationally invariant and spin J rotationally invariant
states, respectively, are presented in the next subsections.
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4.1. Selected states |ΨJmTτ (1, 2)〉
4.1.1. The j1 = j2 case

As an example, let us consider the entanglement of states |ΨJ=3mT=0

(0f5/2, 0f5/2)〉. From results stored in Table I, we see that states corre-
sponding to all m projections are almost maximally entangled (η(ρ̂ 1) fac-
tor of Eq. (11) is ≥ 0.814). However, due to the interference of m-proj-
ected states, the amount of entanglement in the rotationally invariant state
|ΨJ=3T=0(0f5/2, 0f5/2)〉 is reduced to the value of η(ρ̂ 1) = 0.624.

TABLE I

Description of the entanglement of the |ΨJ=3mT=0τ (0f5/20f5/2)〉 states. The
columns list the spin–isospin projections mτ , Slater rank r, von Neumann entropy
of the reduced density matrix S(ρ1), maximum value of the von Neumann entropy
Smax and factor η(ρ1) (Eq. (11)), respectively.

m τ r S(ρ1) Smax η(ρ1)

3,−3 0 3 2.547 2.585 0.976
2,−2 0 4 2.650 3 0.825
1,−1 0 5 2.892 3.322 0.814
0 0 6 3.434 3.585 0.942

Let us now consider the entanglement for selected example of T = 1
states, namely for |ΨJ=2mT=1τ (1p3/2, 1p3/2)〉 states. From data collected
in Table II, it is seen that for (m, τ) = (2, 1), (2,−1), (−2, 1), (−2,−1),
(1, 1), (1,−1).(−1, 1) and (−1,−1), projected states (see Eq. (19) of Ap-
pendix A) Slater rank r=1 and von Neumann entropy S(ρ̂1)=1. So, each
such state is represented by only one elementary Slater determinant and is
disentangled. Othermτ projected states are maximally entangled, η(ρ̂1)=1.
However, the rotationally invariant state |ΨJ=2T=1(1p3/2, 1p3/2)〉 superposed
from states |ΨJ=2mT=1τ (1p3/2, 1p3/2)〉 is weakly entangled, η(ρ̂1) = 0.134.

TABLE II

The same as in Table I but for the |ΨJ=2mT=1τ (1p3/21p3/2)〉 state.

m τ r S(ρ1) Smax η(ρ1)

2,−2 1,−1 1 1 1 0
2,−2 0 2 2 2 1
1,−1 1,−1 1 1 1 0
1,−1 0 2 2 2 1
0 1,−1 2 2 2 1
0 0 4 3 3 1
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4.1.2. The j1 6= j2 case

In Table III, there are stored results for the |ΨJ=3mT=0(1p3/20f5/2)〉
states. For all m projections, they are strongly entangled (η(ρ̂1) ≥ 840).
The corresponding, rotationally invariant JT = 30 state composed from m
projected states is, due to their interference, less entangled (η(ρ̂1) = 0.712).
Similar situation is observed in the case of the |ΨJ=1mT=1τ (0f5/2, 0f7/2)〉
states (Table IV). Namely, all mτ states are strongly entangled (η(ρ̂1) ≥
0.835) and entanglement of corresponding rotationally invariant state is
characterized by the factor η(ρ̂1) = 0.668.

TABLE III

The same as in Table I but for the |ΨJ=3mT=0τ (1p3/20f5/2)〉 state.

m τ r S(ρ1) Smax η(ρ1)

3,−3 0 4 2.954 3 0.977
2,−2 0 6 3.325 3.585 0.899
1,−1 0 8 3.519 4 0.840
0 0 8 3.971 4 0.990

TABLE IV

The same as in Table I but for the |ΨJ=1mT=1τ (0f5/20f7/2)〉 state.

m τ r S(ρ1) Smax η(ρ1)

1,−1 1,−1 6 3.159 3.585 0.835
1,−1 0 12 4.159 4.585 0.881
0 1,−1 6 3.531 3.585 0.979
0 0 12 4.531 4.585 0.984

