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In this paper, a new chaotic system with three nonlinear terms and
six equilibria is presented. Of particular interest is that the new system
has various types of multiple coexisting attractors with respect to differ-
ent parameters and initial values. The existence of two butterfly chaotic
attractors in the system is determined by bifurcation diagrams, Lyapunov
exponents and phase portraits. Moreover, the system displays five attrac-
tors with either two strange attractors and three limit cycles or one strange
attractor and four limit cycles for the same parameter values.
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1. Introduction

Chaos has been gradually attracting attention of the nonlinear science
community with the discovery of the notable Lorenz attractor for atmo-
spheric convection in 1963 [1]. After decades of research, scholars revealed
many unique features of chaos which can be used for information encryp-
tion, weather forecast, fault diagnosis, pathological regulation, etc. The
broad applications of chaos is just the major reason why chaos research has
been proved everlasting.
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The generation of chaos is of great interest in academic field. It is univer-
sally acknowledged that first-order, autonomous, continuous ordinary differ-
ential equations in at least three dimensions can display chaos. Over the
past few decades, a considerable number of three-dimensional chaotic sys-
tems have been proposed, such as: Rössler system [2], Sprott system [3],
Chen system [4], Lü system [5], Liu system [6], no-equilibria chaotic system
[7], multi-wing chaotic system [8], etc. With the further research of chaos,
scholars found that some simple differential equations can display multi-
ple chaotic attractors with respect to different initial conditions. Liu and
Chen proposed a three-dimensional system described as ẋ = ax − yz, ẏ =
−by + xz, ż = −cz + xy (a, b, c are system parameters), which exhibits two
double-scroll chaotic attractors simultaneously [9]. Sprott et al. claimed that
the Sprott E system [3] with only one stable equilibrium yields point, pe-
riodic, chaotic attractors from different initial values [10]. Li et al. found
a butterfly flow in which two point attractors, one limit cycle, two chaotic
attractors coexists [11]. Kengne et al. analyzed a jerk system with cubic
nonlinearity, and found that the system has two one-scroll chaotic attrac-
tors with their own domain of attraction [12]. More research results can be
referred to the literature [13–19].

The coexistence of multiple attractors in a system refers to the non-
uniqueness of steady states for a given set of system parameters. Each
steady state of the system corresponds to an attractor with specific domain
of attraction in phase space. An attractor can be a fixed point, a limit cycle
or a strange attractor. Nonlinear systems are often unavoidable to generate
multiple coexisting attractors. It is really very interesting to propose and
analyze some new systems with multiple chaotic attractors. In this letter,
we introduce a new three-dimensional autonomous system with three nonlin-
earities and six unstable equilibria. The dynamical behaviors of the system
are closely related to system parameters and initial values. One remark-
able feature of the system is that it exhibits multiple coexisting attractors.
The attractors can be limit cycles or chaotic attractors. By using numerical
simulation, the multiple attractors of the system are investigated.

2. A new chaotic system

Let us consider the following three-dimensional chaotic system [3] ẋ = a(y − x) ,
ẏ = xz ,
ż = k − xy .

(1)
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By multiplying a constant b and a nonlinear term (z2 − c) to the second
equation of system (1), a new chaotic system is established as follows: ẋ = a(y − x) ,

ẏ = bxz
(
z2 − c

)
,

ż = k − xy ,
(2)

where a, b, c, k are real numbers. System (2) has three nonlinearities xy, xz,
xz3. It is obvious that system (2) has a symmetry about the z-axis under
the transformation (x, y, z)→ (−x,−y, z). Let ẋ = ẏ = ż = 0, the equilibria
of system (2) are obtained as follows:

O1,2

(
±
√
k,±
√
k, 0
)
, O3,4

(
±
√
k,±
√
k,
√
c
)
,

O5,6

(
±
√
k,±
√
k,−
√
c
)
.

The eigenvalues λ at Oi(i = 1, 2) satisfy λ3 + aλ2 − bckλ − 2abck = 0 and
the eigenvalues λ at Oi(i = 3, 4, 5, 6) satisfy λ3 + aλ2 + 2bckλ+ 4abck = 0.
If a, b, c, k > 0, then Oi(i = 1, 2, 3, 4, 5, 6) is unstable since its eigenvalues
have positive real parts according to the Routh–Hurwitz stability criterion.
If a, b, k > 0 and c = 0, then the eigenvalues at Oi(i = 1, 2) can be calculated
as λ1 = λ2 = 0, λ3 = −a. The equilibrium Oi(i = 1, 2) is nonhyperbolic
and its stability can be determined by using the center manifold theorem.
Generally speaking, the number and type of equilibria have an important
influence on the dynamic behaviors of a system. The existence of multiple
equilibria usually provides a better flexibility to the system.

In the following part, we will investigate the complex dynamical be-
haviors of system (2), especially the multiple coexisting attractors. The
bifurcation diagrams, Lyapunov exponents, phase portraits show that dif-
ferent types of multiple attractors are flash up on system (2) with respect
to different parameters and initial values.

3. Multiple attractors

This section shows the multiple attractors of system (2) by numeri-
cal simulation on Matlab software platform. The classic fourth-fifth-order
Runge–Kutta integrator is applied to get the numerical solutions of sys-
tem (2). The corresponding step size and iteration time of the integrator
are set at ∆t = 0.01 and t ∈ [0, 200].