4.2. Spin–isospin JT rotationally invariant states |ΨJT (1, 2)〉
In the full 1p0f shell, nucleons occupy 1p12 , 1p

3
2 0f 5

2 and 0f 7
2 levels. This

gives in the 1p0f shell 30 two-nucleon pairs for each total isospin T = 0, 1.
Similarly as in the 1s0d shells, a majority of the isospin T = 0 rotationally
invariant states are strongly entangled. For twenty four states from thirty
such states in the 1p0f shell, the factor η(ρ1) of Eq. (11) is larger than 0.6.
But, in the case of thirty T = 1 rotationally invariant states, only for eight
states η(ρ1) > 0.6. The rotationally invariant JT = 0 states (i.e. spin J and
isospin T = 0 states) describe p–n pairs. Rotationally invariant JT = 1
states (i.e. spin J and isospin T = 1 states) are a superposition of p–p
(τ = 1), p–n (τ = 0) and n–n (τ = −1) pairs. The fact that dominating
part of the JT = 1 rotationally invariant states is less entangled than JT = 0
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states is a consequence of a destructive interference of the p–p pairs and n–n
pairs with the p–n pairs. Results stored in Tables V and VI describe the
entanglement of rotationally invariant isospin T = 0 and isospin T = 1
states.

TABLE V

Description of the entanglement of the isospin T = 0 rotationally invariant states
|ΨJT (n1l1j1, n2l2j2)〉. The columns list the spin J of pairs, orbits of nucleons niliji
(i = 1, 2, Slater rank r, von Neumann entropy of the reduced density matrix S(ρ1),
maximum value of the von Neumann entropy Smax(ρ1) and factor η(ρ1) (Eq. (11)),
respectively.

T = 0

J n1l1j1 n1l1j1 r S(ρ1) Smax η(ρ1) J n1l1j1 n1l1j1 r S(ρ1) Smax η(ρ1)

1 1p 1
2

1p 1
2

2 1.872 2 0.187 3 1p 3
2

0f 5
2

8 3.135 4 0712
1 1p 1

2
1p 3

2
4 2.833 3 0.917 3 1p 3

2
0f 7

2
8 3.425 4 0.808

1 1p 3
2

1p 3
2

4 2.554 3 0.777 3 0f 5
2

0f 5
2

6 2.612 3.585 0.624
1 1p 3

2
0f 5

2
8 3.689 4 0.896 3 0f 5

2
0f 7

2
12 3.904 4.585 0.810

1 0f 5
2

0f 5
2

6 3.249 3.585 0.870 3 0f 7
2

0f 7
2

8 3.225 4 0.742
1 0f 5

2
0f 7

2
12 4.209 4.585 0.895 4 1p 1

2
0f 7

2
4 2.386 3 0.693

1 0f 7
2

0f 7
2

8 3.708 4 0.903 4 1p 3
2

0f 5
2

8 2.634 4 0.545
2 1p 1

2
1p 3

2
4 2.308 3 0.654 4 1p 3

2
0f 7

2
8 3.157 4 0.719

2 1p 1
2

0f 5
2

4 2.729 3 0.864 4 0f 5
2

0f 7
2

12 3.646 4.585 0.738
2 1p 3

2
0f 5

2
8 3.486 4 0.829 5 1p 3

2
0f 7

2
8 2.694 4 0.565

2 1p 3
2

0f 7
2

8 3.484 4 0.828 5 0f 5
2

0f 5
2

6 1.767 3.585 0.297
2 0f 5

2
0f 7

2
12 4.132 4.585 0.847 5 0f 5

2
0f 7

2
12 3.330 4.585 0.650

3 1p 1
2

0f 5
2

4 2.358 3 0.679 5 0f 7
2

0f 7
2

8 2.733 4 0.578
3 1p 1

2
0f 7

2
4 2.671 3 0.835 6 0f 5

2
0f 7

2
12 2.848 4.585 0.516

3 1p 3
2

1p 3
2

4 1.531 3 0.265 7 0f 7
2

0f 7
2

8 1.945 4 0.315

4.3. Spin J rotationally invariant states |ΨJTτ (1, 2)〉
The rotationally invariant JT = 0 states describe p–n pairs whilst ro-

tationally invariant JT = 1 states describe a superposition of p–p (τ = 1),
p–n (τ = 0) and n–n (τ = −1) pairs. The rotationally invariant JT = 0
states and JT = 1τ = 0 states describe p–n pairs. These states for fixed
spin J and fixed orbits n1l1j1, n2l2j2 are the same since the Clebsch–Gordan
coefficient 〈12

1
2
1
2 −

1
2 | 00〉 = 〈

1
2
1
2
1
2 −

1
2 | 10〉. Consequently, in this case, the

entanglement of rotationally invariant JT = 0 states and JT = 1τ = 0
states takes the same value. Noticeable is also that regardless of whether
nucleons occupy the same (n1l1j1 = n2l2j2) or different (n1l1j1 6= n2l2j2)
orbits, the n–n and p–p pairs in the JT = 1τ = ±1 states are less entangled
than the p–n pairs in the corresponding JT = 1τ = 0 states. In Table VII,
there are collected selected data which illustrate described above properties.
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TABLE VI

The same as in Table V but for the isospin T = 1 states.

T = 1

J n1l1j1 n1l1j1 r S(ρ1) Smax η(ρ1) J n1l1j1 n1l1j1 r S(ρ1) Smax η(ρ1)

0 1p 1
2

1p 1
2

2 1.187 2 0.187 3 1p 1
2

0f 5
2

4 1.545 3 0.273
0 1p 3

2
1p 3

2
4 2.187 3 0.594 3 1p 1

2
0f 7

2
4 1.858 3 0.429

0 0f 5
2

0f 5
2

6 2.772 3.585 0.686 3 1p 3
2

0f 5
2

8 2.323 4 0.441
0 0f 7

2
0f 7

2
8 3.187 4 o.729 3 1p 3

2
0f 7

2
8 2.613 4 0.538

1 1p 1
2

1p 3
2

4 2.021 3 0.510 3 0f 5
2

0f 7
2

12 3.092 4.585 0.583
1 1p 3

2
0f 5

2
8 2.876 4 0.626 4 1p 1

2
0f 7

2
4 1.573 3 0.287

1 0f 5
2

0f 7
2

12 3.396 4.585 0.668 4 1p 3
2

0f 5
2

8 1.821 4 0.274
2 1p 1

2
1p 3

2
4 1.495 3 0.247 4 1p 3

2
0f 7

2
8 2.344 4 0.448

2 1p 1
2

0f 5
2

4 1.916 3 0.458 4 0f 5
2

0f 5
2

6 1.453 3.585 0.175
2 1p 3

2
1p 3

2
4 1.269 3 0.134 4 0f 5

2
0f 7

2
12 2.833 4.585 0.511

2 1p 3
2

0f 5
2

8 2.673 4 0.558 4 0f 7
2

0f 7
2

8 2.178 4 0.393
2 1p 3

2
0f 7

2
8 2.672 4 0.557 5 1p 3

2
0f 7

2
8 1.882 4 0.294

2 0f 5
2

0f 5
2

6 2.114 3.585 0.431 5 0f 5
2

0f 7
2

12 2.517 4.585 0.423
2 0f 5

2
0f 7

2
12 3.320 4.585 0.647 6 0f 5

2
0f 7

2
12 2.036 4.585 0.289

2 0f 7
2

0f 7
2

8 2.654 4 0.551 6 0f 7
2

0f 7
2

8 1.608 4 0.203

5. Summary

Results presented in Tables I–IV indicate that, in general, isospin T = 0
and T = 1 states |ΨJmTτ (n1l1j1, n2l2j2)〉 are strongly entangled. However,
for some mτ projections, there are disentangled states. For instance, states
|ΨJ=2mT=1τ (1p3/21p3/2)〉 with projections (mτ) = (2, 1), (2,−1), (−2, 1),
(−2,−1), (1, 1), (1,−1), (−1, 1), (−1,−1) are disentangled and they are rep-
resented by one Slater determinant (see Table II). On the contrary, similarly
as in the case of 1s0d shell [11], all rotationally invariant states |ΨJT (n1l1j1,
n2l2j2)〉 are entangled (Tables V–VI). This is so, since rotationally invariant
states are a superposition of the mτ -dependent, entangled and disentangled
states.

Majority of the isospin T = 0 rotationally invariant states are strongly
entangled. For twenty two out of thirty such states in the 1p0f shell, the fac-
tor η(ρ1)>0.6. But, in the case of thirty T =1 rotationally invariant states,
only for five states η(ρ1)> 0.6. The rotationally invariant JT =1 states are
a superposition of p–p, p–n and n–n states, therefore, one can infer that in
these states, a destructive interference of n–n and p–p states with n–p states
reduces the entanglement of p–n pairs observed in the JT =0 states.