Let b = 2, c = 9, k = 1, then the bifurcation diagrams and Lyapunov
exponents of system (2) versus a ∈ (2, 14) are shown in Figs. 1 and 2.
Figure 1 is generated from the initial value x01 = (0.9, 0.9, 2.9), while Fig. 2
is generated from the initial value x02 = (0.9, 0.9,−2.9). Obviously, Fig. 1 (a)
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is within the range of z ∈ (2, 4) and Fig. 2 (a) is within the range of z ∈
(−1.8,−3.8). It means that system (2) has an attractor on phase space∆1 =
{(x, y, z) |z > 0} and an attractor on phase space ∆2 = {(x, y, z) |z < 0} .
The attractors can be periodic or chaotic for different values of parameter a.
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Fig. 1. Bifurcation diagram and Lyapunov exponents of system (2) with b = 2,
c = 9, k = 1 and initial value x01.
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Fig. 2. Bifurcation diagram and Lyapunov exponents of system (2) with b = 2,
c = 9, k = 1 and initial value x02.

When a = 5, system (2) has six equilibria S1,2(±1,±1, 0), S3,4(±1,±1, 3),
S5,6(±1,±1,−3). It is easy to verify that S1,2 are saddle foci with unstable
index-1 and S3,4, S5,6 are saddle foci with unstable index-2. Two butterfly
chaotic attractors are numerically observed in system (2) with respect to
the initial values x01 (gray/red color) and x02 (black/blue color), as shown
in Fig. 3. The gray/red color attractor is located around S3,4, while the
black/blue color attractor is located around S5,6. The Lyapunov exponents
of the gray/red color attractor are L1 = 1.2199, L2 = 0, L3 = −6.2199
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and its Lyapunov dimension is DL = 2 − L1/L3 = 2.1961. The Lyapunov
exponents of the black/blue color attractor are L1 = 1.1084, L2 = 0, L3 =
−6.1084 and its Lyapunov dimension is DL = 2.1815. The shape and struc-
ture of the attractors are very similar.
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Fig. 3. (Color online) Coexisting two chaotic attractors of system (2) with a = 5:
(a) x− y − z; (b) x− z; (c) Poincaré maps; (d) time series of z.

When a = 2.1, three limit cycles which yield from the initial values x01
(red color) and x02 (blue color), x03 = (−0.9,−0.9, 2.9) (green color) of
system (2) are shown in Fig. 4 (a). When a = 2.3, one limit cycle and two
chaotic attractors appear in system (2) under initial values x01, x02, x03, as
shown in Fig. 4 (b).
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When a = 2.7, system (2) displays one butterfly chaotic attractor and
two limit cycles with respect to initial values x01 (red color) and x02 (blue
color), x04 = (−0.9,−0.9,−2.9) (green color), as shown in Fig. 5 (a). Inter-
estingly, the trajectories that start from x01, x02, x04 can eventually settle
onto three chaotic attractors if system parameter a = 3.1, as shown in
Fig. 5 (b).
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Fig. 4. (Color online) Coexisting three attractors of system (2) with: (a) a = 2.1;
(b) a = 2.3.
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Fig. 5. (Color online) Coexisting three attractors of system (2) with: (a) a = 2.7;
(b) a = 3.1.

When a = 12.1, two chaotic attractors and three limit cycles are ob-
served in system (2) corresponding to the initial values x01 (red color), x02
(blue color), x03 (black color), x04 (pink color), x05 = (0.9, 0.9, 2.8) (green
color), as shown in Fig. 6 (a). Under the same initial conditions, one chaotic
attractors and four limit cycles are generated in system (2) with parameter
a = 12.9, as shown in Fig. 6 (b).

By selecting appropriate parameters and initial values, more types of
multiple attractors can be observed, as shown in Table I and Fig. 7. Figure 7
shows that system (2) respectively displays two attractors, three attractors,
four attractors and five attractors for different parameter values.
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Fig. 6. (Color online) Coexisting five attractors of system (2) with: (a) a = 12.1;
(b) a = 12.9.

TABLE I

Multiple coexisting attractors.

Types of attractor Parameters Initial values Figure

Two chaotic attractors a = 2, b = 2
(±0.9,±0.9,−2.9) Fig. 7 (a)

c = 9, k = 10

Two periodic attractors a = 2, b = 8
(0.1, 0.1,±1.9) Fig. 7 (b)

c = 4, k = 1

One periodic and a = 3, b = 8
(0.1, 0.1,±1.9) Fig. 7 (c)one chaotic attractors c = 4, k = 1

One periodic and a = 20, b = 8
(0.1, 0.1,±1.9) Fig. 7 (d)one chaotic attractors c = 4, k = 1

One periodic and a = 11, b = 2 (0.9, 0.9,±2.9) Fig. 7 (e)two chaotic attractors c = 9, k = 1 (0.9, 0.9, 2.8)

Two periodic and a = 10, b = 4 (±0.1,±0.1, 1.9) Fig. 7 (f)one chaotic attractors c = 4, k = 1 (0.1, 0.1,−1.9)

Two periodic and a = 20, b = 3 (±0.1,±0.1, 3) Fig. 7 (g)two chaotic attractors c = 8, k = 1 (0.1, 0.1,±3)

Four periodic and a = 15, b = 3 (±0.1,±0.1, 3)
Fig. 7 (h)one chaotic attractors c = 8, k = 1 (0.1, 0.1,±3)

(0.1, 0.1, 2)
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Fig. 7. Multiple coexisting attractors of system (2).
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4. Conclusions

This paper proposed a novel three-dimensional continuous chaotic sys-
tem with three nonlinear terms. The system has two index-1 saddle foci
and four index-2 saddle foci. The coexistence of multiple attractors in the
system is investigated by bifurcation diagrams, Lyapunov exponents and
phase portraits. It is shown that the system displays two chaotic attractors,
three chaotic attractors, four attractors with two chaotic attractors and two
limit cycles, five attractors either with two chaotic attractors and three limit
cycles or one chaotic attractor and four limit cycles, etc.
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