Spin J rotationally invariant states with well-defined isospin T = 1 and
projection τ = 1, 0,−1 describe p–p, p–n, n–n pairs, respectively. For
all such states, p–p and n–n pairs are less entangled than p–n pairs (see
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TABLE VII

Description of the entanglement of selected spin J rotationally invariant
|ΨJT=1τ (n1l1j1, n2l2j2)〉 states in the 1p0f shell. The columns list the spin J ,
isospin projections τ , specification of nucleon orbits niliji (i = 1, 2), Slater rank r,
von Neumann entropy of the reduced density matrix S(ρ1), maximum value of the
von Neumann entropy Smax and factor η(ρ1) (Eq. (11)), respectively.

T = 1

J τ n1l1j1 n2l2j2 r S(ρ1) Smax η(ρ1)

1 1,−1 1p 1
2 1p 3

2 2 1.833 2 0.833
1 0 1p 1

2 1p 3
2 4 2.833 3 0.917

1 1,−1 1p 3
2 0f 5

2 4 2.689 3 0.845
1 0 1p 3

2 0f 5
2 8 3.689 4 0.896

1 1,−1 0f 5
2 0f 7

2 6 3.209 3.585 0.854
1 0 0f 5

2 0f 7
2 12 4.209 4.585 0.895

2 1,−1 1p 1
2 1p 3

2 2 1.307 2 0.307
2 0 1p 1

2 1p 3
2 4 2.307 3 0.654

2 1,−1 1p 1
2 0f 5

2 2 1.729 2 0.729
2 0 1p 1

2 0f 5
2 4 2.729 3 0.864

2 1,−1 1p 3
2 0f 5

2 4 2.486 3 0.743
2 0 1p 3

2 0f 5
2 8 3.486 4 0.829

2 1,−1 1p 3
2 0f 7

2 4 2.484 3 0.742
2 0 1p 3

2 0f 7
2 8 3.484 4 0.828

3 1,−1 1p 1
2 0f 5

2 2 1.358 2 0.358
3 0 1p 1

2 0f 5
2 4 2.358 3 0.679

3 1,−1 1p 1
2 0f 7

2 2 1.671 2 0.671
3 0 1p 1

2 0f 7
2 4 2.671 3 0.835

4 1,−1 1p 1
2 0f 7

2 2 1.386 2 0.386
4 0 1p 1

2 0f 7
2 4 2.386 3 0.693

4 1,−1 1p 3
2 0f 7

2 4 2.157 3 0.578
4 0 1p 3

2 0f 7
2 8 3.157 4 0.719

5 1,−1 1p 3
2 0f 7

2 4 1.694 3 0.347
5 0 1p 3

2 0f 7
2 8 2.694 4 0.565

5 1,−1 0f 5
2 0f 7

2 6 2.330 3.585 0.514
5 0 0f 5

2 0f 7
2 12 3.330 4.585 0.650

Table VII). This is due to the fact that wave functions of p–n pairs are
made from more interfering terms than wave functions of n–n and p–p pairs
(see Eqs. (12), (13), (25)). Besides, the entanglement of JT = 1τ = 0
states is larger than entanglement of rotationally invariant JT = 1 states
(see Tables VI and VII).



Entanglement of Nucleon Pairs 2309

The entanglement of the JT = 0 rotationally invariant states and en-
tanglement of p–n pairs in corresponding JT = 1τ = 0 states is the same
(see Tables V and VII) since in both cases wave functions are the same (see
Eqs. (12), (13), (22), (25) and notice that the Clebsch–Gordan coefficient
〈12

1
2
1
2 −

1
2 | 00〉 = 〈

1
2
1
2
1
2 −

1
2 | 10〉).

Nucleon pairs are building blocks to expand wave functions for many-
nucleon systems governed by many-body Hamiltonian. Taking into account
that nucleon pairs, particularly the T = 0 pairs, are strongly entangled,
one can expect that many-nucleon pure, stationary states of the 1p0f -shell
nuclei are strongly entangled.

Appendix A

The |ΨJmTτ (1, 2)〉 states
If nucleons occupy the same single-particle orbit nlj, the wave function

of a nucleon pair in a state specified by the spin–isospin angular momenta
quantum numbers JT and their projections mτ is written as

|ΨJmTτ (1, 2)〉 =
∑

m1m2τ1τ2

〈jm1jm2| Jm〉

×
〈
1
2τ1

1
2τ2
∣∣Tτ〉

× |Ψnljm1τ1(1)〉 |Ψnljm2τ2(2)〉 , (12)

where . . . | . . .〉 are spin and isospin Clebsch–Gordan coefficients, |Ψnljmiτi(i)〉
is a wave function of a nucleon i = 1, 2 and mi, τi are projection quantum
numbers of the spin j and isospin (= 1

2), respectively. Since the wave func-
tion of two fermions has to be antisymmetric, the spin J and isospin T
angular momenta of a nucleon pair fulfil the condition (−1)2j+1−J−T = −1.
Because 2j + 1 is even, this condition implies that J + T is odd.

If nucleons occupy different orbits n1l1j1 and n2l2j2, the wave function
of a nucleon pair reads

|ΨJmTτ (1, 2)〉 =
1√
2

∑
m1m2τ1τ2

〈j1m1jm2| Jm〉

×
〈
1
2τ1

1
2τ2
∣∣Tτ〉

×[|Ψn1l1j1m1τ1(1)〉 |Ψn2l2j2m2τ (2)〉+
− |Ψn1l1j1m1τ1(2)〉 |Ψn2l2j2m2τ2(1)〉] . (13)

States of equations (12) and (13) can be expressed as

|ΨJmTτ (1, 2)〉 =
∑
p 6=q

cpq |Ψp(1)〉 |Ψq(2)〉 , (14)
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where states |Ψp(1)〉 = |Ψnplpjpmpτp(1)〉 and |Ψq(2)〉 = |Ψnqlqjqmqτq(2)〉 define
the n-dimensional single-nucleon basis in considered shell. Besides, for states
of Eq. (12) (i.e. if jp = jq),

cpq = 〈jpmpjqmq| Jm〉
〈
1
2τp

1
2τq
∣∣Tτ〉 ,

cqp = (−1)jp+jq+1−J−T cpq = −cpq , (15)

and for states of Eq. (13) (i.e. if jp 6= jq),

cpq = −cqp =
1√
2
〈jpmpjqmq| Jm〉

〈
1
2τp

1
2τq
∣∣Tτ〉 . (16)

Coefficients cpq of Eq. (14) define an antisymmetric matrix C = [cpq]n×n.
Given a density operator for nucleon pairs

ρ̂ = |ΨJmTτ (1, 2)〉 〈ΨJmTτ (1, 2)| , (17)

we can calculate the reduced density operator ρ̂1 = Tr2(ρ̂ ) = Tr1(ρ̂ ) for the
subsystem represented by a nucleon, either 1 or 2. Its matrix representation
can also be obtained with the aid of matrix C as follows (see Appendix D)

ρ1 = CC† , (18)

where C† is the Hermitian conjugate of C. Then, solving the eigenvalue
problem of ρ1, we can calculate the von Neumann entropy according to
Eq. (8). From the property 〈j1m1j2m2|jm〉 = (−1)j1+j2−j〈j1 − m1j2 −
m2|j −m〉 of the Clebsch–Gordan coefficients applied to coefficients cpq of
Eqs. (15) and (16), one can deduce that the reduced density matrix ρ1
(Eq. (18)) has the following property:

ρ1 = ρ1(MJ ,MT ) = ρ1(−MJ ,MT ) = ρ1(MJ ,−MT )

= ρ1(−MJ ,−MT ) . (19)

Since states (12) and (13) have well-defined projections mτ of the spin–
isospin angular momenta JT , therefore, their entanglement measured by
the von Neumann entropy is mτ -dependent. Due to the property S(ρ̂ ) =
S(Uρ̂U †) with U being a unitary transformation (note that S(ρ̂ ) depends
only on the eigenvalues of ρ̂ which are basis-independent), the von Neumann
entropy remains unchanged for given mτ projections, even if we express the
density operator ρ̂ in a new basis obtained by the unitary transformation.
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Appendix B

Spin–isospin JT rotationally invariant states |ΨJT (1, 2)〉
Set of (2J + 1)(2T + 1) states of Eqs. (12) and (13) defines the basis to

expand any two-nucleon state |ΨJT (1, 2)〉 which has well-defined spin–isospin
angular momenta JT, namely

|ΨJT (1, 2)〉 =
J∑

m=−J

T∑
τ=−T

amτ |ΨJmTτ (1, 2)〉 , (20)

where amτ are expansion coefficients satisfying the normalization condition∑
mτ |amτ |

2 = 1. In this expansion, quantum numbers n, l, j are fixed for
both particles, so coefficients amτ do not depend on these quantum numbers.
Substituting for the coefficients

amτ =
1√

(2J + 1)(2T + 1)
, (21)

state (20) takes the averaged form of all substates |ΨJmTτ (1, 2)〉, i.e.

|ΨJT (1, 2)〉 =
1√

(2J + 1)(2T + 1)

J∑
m=−J

T∑
τ=−T

|ΨJmTτ (1, 2)〉 . (22)

State (22) like state (20) is rotationally invariant and thus mτ -independent.
Due to this property, the entanglement of nucleon pairs calculated with the
aid of wave functions (22) is mτ -independent. Now, the coefficients cpq of
Eqs. (15) and (16) are slightly modified and take the form:

(i) if j1 = j2

cpq =
1√

(2J + 1)(2T + 1)

∑
m,τ

〈jpmpjqmq| Jm〉
〈
1
2τp

1
2τq
∣∣Tτ〉 ,

cqp = (−1)jp+jq+1−J−T cpq = −cpq , (23)

(ii) if j1 6= j2

cpq = −cqp =
1√

2(2J + 1)(2T + 1)

∑
m,τ

〈jpmpjqmq| Jm〉

×
〈
1
2τp

1
2τq
∣∣Tτ〉 . (24)
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Appendix C

Spin J rotationally invariant states |ΨJTτ (1, 2)〉
Similarly as in Appendix B, the set of (2J+1) states of Eqs. (12) and (13)

defines the basis to expand a two-nucleon state in the 1p0f shell which is
rotationally invariant in the spin J space. By a simple modification of the
Eq. (22), we obtain

|ΨJTτ (1, 2)〉 =
1√

(2J + 1)

J∑
m=−J

|ΨJmTτ (1, 2)〉 . (25)

States (25) are rotationally invariant in the J space and thusm-independent.
Depending on the projection τ of the isospin T , they describe p–p (τ = 1),
p–n (τ = 0) and n–n (τ = −1) pairs, respectively.

To calculate the reduced density matrix ρ for states (25), we need to
modify matrix elements cpq of Eqs. (23) and (24).

We have:

(i) if j1 = j2

cpq =
1√

(2J + 1)

∑
m

〈jpmpjqmq| Jm〉
〈
1
2τp

1
2τq
∣∣Tτ〉 ,

cqp = (−1)jp+jq+1−J−T cpq = −cpq , (26)

(ii) if j1 6= j2

cpq = −cqp =
1√

2(2J + 1)

∑
m

〈jpmpjqmq| Jm〉

×
〈
1
2τp

1
2τq
∣∣Tτ〉 . (27)

Appendix D

Reduced density matrix

For a general state of Eq. (2), a density operator is of the form of

ρ̂ = |Ψ〉 〈Ψ | =
n∑

i,j=1;i 6=j

n∑
k,l=1;k 6=l

cijc
∗
kl |i(1)〉 |j(2)〉 〈k(1)| 〈l(2)| . (28)

Taking the partial trace over one subsystem, say subsystem 2 (since system
under consideration is composed of two identical fermions, it is no matter
which subsystem we select for tracing ), the reduced density operator reads
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ρ̂1 =
n∑

m=1

〈m(2)| ρ̂ |m(2)〉 =
n∑

i,k,m=1

cimc
∗
km |i(1)〉 〈k(1)| (29)

and its matrix representation is

[ρ1 ]ik = 〈i(1)| ρ̂1 |k(1)〉 =
n∑

m=1

cimc
∗
km . (30)

We can define the matrix C = [cim]n×n and C† = [c∗mk]
T
n×n. Then, we

have
ρ1 = CC† . (31)
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